~ubuntu-branches/ubuntu/saucy/python-networkx/saucy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
"""
This module provides functions to convert 
NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph 
is through the graph constuctor.  The constructor calls
the to_networkx_graph() function which attempts to guess the
input type and convert it automatically.

Examples
--------

Create a 10 node random graph from a numpy matrix

>>> import numpy
>>> a=numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))
>>> D=nx.DiGraph(a) 

or equivalently

>>> D=nx.to_networkx_graph(a,create_using=nx.DiGraph()) 

Create a graph with a single edge from a dictionary of dictionaries

>>> d={0: {1: 1}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)


See Also
--------
nx_pygraphviz, nx_pydot

"""
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                           'Pieter Swart (swart@lanl.gov)',
                           'Dan Schult(dschult@colgate.edu)'])
#    Copyright (C) 2006-2011 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

import warnings
import networkx as nx

__all__ = ['to_networkx_graph',
           'from_dict_of_dicts', 'to_dict_of_dicts',
           'from_dict_of_lists', 'to_dict_of_lists',
           'from_edgelist', 'to_edgelist',
           'from_numpy_matrix', 'to_numpy_matrix',
           'to_numpy_recarray',
           'from_scipy_sparse_matrix', 'to_scipy_sparse_matrix']

def _prep_create_using(create_using):
    """Return a graph object ready to be populated.

    If create_using is None return the default (just networkx.Graph())
    If create_using.clear() works, assume it returns a graph object.
    Otherwise raise an exception because create_using is not a networkx graph.

    """
    if create_using is None:
        G=nx.Graph()
    else:
        G=create_using
        try:
            G.clear()
        except:
            raise TypeError("Input graph is not a networkx graph type")
    return G

def to_networkx_graph(data,create_using=None,multigraph_input=False):
    """Make a NetworkX graph from a known data structure.

    The preferred way to call this is automatically
    from the class constructor

    >>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1)
    >>> G=nx.Graph(d)

    instead of the equivalent

    >>> G=nx.from_dict_of_dicts(d)

    Parameters
    ----------
    data : a object to be converted
       Current known types are:
         any NetworkX graph
         dict-of-dicts
         dist-of-lists
         list of edges
         numpy matrix
         numpy ndarray
         scipy sparse matrix
         pygraphviz agraph

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created.

    multigraph_input : bool (default False)
      If True and  data is a dict_of_dicts,
      try to create a multigraph assuming dict_of_dict_of_lists.
      If data and create_using are both multigraphs then create
      a multigraph from a multigraph.

    """
    # NX graph
    if hasattr(data,"adj"):
        try:
            result= from_dict_of_dicts(data.adj,\
                    create_using=create_using,\
                    multigraph_input=data.is_multigraph())
            if hasattr(data,'graph') and isinstance(data.graph,dict):
                result.graph=data.graph.copy()
            if hasattr(data,'node') and isinstance(data.node,dict):
                result.node=dict( (n,dd.copy()) for n,dd in data.node.items() )
            return result
        except:
            raise nx.NetworkXError("Input is not a correct NetworkX graph.")

    # pygraphviz  agraph
    if hasattr(data,"is_strict"):
        try:
            return nx.from_agraph(data,create_using=create_using)
        except:
            raise nx.NetworkXError("Input is not a correct pygraphviz graph.")

    # dict of dicts/lists
    if isinstance(data,dict):
        try:
            return from_dict_of_dicts(data,create_using=create_using,\
                    multigraph_input=multigraph_input)
        except:
            try:
                return from_dict_of_lists(data,create_using=create_using)
            except:
                raise TypeError("Input is not known type.")

    # list or generator of edges
    if (isinstance(data,list)
        or hasattr(data,'next')
        or hasattr(data, '__next__')): 
        try:
            return from_edgelist(data,create_using=create_using)
        except:
            raise nx.NetworkXError("Input is not a valid edge list")

    # numpy matrix or ndarray 
    try:
        import numpy
        if isinstance(data,numpy.matrix) or \
               isinstance(data,numpy.ndarray):
            try:
                return from_numpy_matrix(data,create_using=create_using)
            except:
                raise nx.NetworkXError(\
                  "Input is not a correct numpy matrix or array.")
    except ImportError:
        warnings.warn('numpy not found, skipping conversion test.',
                      ImportWarning)

    # scipy sparse matrix - any format
    try:
        import scipy
        if hasattr(data,"format"):
            try:
                return from_scipy_sparse_matrix(data,create_using=create_using)
            except:
                raise nx.NetworkXError(\
                      "Input is not a correct scipy sparse matrix type.")
    except ImportError:
        warnings.warn('scipy not found, skipping conversion test.',
                      ImportWarning)


    raise nx.NetworkXError(\
          "Input is not a known data type for conversion.")

    return 


def convert_to_undirected(G):
    """Return a new undirected representation of the graph G."""
    return G.to_undirected()


def convert_to_directed(G):
    """Return a new directed representation of the graph G."""
    return G.to_directed()


def to_dict_of_lists(G,nodelist=None):
    """Return adjacency representation of graph as a dictionary of lists.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list
       Use only nodes specified in nodelist

    Notes
    -----
    Completely ignores edge data for MultiGraph and MultiDiGraph.

    """
    if nodelist is None:
        nodelist=G

    d = {}
    for n in nodelist:
        d[n]=[nbr for nbr in G.neighbors(n) if nbr in nodelist]
    return d

def from_dict_of_lists(d,create_using=None):
    """Return a graph from a dictionary of lists.

    Parameters
    ----------
    d : dictionary of lists
      A dictionary of lists adjacency representation.

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created.

    Examples
    --------
    >>> dol= {0:[1]} # single edge (0,1)
    >>> G=nx.from_dict_of_lists(dol)

    or
    >>> G=nx.Graph(dol) # use Graph constructor

    """
    G=_prep_create_using(create_using)
    G.add_nodes_from(d)
    if G.is_multigraph() and not G.is_directed():
        # a dict_of_lists can't show multiedges.  BUT for undirected graphs,
        # each edge shows up twice in the dict_of_lists.
        # So we need to treat this case separately.
        seen={}
        for node,nbrlist in d.items():
            for nbr in nbrlist:
                if nbr not in seen:
                    G.add_edge(node,nbr)
            seen[node]=1  # don't allow reverse edge to show up
    else:
        G.add_edges_from( ((node,nbr) for node,nbrlist in d.items()
                           for nbr in nbrlist) )
    return G


def to_dict_of_dicts(G,nodelist=None,edge_data=None):
    """Return adjacency representation of graph as a dictionary of dictionaries.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list
       Use only nodes specified in nodelist

    edge_data : list, optional
       If provided,  the value of the dictionary will be
       set to edge_data for all edges.  This is useful to make
       an adjacency matrix type representation with 1 as the edge data.
       If edgedata is None, the edgedata in G is used to fill the values.
       If G is a multigraph, the edgedata is a dict for each pair (u,v).
    """
    dod={}
    if nodelist is None:
        if edge_data is None:
            for u,nbrdict in G.adjacency_iter():
                dod[u]=nbrdict.copy()
        else: # edge_data is not None
            for u,nbrdict in G.adjacency_iter():
                dod[u]=dod.fromkeys(nbrdict, edge_data)
    else: # nodelist is not None
        if edge_data is None:
            for u in nodelist:
                dod[u]={}
                for v,data in ((v,data) for v,data in G[u].items() if v in nodelist):
                    dod[u][v]=data
        else: # nodelist and edge_data are not None
            for u in nodelist:
                dod[u]={}
                for v in ( v for v in G[u] if v in nodelist):
                    dod[u][v]=edge_data
    return dod

def from_dict_of_dicts(d,create_using=None,multigraph_input=False):
    """Return a graph from a dictionary of dictionaries.

    Parameters
    ----------
    d : dictionary of dictionaries
      A dictionary of dictionaries adjacency representation.

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created.

    multigraph_input : bool (default False)
       When True, the values of the inner dict are assumed
       to be containers of edge data for multiple edges.
       Otherwise this routine assumes the edge data are singletons.

    Examples
    --------
    >>> dod= {0: {1:{'weight':1}}} # single edge (0,1)
    >>> G=nx.from_dict_of_dicts(dod)

    or
    >>> G=nx.Graph(dod) # use Graph constructor

    """
    G=_prep_create_using(create_using)
    G.add_nodes_from(d)
    # is dict a MultiGraph or MultiDiGraph?
    if multigraph_input:
        # make a copy of the list of edge data (but not the edge data)
        if G.is_directed():
            if G.is_multigraph():
                G.add_edges_from( (u,v,key,data)
                                  for u,nbrs in d.items()
                                  for v,datadict in nbrs.items()
                                  for key,data in datadict.items()
                                )
            else:
                G.add_edges_from( (u,v,data)
                                  for u,nbrs in d.items()
                                  for v,datadict in nbrs.items()
                                  for key,data in datadict.items()
                                )
        else: # Undirected
            if G.is_multigraph():
                seen=set()   # don't add both directions of undirected graph
                for u,nbrs in d.items():
                    for v,datadict in nbrs.items():
                        if (u,v) not in seen:
                            G.add_edges_from( (u,v,key,data)
                                               for key,data in datadict.items()
                                              )
                            seen.add((v,u))
            else:
                seen=set()   # don't add both directions of undirected graph
                for u,nbrs in d.items():
                    for v,datadict in nbrs.items():
                        if (u,v) not in seen:
                            G.add_edges_from( (u,v,data)
                                        for key,data in datadict.items() )
                            seen.add((v,u))

    else: # not a multigraph to multigraph transfer
        if G.is_multigraph() and not G.is_directed():
            # d can have both representations u-v, v-u in dict.  Only add one.
            # We don't need this check for digraphs since we add both directions,
            # or for Graph() since it is done implicitly (parallel edges not allowed)
            seen=set()
            for u,nbrs in d.items():
                for v,data in nbrs.items():
                    if (u,v) not in seen:
                        G.add_edge(u,v,attr_dict=data)
                    seen.add((v,u))
        else:
            G.add_edges_from( ( (u,v,data)
                                for u,nbrs in d.items()
                                for v,data in nbrs.items()) )
    return G

def to_edgelist(G,nodelist=None):
    """Return a list of edges in the graph.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list
       Use only nodes specified in nodelist

    """
    if nodelist is None:
        return G.edges(data=True)
    else:
        return G.edges(nodelist,data=True)

def from_edgelist(edgelist,create_using=None):
    """Return a graph from a list of edges.

    Parameters
    ----------
    edgelist : list or iterator
      Edge tuples

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created.

    Examples
    --------
    >>> edgelist= [(0,1)] # single edge (0,1)
    >>> G=nx.from_edgelist(edgelist)

    or
    >>> G=nx.Graph(edgelist) # use Graph constructor

    """
    G=_prep_create_using(create_using)
    G.add_edges_from(edgelist)
    return G

def to_numpy_matrix(G, nodelist=None, dtype=None, order=None,
                    multigraph_weight=sum, weight='weight'):
    """Return the graph adjacency matrix as a NumPy matrix.

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the NumPy matrix.

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in `nodelist`.
       If `nodelist` is None, then the ordering is produced by G.nodes().

    dtype : NumPy data type, optional
        A valid single NumPy data type used to initialize the array. 
        This must be a simple type such as int or numpy.float64 and
        not a compound data type (see to_numpy_recarray)
        If None, then the NumPy default is used.

    order : {'C', 'F'}, optional
        Whether to store multidimensional data in C- or Fortran-contiguous
        (row- or column-wise) order in memory. If None, then the NumPy default 
        is used.

    multigraph_weight : {sum, min, max}, optional
        An operator that determines how weights in multigraphs are handled.
        The default is to sum the weights of the multiple edges.

    weight : string or None   optional (default='weight')
        The edge attribute that holds the numerical value used for 
        the edge weight.  If None then all edge weights are 1.


    Returns
    -------
    M : NumPy matrix
       Graph adjacency matrix.

    See Also
    --------
    to_numpy_recarray, from_numpy_matrix

    Notes
    -----
    The matrix entries are assigned with weight edge attribute. When
    an edge does not have the weight attribute, the value of the entry is 1.
    For multiple edges, the values of the entries are the sums of the edge
    attributes for each edge.

    When `nodelist` does not contain every node in `G`, the matrix is built 
    from the subgraph of `G` that is induced by the nodes in `nodelist`.

    Examples
    --------
    >>> G = nx.MultiDiGraph()
    >>> G.add_edge(0,1,weight=2)
    >>> G.add_edge(1,0)
    >>> G.add_edge(2,2,weight=3)
    >>> G.add_edge(2,2)
    >>> nx.to_numpy_matrix(G, nodelist=[0,1,2])
    matrix([[ 0.,  2.,  0.],
            [ 1.,  0.,  0.],
            [ 0.,  0.,  4.]])
    """
    try:
        import numpy as np
    except ImportError:
        raise ImportError(\
          "to_numpy_matrix() requires numpy: http://scipy.org/ ")

    if nodelist is None:
        nodelist = G.nodes()

    nodeset = set(nodelist)
    if len(nodelist) != len(nodeset):
        msg = "Ambiguous ordering: `nodelist` contained duplicates."
        raise nx.NetworkXError(msg)

    nlen=len(nodelist)
    undirected = not G.is_directed()
    index=dict(zip(nodelist,range(nlen)))

    if G.is_multigraph():
        # Handle MultiGraphs and MultiDiGraphs
        # array of nan' to start with, any leftover nans will be converted to 0
        # nans are used so we can use sum, min, max for multigraphs
        M = np.zeros((nlen,nlen), dtype=dtype, order=order)+np.nan
        # use numpy nan-aware operations
        operator={sum:np.nansum, min:np.nanmin, max:np.nanmax}
        try:
            op=operator[multigraph_weight]
        except:
            raise ValueError('multigraph_weight must be sum, min, or max')

        for u,v,attrs in G.edges_iter(data=True):
            if (u in nodeset) and (v in nodeset):
                i,j = index[u],index[v]
                e_weight = attrs.get(weight, 1)
                M[i,j] = op([e_weight,M[i,j]]) 
                if undirected:
                    M[j,i] = M[i,j]
        # convert any nans to zeros
        M = np.asmatrix(np.nan_to_num(M))
    else:
        # Graph or DiGraph, this is much faster than above 
        M = np.zeros((nlen,nlen), dtype=dtype, order=order)
        for u,nbrdict in G.adjacency_iter():
            for v,d in nbrdict.items():
                try:
                    M[index[u],index[v]]=d.get(weight,1)
                except KeyError:
                    pass
        M = np.asmatrix(M)
    return M


def from_numpy_matrix(A,create_using=None):
    """Return a graph from numpy matrix.

    The numpy matrix is interpreted as an adjacency matrix for the graph.

    Parameters
    ----------
    A : numpy matrix
      An adjacency matrix representation of a graph

    create_using : NetworkX graph
       Use specified graph for result.  The default is Graph()

    Notes
    -----
    If the numpy matrix has a single data type for each matrix entry it
    will be converted to an appropriate Python data type.

    If the numpy matrix has a user-specified compound data type the names
    of the data fields will be used as attribute keys in the resulting
    NetworkX graph.

    See Also
    --------
    to_numpy_matrix, to_numpy_recarray

    Examples
    --------
    Simple integer weights on edges:

    >>> import numpy
    >>> A=numpy.matrix([[1,1],[2,1]])
    >>> G=nx.from_numpy_matrix(A)

    User defined compound data type on edges:

    >>> import numpy
    >>> dt=[('weight',float),('cost',int)]
    >>> A=numpy.matrix([[(1.0,2)]],dtype=dt)
    >>> G=nx.from_numpy_matrix(A)
    >>> G.edges(data=True)
    [(0, 0, {'cost': 2, 'weight': 1.0})]
    """
    kind_to_python_type={'f':float,
                         'i':int,
                         'u':int,
                         'b':bool,
                         'c':complex,
                         'S':str,
                         'V':'void'}

    try: # Python 3.x
        blurb = chr(1245) # just to trigger the exception
        kind_to_python_type['U']=str
    except ValueError: # Python 2.6+
        kind_to_python_type['U']=unicode

    # This should never fail if you have created a numpy matrix with numpy...  
    try:
        import numpy as np
    except ImportError:
        raise ImportError(\
          "from_numpy_matrix() requires numpy: http://scipy.org/ ")

    G=_prep_create_using(create_using)
    n,m=A.shape
    if n!=m:
        raise nx.NetworkXError("Adjacency matrix is not square.",
                               "nx,ny=%s"%(A.shape,))
    dt=A.dtype
    try:
        python_type=kind_to_python_type[dt.kind]
    except:
        raise TypeError("Unknown numpy data type: %s"%dt)

    # make sure we get isolated nodes
    G.add_nodes_from(range(n))
    # get a list of edges
    x,y=np.asarray(A).nonzero()

    # handle numpy constructed data type
    if python_type is 'void':
        fields=sorted([(offset,dtype,name) for name,(dtype,offset) in
                       A.dtype.fields.items()])
        for (u,v) in zip(x,y):
            attr={}
            for (offset,dtype,name),val in zip(fields,A[u,v]):
                attr[name]=kind_to_python_type[dtype.kind](val)
            G.add_edge(u,v,attr)
    else: # basic data type
        G.add_edges_from( ((u,v,{'weight':python_type(A[u,v])}) 
                           for (u,v) in zip(x,y)) )
    return G


def to_numpy_recarray(G,nodelist=None,
                      dtype=[('weight',float)],
                      order=None):
    """Return the graph adjacency matrix as a NumPy recarray.

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the NumPy matrix.

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in `nodelist`.
       If `nodelist` is None, then the ordering is produced by G.nodes().

    dtype : NumPy data-type, optional
        A valid NumPy named dtype used to initialize the NumPy recarray. 
        The data type names are assumed to be keys in the graph edge attribute 
        dictionary.

    order : {'C', 'F'}, optional
        Whether to store multidimensional data in C- or Fortran-contiguous
        (row- or column-wise) order in memory. If None, then the NumPy default 
        is used.

    Returns
    -------
    M : NumPy recarray
       The graph with specified edge data as a Numpy recarray 

    Notes
    -----
    When `nodelist` does not contain every node in `G`, the matrix is built 
    from the subgraph of `G` that is induced by the nodes in `nodelist`.

    Examples
    --------
    >>> G = nx.Graph()
    >>> G.add_edge(1,2,weight=7.0,cost=5)
    >>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
    >>> print(A.weight)
    [[ 0.  7.]
     [ 7.  0.]]
    >>> print(A.cost)
    [[0 5]
     [5 0]]
    """
    try:
        import numpy as np
    except ImportError:
        raise ImportError(\
          "to_numpy_matrix() requires numpy: http://scipy.org/ ")

    if G.is_multigraph():
        raise nx.NetworkXError("Not implemented for multigraphs.")

    if nodelist is None:
        nodelist = G.nodes()

    nodeset = set(nodelist)
    if len(nodelist) != len(nodeset):
        msg = "Ambiguous ordering: `nodelist` contained duplicates."
        raise nx.NetworkXError(msg)

    nlen=len(nodelist)
    undirected = not G.is_directed()
    index=dict(zip(nodelist,range(nlen)))
    M = np.zeros((nlen,nlen), dtype=dtype, order=order)

    names=M.dtype.names
    for u,v,attrs in G.edges_iter(data=True):
        if (u in nodeset) and (v in nodeset):
            i,j = index[u],index[v]
            values=tuple([attrs[n] for n in names])
            M[i,j] = values
            if undirected:
                M[j,i] = M[i,j]

    return M.view(np.recarray)


def to_scipy_sparse_matrix(G, nodelist=None, dtype=None, 
                           weight='weight', format='csr'):
    """Return the graph adjacency matrix as a SciPy sparse matrix.

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the NumPy matrix.

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in `nodelist`.
       If `nodelist` is None, then the ordering is produced by G.nodes().

    dtype : NumPy data-type, optional
        A valid NumPy dtype used to initialize the array. If None, then the
        NumPy default is used.

    weight : string or None   optional (default='weight')
        The edge attribute that holds the numerical value used for 
        the edge weight.  If None then all edge weights are 1.

    format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'} 
        The type of the matrix to be returned (default 'csr').  For
        some algorithms different implementations of sparse matrices
        can perform better.  See [1]_ for details.

    Returns
    -------
    M : SciPy sparse matrix
       Graph adjacency matrix.

    Notes
    -----
    The matrix entries are populated using the edge attribute held in
    parameter weight. When an edge does not have that attribute, the
    value of the entry is 1.

    For multiple edges the matrix values are the sums of the edge weights.

    When `nodelist` does not contain every node in `G`, the matrix is built
    from the subgraph of `G` that is induced by the nodes in `nodelist`.

    Uses coo_matrix format. To convert to other formats specify the
    format= keyword.

    Examples
    --------
    >>> G = nx.MultiDiGraph()
    >>> G.add_edge(0,1,weight=2)
    >>> G.add_edge(1,0)
    >>> G.add_edge(2,2,weight=3)
    >>> G.add_edge(2,2)
    >>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2])
    >>> print(S.todense())
    [[0 2 0]
     [1 0 0]
     [0 0 4]]

    References
    ----------
    .. [1] Scipy Dev. References, "Sparse Matrices",
       http://docs.scipy.org/doc/scipy/reference/sparse.html
    """
    try:
        from scipy import sparse
    except ImportError:
        raise ImportError(\
          "to_scipy_sparse_matrix() requires scipy: http://scipy.org/ ")

    if nodelist is None:
        nodelist = G
    nlen = len(nodelist)
    if nlen == 0:
        raise nx.NetworkXError("Graph has no nodes or edges")

    if len(nodelist) != len(set(nodelist)):
        msg = "Ambiguous ordering: `nodelist` contained duplicates."
        raise nx.NetworkXError(msg)

    index = dict(zip(nodelist,range(nlen)))
    if G.number_of_edges() == 0:
        row,col,data=[],[],[]
    else:
        row,col,data=zip(*((index[u],index[v],d.get(weight,1))
                           for u,v,d in G.edges_iter(nodelist, data=True)
                           if u in index and v in index))
    if G.is_directed():
        M = sparse.coo_matrix((data,(row,col)),shape=(nlen,nlen), dtype=dtype)
    else:
        # symmetrize matrix
        M = sparse.coo_matrix((data+data,(row+col,col+row)),shape=(nlen,nlen),
                              dtype=dtype)
    try:
        return M.asformat(format)
    except AttributeError:
        raise nx.NetworkXError("Unknown sparse matrix format: %s"%format)

def from_scipy_sparse_matrix(A,create_using=None):
    """Return a graph from scipy sparse matrix adjacency list.

    Parameters
    ----------
    A : scipy sparse matrix
      An adjacency matrix representation of a graph

    create_using : NetworkX graph
       Use specified graph for result.  The default is Graph()

    Examples
    --------
    >>> import scipy.sparse
    >>> A=scipy.sparse.eye(2,2,1)
    >>> G=nx.from_scipy_sparse_matrix(A)

    """
    G=_prep_create_using(create_using)

    # convert all formats to lil - not the most efficient way
    AA=A.tolil()
    n,m=AA.shape

    if n!=m:
        raise nx.NetworkXError(\
              "Adjacency matrix is not square. nx,ny=%s"%(A.shape,))
    G.add_nodes_from(range(n)) # make sure we get isolated nodes

    for i,row in enumerate(AA.rows):
        for pos,j in enumerate(row):
            G.add_edge(i,j,**{'weight':AA.data[i][pos]})
    return G

# fixture for nose tests
def setup_module(module):
    from nose import SkipTest
    try:
        import numpy
    except:
        raise SkipTest("NumPy not available")
    try:
        import scipy
    except:
        raise SkipTest("SciPy not available")