~ubuntu-branches/ubuntu/trusty/ghostscript/trusty-security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/* Copyright (C) 2001-2012 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134, San Rafael,
   CA  94903, U.S.A., +1(415)492-9861, for further information.
*/


/* NeXT Display PostScript extensions */
#include "math_.h"
#include "ghost.h"
#include "oper.h"
#include "gscoord.h"
#include "gscspace.h"		/* for iimage.h */
#include "gsdpnext.h"
#include "gsmatrix.h"
#include "gsiparam.h"		/* for iimage.h */
#include "gsiparm2.h"
#include "gspath2.h"
#include "gxcvalue.h"
#include "gxdevice.h"
#include "gxsample.h"
#include "ialloc.h"
#include "igstate.h"
#include "iimage.h"
#include "iimage2.h"
#include "store.h"

/* ------ alpha channel ------ */

/* - currentalpha <alpha> */
static int
zcurrentalpha(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    push(1);
    make_real(op, gs_currentalpha(igs));
    return 0;
}

/* <alpha> setalpha - */
static int
zsetalpha(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double alpha;
    int code;

    if (real_param(op, &alpha) < 0)
        return_op_typecheck(op);
    if ((code = gs_setalpha(igs, alpha)) < 0)
        return code;
    pop(1);
    return 0;
}

/* ------ Imaging/compositing ------ */

/*
 * Miscellaneous notes:
 *
 * composite / dissolve respect destination clipping (both clip & viewclip),
 *   but ignore source clipping.
 * composite / dissolve must handle overlapping source/destination correctly.
 * compositing converts the source to the destination's color model
 *   (including halftoning if needed).
 */

/*
 * Define the operand and bookeeping structure for a compositing operation.
 */
typedef struct alpha_composite_state_s {
    /* Compositing parameters */
    gs_composite_alpha_params_t params;
    /* Temporary structures */
    gs_composite_t *pcte;
    gx_device *cdev;
    gx_device *orig_dev;
} alpha_composite_state_t;

/* Forward references */
static int begin_composite(i_ctx_t *, alpha_composite_state_t *);
static void end_composite(i_ctx_t *, alpha_composite_state_t *);
static int xywh_param(os_ptr, double[4]);

/* <dict> .alphaimage - */
/* This is the dictionary version of the alphaimage operator, which is */
/* now a pseudo-operator (see gs_dpnxt.ps). */
static int
zalphaimage(i_ctx_t *i_ctx_p)
{
    return image1_setup(i_ctx_p, true);
}

/* <destx> <desty> <width> <height> <op> compositerect - */
static int
zcompositerect(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    double dest_rect[4];
    alpha_composite_state_t cstate;
    int code = xywh_param(op - 1, dest_rect);

    if (code < 0)
        return code;
    check_int_leu(*op, compositerect_last);
    cstate.params.op = (gs_composite_op_t) op->value.intval;
    code = begin_composite(i_ctx_p, &cstate);
    if (code < 0)
        return code;
    {
        gs_rect rect;

        rect.q.x = (rect.p.x = dest_rect[0]) + dest_rect[2];
        rect.q.y = (rect.p.y = dest_rect[1]) + dest_rect[3];
        code = gs_rectfill(igs, &rect, 1);
    }
    end_composite(i_ctx_p, &cstate);
    if (code >= 0)
        pop(5);
    return code;
}

/* Common code for composite and dissolve. */
static int
composite_image(i_ctx_t *i_ctx_p, const gs_composite_alpha_params_t * params)
{
    os_ptr op = osp;
    alpha_composite_state_t cstate;
    gs_image2_t image;
    double src_rect[4];
    double dest_pt[2];
    gs_matrix save_ctm;
    int code = xywh_param(op - 4, src_rect);

    cstate.params = *params;
    gs_image2_t_init(&image);
    if (code < 0 ||
        (code = num_params(op - 1, 2, dest_pt)) < 0
        )
        return code;
    if (r_has_type(op - 3, t_null))
        image.DataSource = igs;
    else {
        check_stype(op[-3], st_igstate_obj);
        check_read(op[-3]);
        image.DataSource = igstate_ptr(op - 3);
    }
    image.XOrigin = src_rect[0];
    image.YOrigin = src_rect[1];
    image.Width = src_rect[2];
    image.Height = src_rect[3];
    image.PixelCopy = true;
    /* Compute appropriate transformations. */
    gs_currentmatrix(igs, &save_ctm);
    gs_translate(igs, dest_pt[0], dest_pt[1]);
    gs_make_identity(&image.ImageMatrix);
    if (image.DataSource == igs) {
        image.XOrigin -= dest_pt[0];
        image.YOrigin -= dest_pt[1];
    }
    code = begin_composite(i_ctx_p, &cstate);
    if (code >= 0) {
        code = process_non_source_image(i_ctx_p,
                                        (const gs_image_common_t *)&image,
                                        "composite_image");
        end_composite(i_ctx_p, &cstate);
        if (code >= 0)
            pop(8);
    }
    gs_setmatrix(igs, &save_ctm);
    return code;
}

/* <srcx> <srcy> <width> <height> <srcgstate|null> <destx> <desty> <op> */
/*   composite - */
static int
zcomposite(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_composite_alpha_params_t params;

    check_int_leu(*op, composite_last);
    params.op = (gs_composite_op_t) op->value.intval;
    return composite_image(i_ctx_p, &params);
}

/* <srcx> <srcy> <width> <height> <srcgstate|null> <destx> <desty> <delta> */
/*   dissolve - */
static int
zdissolve(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gs_composite_alpha_params_t params;
    double delta;
    int code = real_param(op, &delta);

    if (code < 0)
        return code;
    if (delta < 0 || delta > 1)
        return_error(e_rangecheck);
    params.op = composite_Dissolve;
    params.delta = delta;
    return composite_image(i_ctx_p, &params);
}

/* ------ Image reading ------ */

static int device_is_true_color(gx_device * dev);

/* <x> <y> <width> <height> <matrix> .sizeimagebox */
/*   <dev_x> <dev_y> <dev_width> <dev_height> <matrix> */
static void box_confine(int *pp, int *pq, int wh);
static int
zsizeimagebox(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    const gx_device *dev = gs_currentdevice(igs);
    gs_rect srect, drect;
    gs_matrix mat;
    gs_int_rect rect;
    int w, h;
    int code;

    check_type(op[-4], t_integer);
    check_type(op[-3], t_integer);
    check_type(op[-2], t_integer);
    check_type(op[-1], t_integer);
    srect.p.x = op[-4].value.intval;
    srect.p.y = op[-3].value.intval;
    srect.q.x = srect.p.x + op[-2].value.intval;
    srect.q.y = srect.p.y + op[-1].value.intval;
    gs_currentmatrix(igs, &mat);
    gs_bbox_transform(&srect, &mat, &drect);
    /*
     * We want the dimensions of the image as a source, not a
     * destination, so we need to expand it rather than pixround.
     */
    rect.p.x = (int)floor(drect.p.x);
    rect.p.y = (int)floor(drect.p.y);
    rect.q.x = (int)ceil(drect.q.x);
    rect.q.y = (int)ceil(drect.q.y);
    /*
     * Clip the rectangle to the device boundaries, since that's what
     * the NeXT implementation does.
     */
    box_confine(&rect.p.x, &rect.q.x, dev->width);
    box_confine(&rect.p.y, &rect.q.y, dev->height);
    w = rect.q.x - rect.p.x;
    h = rect.q.y - rect.p.y;
    /*
     * The NeXT documentation doesn't specify very clearly what is
     * supposed to be in the matrix: the following produces results
     * that match testing on an actual NeXT system.
     */
    mat.tx -= rect.p.x;
    mat.ty -= rect.p.y;
    code = write_matrix(op, &mat);
    if (code < 0)
        return code;
    make_int(op - 4, rect.p.x);
    make_int(op - 3, rect.p.y);
    make_int(op - 2, w);
    make_int(op - 1, h);
    return 0;
}
static void
box_confine(int *pp, int *pq, int wh)
{
    if ( *pq <= 0 )
        *pp = *pq = 0;
    else if ( *pp >= wh )
        *pp = *pq = wh;
    else {
        if ( *pp < 0 )
            *pp = 0;
        if ( *pq > wh )
            *pq = wh;
    }
}

/* - .sizeimageparams <bits/sample> <multiproc> <ncolors> */
static int
zsizeimageparams(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    gx_device *dev = gs_currentdevice(igs);
    int ncomp = dev->color_info.num_components;
    int bps;

    push(3);
    if (device_is_true_color(dev))
        bps = dev->color_info.depth / ncomp;
    else {
        /*
         * Set bps to the smallest allowable number of bits that is
         * sufficient to represent the number of different colors.
         */
        gx_color_value max_value =
            (dev->color_info.num_components == 1 ?
             dev->color_info.max_gray :
             max(dev->color_info.max_gray, dev->color_info.max_color));
        static const gx_color_value sizes[] = {
            1, 2, 4, 8, 12, sizeof(gx_max_color_value) * 8
        };
        int i;

        for (i = 0;; ++i)
            if (max_value <= ((ulong) 1 << sizes[i]) - 1)
                break;
        bps = sizes[i];
    }
    make_int(op - 2, bps);
    make_false(op - 1);
    make_int(op, ncomp);
    return 0;
}

/* ------ Initialization procedure ------ */

const op_def zdpnext_op_defs[] =
{
    {"0currentalpha", zcurrentalpha},
    {"1setalpha", zsetalpha},
    {"1.alphaimage", zalphaimage},
    {"8composite", zcomposite},
    {"5compositerect", zcompositerect},
    {"8dissolve", zdissolve},
    {"5.sizeimagebox", zsizeimagebox},
    {"0.sizeimageparams", zsizeimageparams},
    op_def_end(0)
};

/* ------ Internal routines ------ */

/* Collect a rect operand. */
static int
xywh_param(os_ptr op, double rect[4])
{
    int code = num_params(op, 4, rect);

    if (code < 0)
        return code;
    if (rect[2] < 0)
        rect[0] += rect[2], rect[2] = -rect[2];
    if (rect[3] < 0)
        rect[1] += rect[3], rect[3] = -rect[3];
    return code;
}

/* Begin a compositing operation. */
static int
begin_composite(i_ctx_t *i_ctx_p, alpha_composite_state_t * pcp)
{
    gx_device *dev = gs_currentdevice(igs);
    int code =
        gs_create_composite_alpha(&pcp->pcte, &pcp->params, imemory);

    if (code < 0)
        return code;
    pcp->orig_dev = pcp->cdev = dev;	/* for end_composite */
    code = (*dev_proc(dev, create_compositor))
        (dev, &pcp->cdev, pcp->pcte, (gs_imager_state *)igs, imemory, NULL);
    if (code < 0) {
        end_composite(i_ctx_p, pcp);
        return code;
    }
    gs_setdevice_no_init(igs, pcp->cdev);
    return 0;
}

/* End a compositing operation. */
static void
end_composite(i_ctx_t *i_ctx_p, alpha_composite_state_t * pcp)
{
    /* Close and free the compositor and the compositing object. */
    if (pcp->cdev != pcp->orig_dev) {
        gs_closedevice(pcp->cdev);	/* also frees the device */
        gs_setdevice_no_init(igs, pcp->orig_dev);
    }
    ifree_object(pcp->pcte, "end_composite(gs_composite_t)");
}

/*
 * Determine whether a device has decomposed pixels with the components
 * in the standard PostScript order, and a 1-for-1 color map
 * (possibly inverted).  Return 0 if not true color, 1 if true color,
 * -1 if inverted true color.
 */
static int
device_is_true_color(gx_device * dev)
{
    int ncomp = dev->color_info.num_components;
    int depth = dev->color_info.depth;
    int i, max_v;

#define CV(i) (gx_color_value)((ulong)gx_max_color_value * i / max_v)
#define CV0 ((gx_color_value)0)

    /****** DOESN'T HANDLE INVERSION YET ******/
    switch (ncomp) {
        case 1:		/* gray-scale */
            max_v = dev->color_info.max_gray;
            if (max_v != (1 << depth) - 1)
                return 0;
            for (i = 0; i <= max_v; ++i) {
                gx_color_value v[3];
                v[0] = v[1] = v[2] = CV(i);
                if ((*dev_proc(dev, map_rgb_color)) (dev, v) != i)
                    return 0;
            }
            return true;
        case 3:		/* RGB */
            max_v = dev->color_info.max_color;
            if (depth % 3 != 0 || max_v != (1 << (depth / 3)) - 1)
                return false;
            {
                const int gs = depth / 3, rs = gs * 2;

                for (i = 0; i <= max_v; ++i) {
                    gx_color_value red[3];
                    gx_color_value green[3];
                    gx_color_value blue[3];
                    red[0] = CV(i); red[1] = CV0, red[2] = CV0;
                    green[0] = CV0; green[1] = CV(i); green[2] = CV0;
                    blue[0] = CV0; blue[1] = CV0; blue[2] = CV(i);
                    if ((*dev_proc(dev, map_rgb_color)) (dev, red) !=
                        i << rs ||
                        (*dev_proc(dev, map_rgb_color)) (dev, green) !=
                        i << gs ||
                        (*dev_proc(dev, map_rgb_color)) (dev, blue) !=
                        i	/*<< bs */
                        )
                        return 0;
                }
            }
            return true;
        case 4:		/* CMYK */
            max_v = dev->color_info.max_color;
            if ((depth & 3) != 0 || max_v != (1 << (depth / 4)) - 1)
                return false;
            {
                const int ys = depth / 4, ms = ys * 2, cs = ys * 3;

                for (i = 0; i <= max_v; ++i) {

                    gx_color_value cyan[4];
                    gx_color_value magenta[4];
                    gx_color_value yellow[4];
                    gx_color_value black[4];
                    cyan[0] = CV(i); cyan[1] = cyan[2] = cyan[3] = CV0;
                    magenta[1] = CV(i); magenta[0] = magenta[2] = magenta[3] = CV0;
                    yellow[2] = CV(i); yellow[0] = yellow[1] = yellow[3] = CV0;
                    black[3] = CV(i); black[0] = black[1] = black[2] = CV0;
                    if ((*dev_proc(dev, map_cmyk_color)) (dev, cyan) !=
                        i << cs ||
                        (*dev_proc(dev, map_cmyk_color)) (dev, magenta) !=
                        i << ms ||
                        (*dev_proc(dev, map_cmyk_color)) (dev, yellow) !=
                        i << ys ||
                        (*dev_proc(dev, map_cmyk_color)) (dev, black) !=
                        i	/*<< ks */
                        )
                        return 0;
                }
            }
            return 1;
        default:
            return 0;		/* DeviceN */
    }
#undef CV
#undef CV0
}