~ubuntu-branches/ubuntu/trusty/liburcu/trusty-201403272206

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
/*
 * rculfhash.c
 *
 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
 *
 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/*
 * Based on the following articles:
 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
 *   extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
 * - Michael, M. M. High performance dynamic lock-free hash tables
 *   and list-based sets. In Proceedings of the fourteenth annual ACM
 *   symposium on Parallel algorithms and architectures, ACM Press,
 *   (2002), 73-82.
 *
 * Some specificities of this Lock-Free Resizable RCU Hash Table
 * implementation:
 *
 * - RCU read-side critical section allows readers to perform hash
 *   table lookups, as well as traversals, and use the returned objects
 *   safely by allowing memory reclaim to take place only after a grace
 *   period.
 * - Add and remove operations are lock-free, and do not need to
 *   allocate memory. They need to be executed within RCU read-side
 *   critical section to ensure the objects they read are valid and to
 *   deal with the cmpxchg ABA problem.
 * - add and add_unique operations are supported. add_unique checks if
 *   the node key already exists in the hash table. It ensures not to
 *   populate a duplicate key if the node key already exists in the hash
 *   table.
 * - The resize operation executes concurrently with
 *   add/add_unique/add_replace/remove/lookup/traversal.
 * - Hash table nodes are contained within a split-ordered list. This
 *   list is ordered by incrementing reversed-bits-hash value.
 * - An index of bucket nodes is kept. These bucket nodes are the hash
 *   table "buckets". These buckets are internal nodes that allow to
 *   perform a fast hash lookup, similarly to a skip list. These
 *   buckets are chained together in the split-ordered list, which
 *   allows recursive expansion by inserting new buckets between the
 *   existing buckets. The split-ordered list allows adding new buckets
 *   between existing buckets as the table needs to grow.
 * - The resize operation for small tables only allows expanding the
 *   hash table. It is triggered automatically by detecting long chains
 *   in the add operation.
 * - The resize operation for larger tables (and available through an
 *   API) allows both expanding and shrinking the hash table.
 * - Split-counters are used to keep track of the number of
 *   nodes within the hash table for automatic resize triggering.
 * - Resize operation initiated by long chain detection is executed by a
 *   call_rcu thread, which keeps lock-freedom of add and remove.
 * - Resize operations are protected by a mutex.
 * - The removal operation is split in two parts: first, a "removed"
 *   flag is set in the next pointer within the node to remove. Then,
 *   a "garbage collection" is performed in the bucket containing the
 *   removed node (from the start of the bucket up to the removed node).
 *   All encountered nodes with "removed" flag set in their next
 *   pointers are removed from the linked-list. If the cmpxchg used for
 *   removal fails (due to concurrent garbage-collection or concurrent
 *   add), we retry from the beginning of the bucket. This ensures that
 *   the node with "removed" flag set is removed from the hash table
 *   (not visible to lookups anymore) before the RCU read-side critical
 *   section held across removal ends. Furthermore, this ensures that
 *   the node with "removed" flag set is removed from the linked-list
 *   before its memory is reclaimed. After setting the "removal" flag,
 *   only the thread which removal is the first to set the "removal
 *   owner" flag (with an xchg) into a node's next pointer is considered
 *   to have succeeded its removal (and thus owns the node to reclaim).
 *   Because we garbage-collect starting from an invariant node (the
 *   start-of-bucket bucket node) up to the "removed" node (or find a
 *   reverse-hash that is higher), we are sure that a successful
 *   traversal of the chain leads to a chain that is present in the
 *   linked-list (the start node is never removed) and that it does not
 *   contain the "removed" node anymore, even if concurrent delete/add
 *   operations are changing the structure of the list concurrently.
 * - The add operations perform garbage collection of buckets if they
 *   encounter nodes with removed flag set in the bucket where they want
 *   to add their new node. This ensures lock-freedom of add operation by
 *   helping the remover unlink nodes from the list rather than to wait
 *   for it do to so.
 * - There are three memory backends for the hash table buckets: the
 *   "order table", the "chunks", and the "mmap".
 * - These bucket containers contain a compact version of the hash table
 *   nodes.
 * - The RCU "order table":
 *   -  has a first level table indexed by log2(hash index) which is
 *      copied and expanded by the resize operation. This order table
 *      allows finding the "bucket node" tables.
 *   - There is one bucket node table per hash index order. The size of
 *     each bucket node table is half the number of hashes contained in
 *     this order (except for order 0).
 * - The RCU "chunks" is best suited for close interaction with a page
 *   allocator. It uses a linear array as index to "chunks" containing
 *   each the same number of buckets.
 * - The RCU "mmap" memory backend uses a single memory map to hold
 *   all buckets.
 * - synchronize_rcu is used to garbage-collect the old bucket node table.
 *
 * Ordering Guarantees:
 *
 * To discuss these guarantees, we first define "read" operation as any
 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
 * cds_lfht_first, cds_lfht_next operation, as well as
 * cds_lfht_add_unique (failure). 
 *
 * We define "read traversal" operation as any of the following
 * group of operations
 *  - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
 *    (and/or cds_lfht_next, although less common).
 *  - cds_lfht_add_unique (failure) followed by iteration with
 *    cds_lfht_next_duplicate (and/or cds_lfht_next, although less
 *    common).
 *  - cds_lfht_first followed iteration with cds_lfht_next (and/or
 *    cds_lfht_next_duplicate, although less common).
 *
 * We define "write" operations as any of cds_lfht_add,
 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
 *
 * When cds_lfht_add_unique succeeds (returns the node passed as
 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
 * fails (returns a node different from the one passed as parameter), it
 * acts as a "read" operation. A cds_lfht_add_unique failure is a
 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
 * (failure).
 *
 * We define "prior" and "later" node as nodes observable by reads and
 * read traversals respectively before and after a write or sequence of
 * write operations.
 *
 * Hash-table operations are often cascaded, for example, the pointer
 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
 * whose return value might in turn be passed to another hash-table
 * operation. This entire cascaded series of operations must be enclosed
 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
 * operations.
 *
 * The following ordering guarantees are offered by this hash table:
 *
 * A.1) "read" after "write": if there is ordering between a write and a
 *      later read, then the read is guaranteed to see the write or some
 *      later write.
 * A.2) "read traversal" after "write": given that there is dependency
 *      ordering between reads in a "read traversal", if there is
 *      ordering between a write and the first read of the traversal,
 *      then the "read traversal" is guaranteed to see the write or
 *      some later write.
 * B.1) "write" after "read": if there is ordering between a read and a
 *      later write, then the read will never see the write.
 * B.2) "write" after "read traversal": given that there is dependency
 *      ordering between reads in a "read traversal", if there is
 *      ordering between the last read of the traversal and a later
 *      write, then the "read traversal" will never see the write.
 * C)   "write" while "read traversal": if a write occurs during a "read
 *      traversal", the traversal may, or may not, see the write.
 * D.1) "write" after "write": if there is ordering between a write and
 *      a later write, then the later write is guaranteed to see the
 *      effects of the first write.
 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
 *      order to any pair of concurrent conflicting writes.
 *      Non-conflicting writes (for example, to different keys) are
 *      unordered.
 * E)   If a grace period separates a "del" or "replace" operation
 *      and a subsequent operation, then that subsequent operation is
 *      guaranteed not to see the removed item.
 * F)   Uniqueness guarantee: given a hash table that does not contain
 *      duplicate items for a given key, there will only be one item in
 *      the hash table after an arbitrary sequence of add_unique and/or
 *      add_replace operations. Note, however, that a pair of
 *      concurrent read operations might well access two different items
 *      with that key.
 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
 *      memory barrier), then the second lookup will return the same
 *      node as the previous lookup, or some later node.
 * G.2) A "read traversal" that starts after the end of a prior "read
 *      traversal" (ordered by memory barriers) is guaranteed to see the
 *      same nodes as the previous traversal, or some later nodes.
 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
 *      example, if a pair of reads to the same key run concurrently
 *      with an insertion of that same key, the reads remain unordered
 *      regardless of their return values. In other words, you cannot
 *      rely on the values returned by the reads to deduce ordering.
 *
 * Progress guarantees:
 *
 * * Reads are wait-free. These operations always move forward in the
 *   hash table linked list, and this list has no loop.
 * * Writes are lock-free. Any retry loop performed by a write operation
 *   is triggered by progress made within another update operation.
 *
 * Bucket node tables:
 *
 * hash table	hash table	the last	all bucket node tables
 * order	size		bucket node	0   1   2   3   4   5   6(index)
 * 				table size
 * 0		1		1		1
 * 1		2		1		1   1
 * 2		4		2		1   1   2
 * 3		8		4		1   1   2   4
 * 4		16		8		1   1   2   4   8
 * 5		32		16		1   1   2   4   8  16
 * 6		64		32		1   1   2   4   8  16  32
 *
 * When growing/shrinking, we only focus on the last bucket node table
 * which size is (!order ? 1 : (1 << (order -1))).
 *
 * Example for growing/shrinking:
 * grow hash table from order 5 to 6: init the index=6 bucket node table
 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
 *
 * A bit of ascii art explanation:
 * 
 * The order index is the off-by-one compared to the actual power of 2
 * because we use index 0 to deal with the 0 special-case.
 * 
 * This shows the nodes for a small table ordered by reversed bits:
 * 
 *    bits   reverse
 * 0  000        000
 * 4  100        001
 * 2  010        010
 * 6  110        011
 * 1  001        100
 * 5  101        101
 * 3  011        110
 * 7  111        111
 * 
 * This shows the nodes in order of non-reversed bits, linked by 
 * reversed-bit order.
 * 
 * order              bits       reverse
 * 0               0  000        000
 * 1               |  1  001        100             <-
 * 2               |  |  2  010        010    <-     |
 *                 |  |  |  3  011        110  | <-  |
 * 3               -> |  |  |  4  100        001  |  |
 *                    -> |  |     5  101        101  |
 *                       -> |        6  110        011
 *                          ->          7  111        111
 */

#define _LGPL_SOURCE
#define _GNU_SOURCE
#include <stdlib.h>
#include <errno.h>
#include <assert.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sched.h>

#include "config.h"
#include <urcu.h>
#include <urcu-call-rcu.h>
#include <urcu-flavor.h>
#include <urcu/arch.h>
#include <urcu/uatomic.h>
#include <urcu/compiler.h>
#include <urcu/rculfhash.h>
#include <rculfhash-internal.h>
#include <stdio.h>
#include <pthread.h>

/*
 * Split-counters lazily update the global counter each 1024
 * addition/removal. It automatically keeps track of resize required.
 * We use the bucket length as indicator for need to expand for small
 * tables and machines lacking per-cpu data suppport.
 */
#define COUNT_COMMIT_ORDER		10
#define DEFAULT_SPLIT_COUNT_MASK	0xFUL
#define CHAIN_LEN_TARGET		1
#define CHAIN_LEN_RESIZE_THRESHOLD	3

/*
 * Define the minimum table size.
 */
#define MIN_TABLE_ORDER			0
#define MIN_TABLE_SIZE			(1UL << MIN_TABLE_ORDER)

/*
 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
 */
#define MIN_PARTITION_PER_THREAD_ORDER	12
#define MIN_PARTITION_PER_THREAD	(1UL << MIN_PARTITION_PER_THREAD_ORDER)

/*
 * The removed flag needs to be updated atomically with the pointer.
 * It indicates that no node must attach to the node scheduled for
 * removal, and that node garbage collection must be performed.
 * The bucket flag does not require to be updated atomically with the
 * pointer, but it is added as a pointer low bit flag to save space.
 * The "removal owner" flag is used to detect which of the "del"
 * operation that has set the "removed flag" gets to return the removed
 * node to its caller. Note that the replace operation does not need to
 * iteract with the "removal owner" flag, because it validates that
 * the "removed" flag is not set before performing its cmpxchg.
 */
#define REMOVED_FLAG		(1UL << 0)
#define BUCKET_FLAG		(1UL << 1)
#define REMOVAL_OWNER_FLAG	(1UL << 2)
#define FLAGS_MASK		((1UL << 3) - 1)

/* Value of the end pointer. Should not interact with flags. */
#define END_VALUE		NULL

/*
 * ht_items_count: Split-counters counting the number of node addition
 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
 * is set at hash table creation.
 *
 * These are free-running counters, never reset to zero. They count the
 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
 * operations to update the global counter. We choose a power-of-2 value
 * for the trigger to deal with 32 or 64-bit overflow of the counter.
 */
struct ht_items_count {
	unsigned long add, del;
} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));

/*
 * rcu_resize_work: Contains arguments passed to RCU worker thread
 * responsible for performing lazy resize.
 */
struct rcu_resize_work {
	struct rcu_head head;
	struct cds_lfht *ht;
};

/*
 * partition_resize_work: Contains arguments passed to worker threads
 * executing the hash table resize on partitions of the hash table
 * assigned to each processor's worker thread.
 */
struct partition_resize_work {
	pthread_t thread_id;
	struct cds_lfht *ht;
	unsigned long i, start, len;
	void (*fct)(struct cds_lfht *ht, unsigned long i,
		    unsigned long start, unsigned long len);
};

/*
 * Algorithm to reverse bits in a word by lookup table, extended to
 * 64-bit words.
 * Source:
 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
 * Originally from Public Domain.
 */

static const uint8_t BitReverseTable256[256] = 
{
#define R2(n) (n),   (n) + 2*64,     (n) + 1*64,     (n) + 3*64
#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
	R6(0), R6(2), R6(1), R6(3)
};
#undef R2
#undef R4
#undef R6

static
uint8_t bit_reverse_u8(uint8_t v)
{
	return BitReverseTable256[v];
}

static __attribute__((unused))
uint32_t bit_reverse_u32(uint32_t v)
{
	return ((uint32_t) bit_reverse_u8(v) << 24) | 
		((uint32_t) bit_reverse_u8(v >> 8) << 16) | 
		((uint32_t) bit_reverse_u8(v >> 16) << 8) | 
		((uint32_t) bit_reverse_u8(v >> 24));
}

static __attribute__((unused))
uint64_t bit_reverse_u64(uint64_t v)
{
	return ((uint64_t) bit_reverse_u8(v) << 56) | 
		((uint64_t) bit_reverse_u8(v >> 8)  << 48) | 
		((uint64_t) bit_reverse_u8(v >> 16) << 40) |
		((uint64_t) bit_reverse_u8(v >> 24) << 32) |
		((uint64_t) bit_reverse_u8(v >> 32) << 24) | 
		((uint64_t) bit_reverse_u8(v >> 40) << 16) | 
		((uint64_t) bit_reverse_u8(v >> 48) << 8) |
		((uint64_t) bit_reverse_u8(v >> 56));
}

static
unsigned long bit_reverse_ulong(unsigned long v)
{
#if (CAA_BITS_PER_LONG == 32)
	return bit_reverse_u32(v);
#else
	return bit_reverse_u64(v);
#endif
}

/*
 * fls: returns the position of the most significant bit.
 * Returns 0 if no bit is set, else returns the position of the most
 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
 */
#if defined(__i386) || defined(__x86_64)
static inline
unsigned int fls_u32(uint32_t x)
{
	int r;

	asm("bsrl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n\t"
	    "1:\n\t"
	    : "=r" (r) : "rm" (x));
	return r + 1;
}
#define HAS_FLS_U32
#endif

#if defined(__x86_64)
static inline
unsigned int fls_u64(uint64_t x)
{
	long r;

	asm("bsrq %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movq $-1,%0\n\t"
	    "1:\n\t"
	    : "=r" (r) : "rm" (x));
	return r + 1;
}
#define HAS_FLS_U64
#endif

#ifndef HAS_FLS_U64
static __attribute__((unused))
unsigned int fls_u64(uint64_t x)
{
	unsigned int r = 64;

	if (!x)
		return 0;

	if (!(x & 0xFFFFFFFF00000000ULL)) {
		x <<= 32;
		r -= 32;
	}
	if (!(x & 0xFFFF000000000000ULL)) {
		x <<= 16;
		r -= 16;
	}
	if (!(x & 0xFF00000000000000ULL)) {
		x <<= 8;
		r -= 8;
	}
	if (!(x & 0xF000000000000000ULL)) {
		x <<= 4;
		r -= 4;
	}
	if (!(x & 0xC000000000000000ULL)) {
		x <<= 2;
		r -= 2;
	}
	if (!(x & 0x8000000000000000ULL)) {
		x <<= 1;
		r -= 1;
	}
	return r;
}
#endif

#ifndef HAS_FLS_U32
static __attribute__((unused))
unsigned int fls_u32(uint32_t x)
{
	unsigned int r = 32;

	if (!x)
		return 0;
	if (!(x & 0xFFFF0000U)) {
		x <<= 16;
		r -= 16;
	}
	if (!(x & 0xFF000000U)) {
		x <<= 8;
		r -= 8;
	}
	if (!(x & 0xF0000000U)) {
		x <<= 4;
		r -= 4;
	}
	if (!(x & 0xC0000000U)) {
		x <<= 2;
		r -= 2;
	}
	if (!(x & 0x80000000U)) {
		x <<= 1;
		r -= 1;
	}
	return r;
}
#endif

unsigned int cds_lfht_fls_ulong(unsigned long x)
{
#if (CAA_BITS_PER_LONG == 32)
	return fls_u32(x);
#else
	return fls_u64(x);
#endif
}

/*
 * Return the minimum order for which x <= (1UL << order).
 * Return -1 if x is 0.
 */
int cds_lfht_get_count_order_u32(uint32_t x)
{
	if (!x)
		return -1;

	return fls_u32(x - 1);
}

/*
 * Return the minimum order for which x <= (1UL << order).
 * Return -1 if x is 0.
 */
int cds_lfht_get_count_order_ulong(unsigned long x)
{
	if (!x)
		return -1;

	return cds_lfht_fls_ulong(x - 1);
}

static
void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);

static
void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
				unsigned long count);

static long nr_cpus_mask = -1;
static long split_count_mask = -1;
static int split_count_order = -1;

#if defined(HAVE_SYSCONF)
static void ht_init_nr_cpus_mask(void)
{
	long maxcpus;

	maxcpus = sysconf(_SC_NPROCESSORS_CONF);
	if (maxcpus <= 0) {
		nr_cpus_mask = -2;
		return;
	}
	/*
	 * round up number of CPUs to next power of two, so we
	 * can use & for modulo.
	 */
	maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
	nr_cpus_mask = maxcpus - 1;
}
#else /* #if defined(HAVE_SYSCONF) */
static void ht_init_nr_cpus_mask(void)
{
	nr_cpus_mask = -2;
}
#endif /* #else #if defined(HAVE_SYSCONF) */

static
void alloc_split_items_count(struct cds_lfht *ht)
{
	struct ht_items_count *count;

	if (nr_cpus_mask == -1)	{
		ht_init_nr_cpus_mask();
		if (nr_cpus_mask < 0)
			split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
		else
			split_count_mask = nr_cpus_mask;
		split_count_order =
			cds_lfht_get_count_order_ulong(split_count_mask + 1);
	}

	assert(split_count_mask >= 0);

	if (ht->flags & CDS_LFHT_ACCOUNTING) {
		ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
		assert(ht->split_count);
	} else {
		ht->split_count = NULL;
	}
}

static
void free_split_items_count(struct cds_lfht *ht)
{
	poison_free(ht->split_count);
}

#if defined(HAVE_SCHED_GETCPU)
static
int ht_get_split_count_index(unsigned long hash)
{
	int cpu;

	assert(split_count_mask >= 0);
	cpu = sched_getcpu();
	if (caa_unlikely(cpu < 0))
		return hash & split_count_mask;
	else
		return cpu & split_count_mask;
}
#else /* #if defined(HAVE_SCHED_GETCPU) */
static
int ht_get_split_count_index(unsigned long hash)
{
	return hash & split_count_mask;
}
#endif /* #else #if defined(HAVE_SCHED_GETCPU) */

static
void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
{
	unsigned long split_count;
	int index;
	long count;

	if (caa_unlikely(!ht->split_count))
		return;
	index = ht_get_split_count_index(hash);
	split_count = uatomic_add_return(&ht->split_count[index].add, 1);
	if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
		return;
	/* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */

	dbg_printf("add split count %lu\n", split_count);
	count = uatomic_add_return(&ht->count,
				   1UL << COUNT_COMMIT_ORDER);
	if (caa_likely(count & (count - 1)))
		return;
	/* Only if global count is power of 2 */

	if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
		return;
	dbg_printf("add set global %ld\n", count);
	cds_lfht_resize_lazy_count(ht, size,
		count >> (CHAIN_LEN_TARGET - 1));
}

static
void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
{
	unsigned long split_count;
	int index;
	long count;

	if (caa_unlikely(!ht->split_count))
		return;
	index = ht_get_split_count_index(hash);
	split_count = uatomic_add_return(&ht->split_count[index].del, 1);
	if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
		return;
	/* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */

	dbg_printf("del split count %lu\n", split_count);
	count = uatomic_add_return(&ht->count,
				   -(1UL << COUNT_COMMIT_ORDER));
	if (caa_likely(count & (count - 1)))
		return;
	/* Only if global count is power of 2 */

	if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
		return;
	dbg_printf("del set global %ld\n", count);
	/*
	 * Don't shrink table if the number of nodes is below a
	 * certain threshold.
	 */
	if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
		return;
	cds_lfht_resize_lazy_count(ht, size,
		count >> (CHAIN_LEN_TARGET - 1));
}

static
void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
{
	unsigned long count;

	if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
		return;
	count = uatomic_read(&ht->count);
	/*
	 * Use bucket-local length for small table expand and for
	 * environments lacking per-cpu data support.
	 */
	if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
		return;
	if (chain_len > 100)
		dbg_printf("WARNING: large chain length: %u.\n",
			   chain_len);
	if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
		int growth;

		/*
		 * Ideal growth calculated based on chain length.
		 */
		growth = cds_lfht_get_count_order_u32(chain_len
				- (CHAIN_LEN_TARGET - 1));
		if ((ht->flags & CDS_LFHT_ACCOUNTING)
				&& (size << growth)
					>= (1UL << (COUNT_COMMIT_ORDER
						+ split_count_order))) {
			/*
			 * If ideal growth expands the hash table size
			 * beyond the "small hash table" sizes, use the
			 * maximum small hash table size to attempt
			 * expanding the hash table. This only applies
			 * when node accounting is available, otherwise
			 * the chain length is used to expand the hash
			 * table in every case.
			 */
			growth = COUNT_COMMIT_ORDER + split_count_order
				- cds_lfht_get_count_order_ulong(size);
			if (growth <= 0)
				return;
		}
		cds_lfht_resize_lazy_grow(ht, size, growth);
	}
}

static
struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
{
	return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
}

static
int is_removed(struct cds_lfht_node *node)
{
	return ((unsigned long) node) & REMOVED_FLAG;
}

static
int is_bucket(struct cds_lfht_node *node)
{
	return ((unsigned long) node) & BUCKET_FLAG;
}

static
struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
{
	return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
}

static
int is_removal_owner(struct cds_lfht_node *node)
{
	return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
}

static
struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
{
	return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
}

static
struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
{
	return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
}

static
struct cds_lfht_node *get_end(void)
{
	return (struct cds_lfht_node *) END_VALUE;
}

static
int is_end(struct cds_lfht_node *node)
{
	return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
}

static
unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
		unsigned long v)
{
	unsigned long old1, old2;

	old1 = uatomic_read(ptr);
	do {
		old2 = old1;
		if (old2 >= v)
			return old2;
	} while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
	return old2;
}

static
void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
{
	return ht->mm->alloc_bucket_table(ht, order);
}

/*
 * cds_lfht_free_bucket_table() should be called with decreasing order.
 * When cds_lfht_free_bucket_table(0) is called, it means the whole
 * lfht is destroyed.
 */
static
void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
{
	return ht->mm->free_bucket_table(ht, order);
}

static inline
struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
{
	return ht->bucket_at(ht, index);
}

static inline
struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
		unsigned long hash)
{
	assert(size > 0);
	return bucket_at(ht, hash & (size - 1));
}

/*
 * Remove all logically deleted nodes from a bucket up to a certain node key.
 */
static
void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
{
	struct cds_lfht_node *iter_prev, *iter, *next, *new_next;

	assert(!is_bucket(bucket));
	assert(!is_removed(bucket));
	assert(!is_removal_owner(bucket));
	assert(!is_bucket(node));
	assert(!is_removed(node));
	assert(!is_removal_owner(node));
	for (;;) {
		iter_prev = bucket;
		/* We can always skip the bucket node initially */
		iter = rcu_dereference(iter_prev->next);
		assert(!is_removed(iter));
		assert(!is_removal_owner(iter));
		assert(iter_prev->reverse_hash <= node->reverse_hash);
		/*
		 * We should never be called with bucket (start of chain)
		 * and logically removed node (end of path compression
		 * marker) being the actual same node. This would be a
		 * bug in the algorithm implementation.
		 */
		assert(bucket != node);
		for (;;) {
			if (caa_unlikely(is_end(iter)))
				return;
			if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
				return;
			next = rcu_dereference(clear_flag(iter)->next);
			if (caa_likely(is_removed(next)))
				break;
			iter_prev = clear_flag(iter);
			iter = next;
		}
		assert(!is_removed(iter));
		assert(!is_removal_owner(iter));
		if (is_bucket(iter))
			new_next = flag_bucket(clear_flag(next));
		else
			new_next = clear_flag(next);
		(void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
	}
}

static
int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
		struct cds_lfht_node *old_node,
		struct cds_lfht_node *old_next,
		struct cds_lfht_node *new_node)
{
	struct cds_lfht_node *bucket, *ret_next;

	if (!old_node)	/* Return -ENOENT if asked to replace NULL node */
		return -ENOENT;

	assert(!is_removed(old_node));
	assert(!is_removal_owner(old_node));
	assert(!is_bucket(old_node));
	assert(!is_removed(new_node));
	assert(!is_removal_owner(new_node));
	assert(!is_bucket(new_node));
	assert(new_node != old_node);
	for (;;) {
		/* Insert after node to be replaced */
		if (is_removed(old_next)) {
			/*
			 * Too late, the old node has been removed under us
			 * between lookup and replace. Fail.
			 */
			return -ENOENT;
		}
		assert(old_next == clear_flag(old_next));
		assert(new_node != old_next);
		/*
		 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
		 * flag. It is either set atomically at the same time
		 * (replace) or after (del).
		 */
		assert(!is_removal_owner(old_next));
		new_node->next = old_next;
		/*
		 * Here is the whole trick for lock-free replace: we add
		 * the replacement node _after_ the node we want to
		 * replace by atomically setting its next pointer at the
		 * same time we set its removal flag. Given that
		 * the lookups/get next use an iterator aware of the
		 * next pointer, they will either skip the old node due
		 * to the removal flag and see the new node, or use
		 * the old node, but will not see the new one.
		 * This is a replacement of a node with another node
		 * that has the same value: we are therefore not
		 * removing a value from the hash table. We set both the
		 * REMOVED and REMOVAL_OWNER flags atomically so we own
		 * the node after successful cmpxchg.
		 */
		ret_next = uatomic_cmpxchg(&old_node->next,
			old_next, flag_removed_or_removal_owner(new_node));
		if (ret_next == old_next)
			break;		/* We performed the replacement. */
		old_next = ret_next;
	}

	/*
	 * Ensure that the old node is not visible to readers anymore:
	 * lookup for the node, and remove it (along with any other
	 * logically removed node) if found.
	 */
	bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
	_cds_lfht_gc_bucket(bucket, new_node);

	assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
	return 0;
}

/*
 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
 * mode. A NULL unique_ret allows creation of duplicate keys.
 */
static
void _cds_lfht_add(struct cds_lfht *ht,
		unsigned long hash,
		cds_lfht_match_fct match,
		const void *key,
		unsigned long size,
		struct cds_lfht_node *node,
		struct cds_lfht_iter *unique_ret,
		int bucket_flag)
{
	struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
			*return_node;
	struct cds_lfht_node *bucket;

	assert(!is_bucket(node));
	assert(!is_removed(node));
	assert(!is_removal_owner(node));
	bucket = lookup_bucket(ht, size, hash);
	for (;;) {
		uint32_t chain_len = 0;

		/*
		 * iter_prev points to the non-removed node prior to the
		 * insert location.
		 */
		iter_prev = bucket;
		/* We can always skip the bucket node initially */
		iter = rcu_dereference(iter_prev->next);
		assert(iter_prev->reverse_hash <= node->reverse_hash);
		for (;;) {
			if (caa_unlikely(is_end(iter)))
				goto insert;
			if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
				goto insert;

			/* bucket node is the first node of the identical-hash-value chain */
			if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
				goto insert;

			next = rcu_dereference(clear_flag(iter)->next);
			if (caa_unlikely(is_removed(next)))
				goto gc_node;

			/* uniquely add */
			if (unique_ret
			    && !is_bucket(next)
			    && clear_flag(iter)->reverse_hash == node->reverse_hash) {
				struct cds_lfht_iter d_iter = { .node = node, .next = iter, };

				/*
				 * uniquely adding inserts the node as the first
				 * node of the identical-hash-value node chain.
				 *
				 * This semantic ensures no duplicated keys
				 * should ever be observable in the table
				 * (including traversing the table node by
				 * node by forward iterations)
				 */
				cds_lfht_next_duplicate(ht, match, key, &d_iter);
				if (!d_iter.node)
					goto insert;

				*unique_ret = d_iter;
				return;
			}

			/* Only account for identical reverse hash once */
			if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
			    && !is_bucket(next))
				check_resize(ht, size, ++chain_len);
			iter_prev = clear_flag(iter);
			iter = next;
		}

	insert:
		assert(node != clear_flag(iter));
		assert(!is_removed(iter_prev));
		assert(!is_removal_owner(iter_prev));
		assert(!is_removed(iter));
		assert(!is_removal_owner(iter));
		assert(iter_prev != node);
		if (!bucket_flag)
			node->next = clear_flag(iter);
		else
			node->next = flag_bucket(clear_flag(iter));
		if (is_bucket(iter))
			new_node = flag_bucket(node);
		else
			new_node = node;
		if (uatomic_cmpxchg(&iter_prev->next, iter,
				    new_node) != iter) {
			continue;	/* retry */
		} else {
			return_node = node;
			goto end;
		}

	gc_node:
		assert(!is_removed(iter));
		assert(!is_removal_owner(iter));
		if (is_bucket(iter))
			new_next = flag_bucket(clear_flag(next));
		else
			new_next = clear_flag(next);
		(void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
		/* retry */
	}
end:
	if (unique_ret) {
		unique_ret->node = return_node;
		/* unique_ret->next left unset, never used. */
	}
}

static
int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
		struct cds_lfht_node *node)
{
	struct cds_lfht_node *bucket, *next;

	if (!node)	/* Return -ENOENT if asked to delete NULL node */
		return -ENOENT;

	/* logically delete the node */
	assert(!is_bucket(node));
	assert(!is_removed(node));
	assert(!is_removal_owner(node));

	/*
	 * We are first checking if the node had previously been
	 * logically removed (this check is not atomic with setting the
	 * logical removal flag). Return -ENOENT if the node had
	 * previously been removed.
	 */
	next = CMM_LOAD_SHARED(node->next);	/* next is not dereferenced */
	if (caa_unlikely(is_removed(next)))
		return -ENOENT;
	assert(!is_bucket(next));
	/*
	 * The del operation semantic guarantees a full memory barrier
	 * before the uatomic_or atomic commit of the deletion flag.
	 */
	cmm_smp_mb__before_uatomic_or();
	/*
	 * We set the REMOVED_FLAG unconditionally. Note that there may
	 * be more than one concurrent thread setting this flag.
	 * Knowing which wins the race will be known after the garbage
	 * collection phase, stay tuned!
	 */
	uatomic_or(&node->next, REMOVED_FLAG);
	/* We performed the (logical) deletion. */

	/*
	 * Ensure that the node is not visible to readers anymore: lookup for
	 * the node, and remove it (along with any other logically removed node)
	 * if found.
	 */
	bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
	_cds_lfht_gc_bucket(bucket, node);

	assert(is_removed(CMM_LOAD_SHARED(node->next)));
	/*
	 * Last phase: atomically exchange node->next with a version
	 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
	 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
	 * the node and win the removal race.
	 * It is interesting to note that all "add" paths are forbidden
	 * to change the next pointer starting from the point where the
	 * REMOVED_FLAG is set, so here using a read, followed by a
	 * xchg() suffice to guarantee that the xchg() will ever only
	 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
	 * was already set).
	 */
	if (!is_removal_owner(uatomic_xchg(&node->next,
			flag_removal_owner(node->next))))
		return 0;
	else
		return -ENOENT;
}

static
void *partition_resize_thread(void *arg)
{
	struct partition_resize_work *work = arg;

	work->ht->flavor->register_thread();
	work->fct(work->ht, work->i, work->start, work->len);
	work->ht->flavor->unregister_thread();
	return NULL;
}

static
void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
		unsigned long len,
		void (*fct)(struct cds_lfht *ht, unsigned long i,
			unsigned long start, unsigned long len))
{
	unsigned long partition_len;
	struct partition_resize_work *work;
	int thread, ret;
	unsigned long nr_threads;

	/*
	 * Note: nr_cpus_mask + 1 is always power of 2.
	 * We spawn just the number of threads we need to satisfy the minimum
	 * partition size, up to the number of CPUs in the system.
	 */
	if (nr_cpus_mask > 0) {
		nr_threads = min(nr_cpus_mask + 1,
				 len >> MIN_PARTITION_PER_THREAD_ORDER);
	} else {
		nr_threads = 1;
	}
	partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
	work = calloc(nr_threads, sizeof(*work));
	assert(work);
	for (thread = 0; thread < nr_threads; thread++) {
		work[thread].ht = ht;
		work[thread].i = i;
		work[thread].len = partition_len;
		work[thread].start = thread * partition_len;
		work[thread].fct = fct;
		ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
			partition_resize_thread, &work[thread]);
		assert(!ret);
	}
	for (thread = 0; thread < nr_threads; thread++) {
		ret = pthread_join(work[thread].thread_id, NULL);
		assert(!ret);
	}
	free(work);
}

/*
 * Holding RCU read lock to protect _cds_lfht_add against memory
 * reclaim that could be performed by other call_rcu worker threads (ABA
 * problem).
 *
 * When we reach a certain length, we can split this population phase over
 * many worker threads, based on the number of CPUs available in the system.
 * This should therefore take care of not having the expand lagging behind too
 * many concurrent insertion threads by using the scheduler's ability to
 * schedule bucket node population fairly with insertions.
 */
static
void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
				   unsigned long start, unsigned long len)
{
	unsigned long j, size = 1UL << (i - 1);

	assert(i > MIN_TABLE_ORDER);
	ht->flavor->read_lock();
	for (j = size + start; j < size + start + len; j++) {
		struct cds_lfht_node *new_node = bucket_at(ht, j);

		assert(j >= size && j < (size << 1));
		dbg_printf("init populate: order %lu index %lu hash %lu\n",
			   i, j, j);
		new_node->reverse_hash = bit_reverse_ulong(j);
		_cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
	}
	ht->flavor->read_unlock();
}

static
void init_table_populate(struct cds_lfht *ht, unsigned long i,
			 unsigned long len)
{
	assert(nr_cpus_mask != -1);
	if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
		ht->flavor->thread_online();
		init_table_populate_partition(ht, i, 0, len);
		ht->flavor->thread_offline();
		return;
	}
	partition_resize_helper(ht, i, len, init_table_populate_partition);
}

static
void init_table(struct cds_lfht *ht,
		unsigned long first_order, unsigned long last_order)
{
	unsigned long i;

	dbg_printf("init table: first_order %lu last_order %lu\n",
		   first_order, last_order);
	assert(first_order > MIN_TABLE_ORDER);
	for (i = first_order; i <= last_order; i++) {
		unsigned long len;

		len = 1UL << (i - 1);
		dbg_printf("init order %lu len: %lu\n", i, len);

		/* Stop expand if the resize target changes under us */
		if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
			break;

		cds_lfht_alloc_bucket_table(ht, i);

		/*
		 * Set all bucket nodes reverse hash values for a level and
		 * link all bucket nodes into the table.
		 */
		init_table_populate(ht, i, len);

		/*
		 * Update table size.
		 */
		cmm_smp_wmb();	/* populate data before RCU size */
		CMM_STORE_SHARED(ht->size, 1UL << i);

		dbg_printf("init new size: %lu\n", 1UL << i);
		if (CMM_LOAD_SHARED(ht->in_progress_destroy))
			break;
	}
}

/*
 * Holding RCU read lock to protect _cds_lfht_remove against memory
 * reclaim that could be performed by other call_rcu worker threads (ABA
 * problem).
 * For a single level, we logically remove and garbage collect each node.
 *
 * As a design choice, we perform logical removal and garbage collection on a
 * node-per-node basis to simplify this algorithm. We also assume keeping good
 * cache locality of the operation would overweight possible performance gain
 * that could be achieved by batching garbage collection for multiple levels.
 * However, this would have to be justified by benchmarks.
 *
 * Concurrent removal and add operations are helping us perform garbage
 * collection of logically removed nodes. We guarantee that all logically
 * removed nodes have been garbage-collected (unlinked) before call_rcu is
 * invoked to free a hole level of bucket nodes (after a grace period).
 *
 * Logical removal and garbage collection can therefore be done in batch
 * or on a node-per-node basis, as long as the guarantee above holds.
 *
 * When we reach a certain length, we can split this removal over many worker
 * threads, based on the number of CPUs available in the system. This should
 * take care of not letting resize process lag behind too many concurrent
 * updater threads actively inserting into the hash table.
 */
static
void remove_table_partition(struct cds_lfht *ht, unsigned long i,
			    unsigned long start, unsigned long len)
{
	unsigned long j, size = 1UL << (i - 1);

	assert(i > MIN_TABLE_ORDER);
	ht->flavor->read_lock();
	for (j = size + start; j < size + start + len; j++) {
		struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
		struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);

		assert(j >= size && j < (size << 1));
		dbg_printf("remove entry: order %lu index %lu hash %lu\n",
			   i, j, j);
		/* Set the REMOVED_FLAG to freeze the ->next for gc */
		uatomic_or(&fini_bucket->next, REMOVED_FLAG);
		_cds_lfht_gc_bucket(parent_bucket, fini_bucket);
	}
	ht->flavor->read_unlock();
}

static
void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
{

	assert(nr_cpus_mask != -1);
	if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
		ht->flavor->thread_online();
		remove_table_partition(ht, i, 0, len);
		ht->flavor->thread_offline();
		return;
	}
	partition_resize_helper(ht, i, len, remove_table_partition);
}

/*
 * fini_table() is never called for first_order == 0, which is why
 * free_by_rcu_order == 0 can be used as criterion to know if free must
 * be called.
 */
static
void fini_table(struct cds_lfht *ht,
		unsigned long first_order, unsigned long last_order)
{
	long i;
	unsigned long free_by_rcu_order = 0;

	dbg_printf("fini table: first_order %lu last_order %lu\n",
		   first_order, last_order);
	assert(first_order > MIN_TABLE_ORDER);
	for (i = last_order; i >= first_order; i--) {
		unsigned long len;

		len = 1UL << (i - 1);
		dbg_printf("fini order %lu len: %lu\n", i, len);

		/* Stop shrink if the resize target changes under us */
		if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
			break;

		cmm_smp_wmb();	/* populate data before RCU size */
		CMM_STORE_SHARED(ht->size, 1UL << (i - 1));

		/*
		 * We need to wait for all add operations to reach Q.S. (and
		 * thus use the new table for lookups) before we can start
		 * releasing the old bucket nodes. Otherwise their lookup will
		 * return a logically removed node as insert position.
		 */
		ht->flavor->update_synchronize_rcu();
		if (free_by_rcu_order)
			cds_lfht_free_bucket_table(ht, free_by_rcu_order);

		/*
		 * Set "removed" flag in bucket nodes about to be removed.
		 * Unlink all now-logically-removed bucket node pointers.
		 * Concurrent add/remove operation are helping us doing
		 * the gc.
		 */
		remove_table(ht, i, len);

		free_by_rcu_order = i;

		dbg_printf("fini new size: %lu\n", 1UL << i);
		if (CMM_LOAD_SHARED(ht->in_progress_destroy))
			break;
	}

	if (free_by_rcu_order) {
		ht->flavor->update_synchronize_rcu();
		cds_lfht_free_bucket_table(ht, free_by_rcu_order);
	}
}

static
void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
{
	struct cds_lfht_node *prev, *node;
	unsigned long order, len, i;

	cds_lfht_alloc_bucket_table(ht, 0);

	dbg_printf("create bucket: order 0 index 0 hash 0\n");
	node = bucket_at(ht, 0);
	node->next = flag_bucket(get_end());
	node->reverse_hash = 0;

	for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
		len = 1UL << (order - 1);
		cds_lfht_alloc_bucket_table(ht, order);

		for (i = 0; i < len; i++) {
			/*
			 * Now, we are trying to init the node with the
			 * hash=(len+i) (which is also a bucket with the
			 * index=(len+i)) and insert it into the hash table,
			 * so this node has to be inserted after the bucket
			 * with the index=(len+i)&(len-1)=i. And because there
			 * is no other non-bucket node nor bucket node with
			 * larger index/hash inserted, so the bucket node
			 * being inserted should be inserted directly linked
			 * after the bucket node with index=i.
			 */
			prev = bucket_at(ht, i);
			node = bucket_at(ht, len + i);

			dbg_printf("create bucket: order %lu index %lu hash %lu\n",
				   order, len + i, len + i);
			node->reverse_hash = bit_reverse_ulong(len + i);

			/* insert after prev */
			assert(is_bucket(prev->next));
			node->next = prev->next;
			prev->next = flag_bucket(node);
		}
	}
}

struct cds_lfht *_cds_lfht_new(unsigned long init_size,
			unsigned long min_nr_alloc_buckets,
			unsigned long max_nr_buckets,
			int flags,
			const struct cds_lfht_mm_type *mm,
			const struct rcu_flavor_struct *flavor,
			pthread_attr_t *attr)
{
	struct cds_lfht *ht;
	unsigned long order;

	/* min_nr_alloc_buckets must be power of two */
	if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
		return NULL;

	/* init_size must be power of two */
	if (!init_size || (init_size & (init_size - 1)))
		return NULL;

	/*
	 * Memory management plugin default.
	 */
	if (!mm) {
		if (CAA_BITS_PER_LONG > 32
				&& max_nr_buckets
				&& max_nr_buckets <= (1ULL << 32)) {
			/*
			 * For 64-bit architectures, with max number of
			 * buckets small enough not to use the entire
			 * 64-bit memory mapping space (and allowing a
			 * fair number of hash table instances), use the
			 * mmap allocator, which is faster than the
			 * order allocator.
			 */
			mm = &cds_lfht_mm_mmap;
		} else {
			/*
			 * The fallback is to use the order allocator.
			 */
			mm = &cds_lfht_mm_order;
		}
	}

	/* max_nr_buckets == 0 for order based mm means infinite */
	if (mm == &cds_lfht_mm_order && !max_nr_buckets)
		max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);

	/* max_nr_buckets must be power of two */
	if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
		return NULL;

	min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
	init_size = max(init_size, MIN_TABLE_SIZE);
	max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
	init_size = min(init_size, max_nr_buckets);

	ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
	assert(ht);
	assert(ht->mm == mm);
	assert(ht->bucket_at == mm->bucket_at);

	ht->flags = flags;
	ht->flavor = flavor;
	ht->resize_attr = attr;
	alloc_split_items_count(ht);
	/* this mutex should not nest in read-side C.S. */
	pthread_mutex_init(&ht->resize_mutex, NULL);
	order = cds_lfht_get_count_order_ulong(init_size);
	ht->resize_target = 1UL << order;
	cds_lfht_create_bucket(ht, 1UL << order);
	ht->size = 1UL << order;
	return ht;
}

void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
		cds_lfht_match_fct match, const void *key,
		struct cds_lfht_iter *iter)
{
	struct cds_lfht_node *node, *next, *bucket;
	unsigned long reverse_hash, size;

	reverse_hash = bit_reverse_ulong(hash);

	size = rcu_dereference(ht->size);
	bucket = lookup_bucket(ht, size, hash);
	/* We can always skip the bucket node initially */
	node = rcu_dereference(bucket->next);
	node = clear_flag(node);
	for (;;) {
		if (caa_unlikely(is_end(node))) {
			node = next = NULL;
			break;
		}
		if (caa_unlikely(node->reverse_hash > reverse_hash)) {
			node = next = NULL;
			break;
		}
		next = rcu_dereference(node->next);
		assert(node == clear_flag(node));
		if (caa_likely(!is_removed(next))
		    && !is_bucket(next)
		    && node->reverse_hash == reverse_hash
		    && caa_likely(match(node, key))) {
				break;
		}
		node = clear_flag(next);
	}
	assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
	iter->node = node;
	iter->next = next;
}

void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
		const void *key, struct cds_lfht_iter *iter)
{
	struct cds_lfht_node *node, *next;
	unsigned long reverse_hash;

	node = iter->node;
	reverse_hash = node->reverse_hash;
	next = iter->next;
	node = clear_flag(next);

	for (;;) {
		if (caa_unlikely(is_end(node))) {
			node = next = NULL;
			break;
		}
		if (caa_unlikely(node->reverse_hash > reverse_hash)) {
			node = next = NULL;
			break;
		}
		next = rcu_dereference(node->next);
		if (caa_likely(!is_removed(next))
		    && !is_bucket(next)
		    && caa_likely(match(node, key))) {
				break;
		}
		node = clear_flag(next);
	}
	assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
	iter->node = node;
	iter->next = next;
}

void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
{
	struct cds_lfht_node *node, *next;

	node = clear_flag(iter->next);
	for (;;) {
		if (caa_unlikely(is_end(node))) {
			node = next = NULL;
			break;
		}
		next = rcu_dereference(node->next);
		if (caa_likely(!is_removed(next))
		    && !is_bucket(next)) {
				break;
		}
		node = clear_flag(next);
	}
	assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
	iter->node = node;
	iter->next = next;
}

void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
{
	/*
	 * Get next after first bucket node. The first bucket node is the
	 * first node of the linked list.
	 */
	iter->next = bucket_at(ht, 0)->next;
	cds_lfht_next(ht, iter);
}

void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
		struct cds_lfht_node *node)
{
	unsigned long size;

	node->reverse_hash = bit_reverse_ulong(hash);
	size = rcu_dereference(ht->size);
	_cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
	ht_count_add(ht, size, hash);
}

struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
				unsigned long hash,
				cds_lfht_match_fct match,
				const void *key,
				struct cds_lfht_node *node)
{
	unsigned long size;
	struct cds_lfht_iter iter;

	node->reverse_hash = bit_reverse_ulong(hash);
	size = rcu_dereference(ht->size);
	_cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
	if (iter.node == node)
		ht_count_add(ht, size, hash);
	return iter.node;
}

struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
				unsigned long hash,
				cds_lfht_match_fct match,
				const void *key,
				struct cds_lfht_node *node)
{
	unsigned long size;
	struct cds_lfht_iter iter;

	node->reverse_hash = bit_reverse_ulong(hash);
	size = rcu_dereference(ht->size);
	for (;;) {
		_cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
		if (iter.node == node) {
			ht_count_add(ht, size, hash);
			return NULL;
		}

		if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
			return iter.node;
	}
}

int cds_lfht_replace(struct cds_lfht *ht,
		struct cds_lfht_iter *old_iter,
		unsigned long hash,
		cds_lfht_match_fct match,
		const void *key,
		struct cds_lfht_node *new_node)
{
	unsigned long size;

	new_node->reverse_hash = bit_reverse_ulong(hash);
	if (!old_iter->node)
		return -ENOENT;
	if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
		return -EINVAL;
	if (caa_unlikely(!match(old_iter->node, key)))
		return -EINVAL;
	size = rcu_dereference(ht->size);
	return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
			new_node);
}

int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
{
	unsigned long size, hash;
	int ret;

	size = rcu_dereference(ht->size);
	ret = _cds_lfht_del(ht, size, node);
	if (!ret) {
		hash = bit_reverse_ulong(node->reverse_hash);
		ht_count_del(ht, size, hash);
	}
	return ret;
}

int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
{
	return is_removed(CMM_LOAD_SHARED(node->next));
}

static
int cds_lfht_delete_bucket(struct cds_lfht *ht)
{
	struct cds_lfht_node *node;
	unsigned long order, i, size;

	/* Check that the table is empty */
	node = bucket_at(ht, 0);
	do {
		node = clear_flag(node)->next;
		if (!is_bucket(node))
			return -EPERM;
		assert(!is_removed(node));
		assert(!is_removal_owner(node));
	} while (!is_end(node));
	/*
	 * size accessed without rcu_dereference because hash table is
	 * being destroyed.
	 */
	size = ht->size;
	/* Internal sanity check: all nodes left should be buckets */
	for (i = 0; i < size; i++) {
		node = bucket_at(ht, i);
		dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
			i, i, bit_reverse_ulong(node->reverse_hash));
		assert(is_bucket(node->next));
	}

	for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
		cds_lfht_free_bucket_table(ht, order);

	return 0;
}

/*
 * Should only be called when no more concurrent readers nor writers can
 * possibly access the table.
 */
int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
{
	int ret;

	/* Wait for in-flight resize operations to complete */
	_CMM_STORE_SHARED(ht->in_progress_destroy, 1);
	cmm_smp_mb();	/* Store destroy before load resize */
	ht->flavor->thread_offline();
	while (uatomic_read(&ht->in_progress_resize))
		poll(NULL, 0, 100);	/* wait for 100ms */
	ht->flavor->thread_online();
	ret = cds_lfht_delete_bucket(ht);
	if (ret)
		return ret;
	free_split_items_count(ht);
	if (attr)
		*attr = ht->resize_attr;
	poison_free(ht);
	return ret;
}

void cds_lfht_count_nodes(struct cds_lfht *ht,
		long *approx_before,
		unsigned long *count,
		long *approx_after)
{
	struct cds_lfht_node *node, *next;
	unsigned long nr_bucket = 0, nr_removed = 0;

	*approx_before = 0;
	if (ht->split_count) {
		int i;

		for (i = 0; i < split_count_mask + 1; i++) {
			*approx_before += uatomic_read(&ht->split_count[i].add);
			*approx_before -= uatomic_read(&ht->split_count[i].del);
		}
	}

	*count = 0;

	/* Count non-bucket nodes in the table */
	node = bucket_at(ht, 0);
	do {
		next = rcu_dereference(node->next);
		if (is_removed(next)) {
			if (!is_bucket(next))
				(nr_removed)++;
			else
				(nr_bucket)++;
		} else if (!is_bucket(next))
			(*count)++;
		else
			(nr_bucket)++;
		node = clear_flag(next);
	} while (!is_end(node));
	dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
	dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
	*approx_after = 0;
	if (ht->split_count) {
		int i;

		for (i = 0; i < split_count_mask + 1; i++) {
			*approx_after += uatomic_read(&ht->split_count[i].add);
			*approx_after -= uatomic_read(&ht->split_count[i].del);
		}
	}
}

/* called with resize mutex held */
static
void _do_cds_lfht_grow(struct cds_lfht *ht,
		unsigned long old_size, unsigned long new_size)
{
	unsigned long old_order, new_order;

	old_order = cds_lfht_get_count_order_ulong(old_size);
	new_order = cds_lfht_get_count_order_ulong(new_size);
	dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
		   old_size, old_order, new_size, new_order);
	assert(new_size > old_size);
	init_table(ht, old_order + 1, new_order);
}

/* called with resize mutex held */
static
void _do_cds_lfht_shrink(struct cds_lfht *ht,
		unsigned long old_size, unsigned long new_size)
{
	unsigned long old_order, new_order;

	new_size = max(new_size, MIN_TABLE_SIZE);
	old_order = cds_lfht_get_count_order_ulong(old_size);
	new_order = cds_lfht_get_count_order_ulong(new_size);
	dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
		   old_size, old_order, new_size, new_order);
	assert(new_size < old_size);

	/* Remove and unlink all bucket nodes to remove. */
	fini_table(ht, new_order + 1, old_order);
}


/* called with resize mutex held */
static
void _do_cds_lfht_resize(struct cds_lfht *ht)
{
	unsigned long new_size, old_size;

	/*
	 * Resize table, re-do if the target size has changed under us.
	 */
	do {
		assert(uatomic_read(&ht->in_progress_resize));
		if (CMM_LOAD_SHARED(ht->in_progress_destroy))
			break;
		ht->resize_initiated = 1;
		old_size = ht->size;
		new_size = CMM_LOAD_SHARED(ht->resize_target);
		if (old_size < new_size)
			_do_cds_lfht_grow(ht, old_size, new_size);
		else if (old_size > new_size)
			_do_cds_lfht_shrink(ht, old_size, new_size);
		ht->resize_initiated = 0;
		/* write resize_initiated before read resize_target */
		cmm_smp_mb();
	} while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
}

static
unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
{
	return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
}

static
void resize_target_update_count(struct cds_lfht *ht,
				unsigned long count)
{
	count = max(count, MIN_TABLE_SIZE);
	count = min(count, ht->max_nr_buckets);
	uatomic_set(&ht->resize_target, count);
}

void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
{
	resize_target_update_count(ht, new_size);
	CMM_STORE_SHARED(ht->resize_initiated, 1);
	ht->flavor->thread_offline();
	pthread_mutex_lock(&ht->resize_mutex);
	_do_cds_lfht_resize(ht);
	pthread_mutex_unlock(&ht->resize_mutex);
	ht->flavor->thread_online();
}

static
void do_resize_cb(struct rcu_head *head)
{
	struct rcu_resize_work *work =
		caa_container_of(head, struct rcu_resize_work, head);
	struct cds_lfht *ht = work->ht;

	ht->flavor->thread_offline();
	pthread_mutex_lock(&ht->resize_mutex);
	_do_cds_lfht_resize(ht);
	pthread_mutex_unlock(&ht->resize_mutex);
	ht->flavor->thread_online();
	poison_free(work);
	cmm_smp_mb();	/* finish resize before decrement */
	uatomic_dec(&ht->in_progress_resize);
}

static
void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
{
	struct rcu_resize_work *work;

	/* Store resize_target before read resize_initiated */
	cmm_smp_mb();
	if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
		uatomic_inc(&ht->in_progress_resize);
		cmm_smp_mb();	/* increment resize count before load destroy */
		if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
			uatomic_dec(&ht->in_progress_resize);
			return;
		}
		work = malloc(sizeof(*work));
		if (work == NULL) {
			dbg_printf("error allocating resize work, bailing out\n");
			uatomic_dec(&ht->in_progress_resize);
			return;
		}
		work->ht = ht;
		ht->flavor->update_call_rcu(&work->head, do_resize_cb);
		CMM_STORE_SHARED(ht->resize_initiated, 1);
	}
}

static
void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
{
	unsigned long target_size = size << growth;

	target_size = min(target_size, ht->max_nr_buckets);
	if (resize_target_grow(ht, target_size) >= target_size)
		return;

	__cds_lfht_resize_lazy_launch(ht);
}

/*
 * We favor grow operations over shrink. A shrink operation never occurs
 * if a grow operation is queued for lazy execution. A grow operation
 * cancels any pending shrink lazy execution.
 */
static
void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
				unsigned long count)
{
	if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
		return;
	count = max(count, MIN_TABLE_SIZE);
	count = min(count, ht->max_nr_buckets);
	if (count == size)
		return;		/* Already the right size, no resize needed */
	if (count > size) {	/* lazy grow */
		if (resize_target_grow(ht, count) >= count)
			return;
	} else {		/* lazy shrink */
		for (;;) {
			unsigned long s;

			s = uatomic_cmpxchg(&ht->resize_target, size, count);
			if (s == size)
				break;	/* no resize needed */
			if (s > size)
				return;	/* growing is/(was just) in progress */
			if (s <= count)
				return;	/* some other thread do shrink */
			size = s;
		}
	}
	__cds_lfht_resize_lazy_launch(ht);
}