~ubuntu-branches/ubuntu/trusty/linux-lts-wily/trusty-proposed

1 by Tim Gardner
Import upstream version 4.2.0
1
/*
2
 * This file is part of UBIFS.
3
 *
4
 * Copyright (C) 2006-2008 Nokia Corporation.
5
 *
6
 * This program is free software; you can redistribute it and/or modify it
7
 * under the terms of the GNU General Public License version 2 as published by
8
 * the Free Software Foundation.
9
 *
10
 * This program is distributed in the hope that it will be useful, but WITHOUT
11
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13
 * more details.
14
 *
15
 * You should have received a copy of the GNU General Public License along with
16
 * this program; if not, write to the Free Software Foundation, Inc., 51
17
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18
 *
19
 * Authors: Adrian Hunter
20
 *          Artem Bityutskiy (Битюцкий Артём)
21
 */
22
23
/*
24
 * This file implements garbage collection. The procedure for garbage collection
25
 * is different depending on whether a LEB as an index LEB (contains index
26
 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27
 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28
 * nodes to the journal, at which point the garbage-collected LEB is free to be
29
 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30
 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31
 * to be reused. Garbage collection will cause the number of dirty index nodes
32
 * to grow, however sufficient space is reserved for the index to ensure the
33
 * commit will never run out of space.
34
 *
35
 * Notes about dead watermark. At current UBIFS implementation we assume that
36
 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37
 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38
 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39
 * Garbage Collector has to synchronize the GC head's write buffer before
40
 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41
 * actually reclaim even very small pieces of dirty space by garbage collecting
42
 * enough dirty LEBs, but we do not bother doing this at this implementation.
43
 *
44
 * Notes about dark watermark. The results of GC work depends on how big are
45
 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46
 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47
 * have to waste large pieces of free space at the end of LEB B, because nodes
48
 * from LEB A would not fit. And the worst situation is when all nodes are of
49
 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50
 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51
 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52
 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53
 * good, and GC takes extra care when moving them.
54
 */
55
56
#include <linux/slab.h>
57
#include <linux/pagemap.h>
58
#include <linux/list_sort.h>
59
#include "ubifs.h"
60
61
/*
62
 * GC may need to move more than one LEB to make progress. The below constants
63
 * define "soft" and "hard" limits on the number of LEBs the garbage collector
64
 * may move.
65
 */
66
#define SOFT_LEBS_LIMIT 4
67
#define HARD_LEBS_LIMIT 32
68
69
/**
70
 * switch_gc_head - switch the garbage collection journal head.
71
 * @c: UBIFS file-system description object
72
 * @buf: buffer to write
73
 * @len: length of the buffer to write
74
 * @lnum: LEB number written is returned here
75
 * @offs: offset written is returned here
76
 *
77
 * This function switch the GC head to the next LEB which is reserved in
78
 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79
 * and other negative error code in case of failures.
80
 */
81
static int switch_gc_head(struct ubifs_info *c)
82
{
83
	int err, gc_lnum = c->gc_lnum;
84
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85
86
	ubifs_assert(gc_lnum != -1);
87
	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88
	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89
	       c->leb_size - wbuf->offs - wbuf->used);
90
91
	err = ubifs_wbuf_sync_nolock(wbuf);
92
	if (err)
93
		return err;
94
95
	/*
96
	 * The GC write-buffer was synchronized, we may safely unmap
97
	 * 'c->gc_lnum'.
98
	 */
99
	err = ubifs_leb_unmap(c, gc_lnum);
100
	if (err)
101
		return err;
102
103
	err = ubifs_wbuf_sync_nolock(wbuf);
104
	if (err)
105
		return err;
106
107
	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
108
	if (err)
109
		return err;
110
111
	c->gc_lnum = -1;
112
	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
113
	return err;
114
}
115
116
/**
117
 * data_nodes_cmp - compare 2 data nodes.
118
 * @priv: UBIFS file-system description object
119
 * @a: first data node
120
 * @a: second data node
121
 *
122
 * This function compares data nodes @a and @b. Returns %1 if @a has greater
123
 * inode or block number, and %-1 otherwise.
124
 */
125
static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
126
{
127
	ino_t inuma, inumb;
128
	struct ubifs_info *c = priv;
129
	struct ubifs_scan_node *sa, *sb;
130
131
	cond_resched();
132
	if (a == b)
133
		return 0;
134
135
	sa = list_entry(a, struct ubifs_scan_node, list);
136
	sb = list_entry(b, struct ubifs_scan_node, list);
137
138
	ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
139
	ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
140
	ubifs_assert(sa->type == UBIFS_DATA_NODE);
141
	ubifs_assert(sb->type == UBIFS_DATA_NODE);
142
143
	inuma = key_inum(c, &sa->key);
144
	inumb = key_inum(c, &sb->key);
145
146
	if (inuma == inumb) {
147
		unsigned int blka = key_block(c, &sa->key);
148
		unsigned int blkb = key_block(c, &sb->key);
149
150
		if (blka <= blkb)
151
			return -1;
152
	} else if (inuma <= inumb)
153
		return -1;
154
155
	return 1;
156
}
157
158
/*
159
 * nondata_nodes_cmp - compare 2 non-data nodes.
160
 * @priv: UBIFS file-system description object
161
 * @a: first node
162
 * @a: second node
163
 *
164
 * This function compares nodes @a and @b. It makes sure that inode nodes go
165
 * first and sorted by length in descending order. Directory entry nodes go
166
 * after inode nodes and are sorted in ascending hash valuer order.
167
 */
168
static int nondata_nodes_cmp(void *priv, struct list_head *a,
169
			     struct list_head *b)
170
{
171
	ino_t inuma, inumb;
172
	struct ubifs_info *c = priv;
173
	struct ubifs_scan_node *sa, *sb;
174
175
	cond_resched();
176
	if (a == b)
177
		return 0;
178
179
	sa = list_entry(a, struct ubifs_scan_node, list);
180
	sb = list_entry(b, struct ubifs_scan_node, list);
181
182
	ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
183
		     key_type(c, &sb->key) != UBIFS_DATA_KEY);
184
	ubifs_assert(sa->type != UBIFS_DATA_NODE &&
185
		     sb->type != UBIFS_DATA_NODE);
186
187
	/* Inodes go before directory entries */
188
	if (sa->type == UBIFS_INO_NODE) {
189
		if (sb->type == UBIFS_INO_NODE)
190
			return sb->len - sa->len;
191
		return -1;
192
	}
193
	if (sb->type == UBIFS_INO_NODE)
194
		return 1;
195
196
	ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
197
		     key_type(c, &sa->key) == UBIFS_XENT_KEY);
198
	ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
199
		     key_type(c, &sb->key) == UBIFS_XENT_KEY);
200
	ubifs_assert(sa->type == UBIFS_DENT_NODE ||
201
		     sa->type == UBIFS_XENT_NODE);
202
	ubifs_assert(sb->type == UBIFS_DENT_NODE ||
203
		     sb->type == UBIFS_XENT_NODE);
204
205
	inuma = key_inum(c, &sa->key);
206
	inumb = key_inum(c, &sb->key);
207
208
	if (inuma == inumb) {
209
		uint32_t hasha = key_hash(c, &sa->key);
210
		uint32_t hashb = key_hash(c, &sb->key);
211
212
		if (hasha <= hashb)
213
			return -1;
214
	} else if (inuma <= inumb)
215
		return -1;
216
217
	return 1;
218
}
219
220
/**
221
 * sort_nodes - sort nodes for GC.
222
 * @c: UBIFS file-system description object
223
 * @sleb: describes nodes to sort and contains the result on exit
224
 * @nondata: contains non-data nodes on exit
225
 * @min: minimum node size is returned here
226
 *
227
 * This function sorts the list of inodes to garbage collect. First of all, it
228
 * kills obsolete nodes and separates data and non-data nodes to the
229
 * @sleb->nodes and @nondata lists correspondingly.
230
 *
231
 * Data nodes are then sorted in block number order - this is important for
232
 * bulk-read; data nodes with lower inode number go before data nodes with
233
 * higher inode number, and data nodes with lower block number go before data
234
 * nodes with higher block number;
235
 *
236
 * Non-data nodes are sorted as follows.
237
 *   o First go inode nodes - they are sorted in descending length order.
238
 *   o Then go directory entry nodes - they are sorted in hash order, which
239
 *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
240
 *     inode number go before direntry nodes with higher parent inode number,
241
 *     and direntry nodes with lower name hash values go before direntry nodes
242
 *     with higher name hash values.
243
 *
244
 * This function returns zero in case of success and a negative error code in
245
 * case of failure.
246
 */
247
static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
248
		      struct list_head *nondata, int *min)
249
{
250
	int err;
251
	struct ubifs_scan_node *snod, *tmp;
252
253
	*min = INT_MAX;
254
255
	/* Separate data nodes and non-data nodes */
256
	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
257
		ubifs_assert(snod->type == UBIFS_INO_NODE  ||
258
			     snod->type == UBIFS_DATA_NODE ||
259
			     snod->type == UBIFS_DENT_NODE ||
260
			     snod->type == UBIFS_XENT_NODE ||
261
			     snod->type == UBIFS_TRUN_NODE);
262
263
		if (snod->type != UBIFS_INO_NODE  &&
264
		    snod->type != UBIFS_DATA_NODE &&
265
		    snod->type != UBIFS_DENT_NODE &&
266
		    snod->type != UBIFS_XENT_NODE) {
267
			/* Probably truncation node, zap it */
268
			list_del(&snod->list);
269
			kfree(snod);
270
			continue;
271
		}
272
273
		ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
274
			     key_type(c, &snod->key) == UBIFS_INO_KEY  ||
275
			     key_type(c, &snod->key) == UBIFS_DENT_KEY ||
276
			     key_type(c, &snod->key) == UBIFS_XENT_KEY);
277
278
		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
279
					 snod->offs, 0);
280
		if (err < 0)
281
			return err;
282
283
		if (!err) {
284
			/* The node is obsolete, remove it from the list */
285
			list_del(&snod->list);
286
			kfree(snod);
287
			continue;
288
		}
289
290
		if (snod->len < *min)
291
			*min = snod->len;
292
293
		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
294
			list_move_tail(&snod->list, nondata);
295
	}
296
297
	/* Sort data and non-data nodes */
298
	list_sort(c, &sleb->nodes, &data_nodes_cmp);
299
	list_sort(c, nondata, &nondata_nodes_cmp);
300
301
	err = dbg_check_data_nodes_order(c, &sleb->nodes);
302
	if (err)
303
		return err;
304
	err = dbg_check_nondata_nodes_order(c, nondata);
305
	if (err)
306
		return err;
307
	return 0;
308
}
309
310
/**
311
 * move_node - move a node.
312
 * @c: UBIFS file-system description object
313
 * @sleb: describes the LEB to move nodes from
314
 * @snod: the mode to move
315
 * @wbuf: write-buffer to move node to
316
 *
317
 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
318
 * destroys @snod. Returns zero in case of success and a negative error code in
319
 * case of failure.
320
 */
321
static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
322
		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
323
{
324
	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
325
326
	cond_resched();
327
	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
328
	if (err)
329
		return err;
330
331
	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
332
				snod->offs, new_lnum, new_offs,
333
				snod->len);
334
	list_del(&snod->list);
335
	kfree(snod);
336
	return err;
337
}
338
339
/**
340
 * move_nodes - move nodes.
341
 * @c: UBIFS file-system description object
342
 * @sleb: describes the LEB to move nodes from
343
 *
344
 * This function moves valid nodes from data LEB described by @sleb to the GC
345
 * journal head. This function returns zero in case of success, %-EAGAIN if
346
 * commit is required, and other negative error codes in case of other
347
 * failures.
348
 */
349
static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
350
{
351
	int err, min;
352
	LIST_HEAD(nondata);
353
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
354
355
	if (wbuf->lnum == -1) {
356
		/*
357
		 * The GC journal head is not set, because it is the first GC
358
		 * invocation since mount.
359
		 */
360
		err = switch_gc_head(c);
361
		if (err)
362
			return err;
363
	}
364
365
	err = sort_nodes(c, sleb, &nondata, &min);
366
	if (err)
367
		goto out;
368
369
	/* Write nodes to their new location. Use the first-fit strategy */
370
	while (1) {
371
		int avail;
372
		struct ubifs_scan_node *snod, *tmp;
373
374
		/* Move data nodes */
375
		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
376
			avail = c->leb_size - wbuf->offs - wbuf->used;
377
			if  (snod->len > avail)
378
				/*
379
				 * Do not skip data nodes in order to optimize
380
				 * bulk-read.
381
				 */
382
				break;
383
384
			err = move_node(c, sleb, snod, wbuf);
385
			if (err)
386
				goto out;
387
		}
388
389
		/* Move non-data nodes */
390
		list_for_each_entry_safe(snod, tmp, &nondata, list) {
391
			avail = c->leb_size - wbuf->offs - wbuf->used;
392
			if (avail < min)
393
				break;
394
395
			if  (snod->len > avail) {
396
				/*
397
				 * Keep going only if this is an inode with
398
				 * some data. Otherwise stop and switch the GC
399
				 * head. IOW, we assume that data-less inode
400
				 * nodes and direntry nodes are roughly of the
401
				 * same size.
402
				 */
403
				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
404
				    snod->len == UBIFS_INO_NODE_SZ)
405
					break;
406
				continue;
407
			}
408
409
			err = move_node(c, sleb, snod, wbuf);
410
			if (err)
411
				goto out;
412
		}
413
414
		if (list_empty(&sleb->nodes) && list_empty(&nondata))
415
			break;
416
417
		/*
418
		 * Waste the rest of the space in the LEB and switch to the
419
		 * next LEB.
420
		 */
421
		err = switch_gc_head(c);
422
		if (err)
423
			goto out;
424
	}
425
426
	return 0;
427
428
out:
429
	list_splice_tail(&nondata, &sleb->nodes);
430
	return err;
431
}
432
433
/**
434
 * gc_sync_wbufs - sync write-buffers for GC.
435
 * @c: UBIFS file-system description object
436
 *
437
 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
438
 * be in a write-buffer instead. That is, a node could be written to a
439
 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
440
 * erased before the write-buffer is sync'd and then there is an unclean
441
 * unmount, then an existing node is lost. To avoid this, we sync all
442
 * write-buffers.
443
 *
444
 * This function returns %0 on success or a negative error code on failure.
445
 */
446
static int gc_sync_wbufs(struct ubifs_info *c)
447
{
448
	int err, i;
449
450
	for (i = 0; i < c->jhead_cnt; i++) {
451
		if (i == GCHD)
452
			continue;
453
		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
454
		if (err)
455
			return err;
456
	}
457
	return 0;
458
}
459
460
/**
461
 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
462
 * @c: UBIFS file-system description object
463
 * @lp: describes the LEB to garbage collect
464
 *
465
 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
466
 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
467
 * required, and other negative error codes in case of failures.
468
 */
469
int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
470
{
471
	struct ubifs_scan_leb *sleb;
472
	struct ubifs_scan_node *snod;
473
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
474
	int err = 0, lnum = lp->lnum;
475
476
	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
477
		     c->need_recovery);
478
	ubifs_assert(c->gc_lnum != lnum);
479
	ubifs_assert(wbuf->lnum != lnum);
480
481
	if (lp->free + lp->dirty == c->leb_size) {
482
		/* Special case - a free LEB  */
483
		dbg_gc("LEB %d is free, return it", lp->lnum);
484
		ubifs_assert(!(lp->flags & LPROPS_INDEX));
485
486
		if (lp->free != c->leb_size) {
487
			/*
488
			 * Write buffers must be sync'd before unmapping
489
			 * freeable LEBs, because one of them may contain data
490
			 * which obsoletes something in 'lp->pnum'.
491
			 */
492
			err = gc_sync_wbufs(c);
493
			if (err)
494
				return err;
495
			err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
496
						  0, 0, 0, 0);
497
			if (err)
498
				return err;
499
		}
500
		err = ubifs_leb_unmap(c, lp->lnum);
501
		if (err)
502
			return err;
503
504
		if (c->gc_lnum == -1) {
505
			c->gc_lnum = lnum;
506
			return LEB_RETAINED;
507
		}
508
509
		return LEB_FREED;
510
	}
511
512
	/*
513
	 * We scan the entire LEB even though we only really need to scan up to
514
	 * (c->leb_size - lp->free).
515
	 */
516
	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
517
	if (IS_ERR(sleb))
518
		return PTR_ERR(sleb);
519
520
	ubifs_assert(!list_empty(&sleb->nodes));
521
	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
522
523
	if (snod->type == UBIFS_IDX_NODE) {
524
		struct ubifs_gced_idx_leb *idx_gc;
525
526
		dbg_gc("indexing LEB %d (free %d, dirty %d)",
527
		       lnum, lp->free, lp->dirty);
528
		list_for_each_entry(snod, &sleb->nodes, list) {
529
			struct ubifs_idx_node *idx = snod->node;
530
			int level = le16_to_cpu(idx->level);
531
532
			ubifs_assert(snod->type == UBIFS_IDX_NODE);
533
			key_read(c, ubifs_idx_key(c, idx), &snod->key);
534
			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
535
						   snod->offs);
536
			if (err)
537
				goto out;
538
		}
539
540
		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
541
		if (!idx_gc) {
542
			err = -ENOMEM;
543
			goto out;
544
		}
545
546
		idx_gc->lnum = lnum;
547
		idx_gc->unmap = 0;
548
		list_add(&idx_gc->list, &c->idx_gc);
549
550
		/*
551
		 * Don't release the LEB until after the next commit, because
552
		 * it may contain data which is needed for recovery. So
553
		 * although we freed this LEB, it will become usable only after
554
		 * the commit.
555
		 */
556
		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
557
					  LPROPS_INDEX, 1);
558
		if (err)
559
			goto out;
560
		err = LEB_FREED_IDX;
561
	} else {
562
		dbg_gc("data LEB %d (free %d, dirty %d)",
563
		       lnum, lp->free, lp->dirty);
564
565
		err = move_nodes(c, sleb);
566
		if (err)
567
			goto out_inc_seq;
568
569
		err = gc_sync_wbufs(c);
570
		if (err)
571
			goto out_inc_seq;
572
573
		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
574
		if (err)
575
			goto out_inc_seq;
576
577
		/* Allow for races with TNC */
578
		c->gced_lnum = lnum;
579
		smp_wmb();
580
		c->gc_seq += 1;
581
		smp_wmb();
582
583
		if (c->gc_lnum == -1) {
584
			c->gc_lnum = lnum;
585
			err = LEB_RETAINED;
586
		} else {
587
			err = ubifs_wbuf_sync_nolock(wbuf);
588
			if (err)
589
				goto out;
590
591
			err = ubifs_leb_unmap(c, lnum);
592
			if (err)
593
				goto out;
594
595
			err = LEB_FREED;
596
		}
597
	}
598
599
out:
600
	ubifs_scan_destroy(sleb);
601
	return err;
602
603
out_inc_seq:
604
	/* We may have moved at least some nodes so allow for races with TNC */
605
	c->gced_lnum = lnum;
606
	smp_wmb();
607
	c->gc_seq += 1;
608
	smp_wmb();
609
	goto out;
610
}
611
612
/**
613
 * ubifs_garbage_collect - UBIFS garbage collector.
614
 * @c: UBIFS file-system description object
615
 * @anyway: do GC even if there are free LEBs
616
 *
617
 * This function does out-of-place garbage collection. The return codes are:
618
 *   o positive LEB number if the LEB has been freed and may be used;
619
 *   o %-EAGAIN if the caller has to run commit;
620
 *   o %-ENOSPC if GC failed to make any progress;
621
 *   o other negative error codes in case of other errors.
622
 *
623
 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
624
 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
625
 * commit may be required. But commit cannot be run from inside GC, because the
626
 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
627
 * And this error code means that the caller has to run commit, and re-run GC
628
 * if there is still no free space.
629
 *
630
 * There are many reasons why this function may return %-EAGAIN:
631
 * o the log is full and there is no space to write an LEB reference for
632
 *   @c->gc_lnum;
633
 * o the journal is too large and exceeds size limitations;
634
 * o GC moved indexing LEBs, but they can be used only after the commit;
635
 * o the shrinker fails to find clean znodes to free and requests the commit;
636
 * o etc.
637
 *
638
 * Note, if the file-system is close to be full, this function may return
639
 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
640
 * the function. E.g., this happens if the limits on the journal size are too
641
 * tough and GC writes too much to the journal before an LEB is freed. This
642
 * might also mean that the journal is too large, and the TNC becomes to big,
643
 * so that the shrinker is constantly called, finds not clean znodes to free,
644
 * and requests commit. Well, this may also happen if the journal is all right,
645
 * but another kernel process consumes too much memory. Anyway, infinite
646
 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
647
 */
648
int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
649
{
650
	int i, err, ret, min_space = c->dead_wm;
651
	struct ubifs_lprops lp;
652
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
653
654
	ubifs_assert_cmt_locked(c);
655
	ubifs_assert(!c->ro_media && !c->ro_mount);
656
657
	if (ubifs_gc_should_commit(c))
658
		return -EAGAIN;
659
660
	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
661
662
	if (c->ro_error) {
663
		ret = -EROFS;
664
		goto out_unlock;
665
	}
666
667
	/* We expect the write-buffer to be empty on entry */
668
	ubifs_assert(!wbuf->used);
669
670
	for (i = 0; ; i++) {
671
		int space_before, space_after;
672
673
		cond_resched();
674
675
		/* Give the commit an opportunity to run */
676
		if (ubifs_gc_should_commit(c)) {
677
			ret = -EAGAIN;
678
			break;
679
		}
680
681
		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
682
			/*
683
			 * We've done enough iterations. Indexing LEBs were
684
			 * moved and will be available after the commit.
685
			 */
686
			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
687
			ubifs_commit_required(c);
688
			ret = -EAGAIN;
689
			break;
690
		}
691
692
		if (i > HARD_LEBS_LIMIT) {
693
			/*
694
			 * We've moved too many LEBs and have not made
695
			 * progress, give up.
696
			 */
697
			dbg_gc("hard limit, -ENOSPC");
698
			ret = -ENOSPC;
699
			break;
700
		}
701
702
		/*
703
		 * Empty and freeable LEBs can turn up while we waited for
704
		 * the wbuf lock, or while we have been running GC. In that
705
		 * case, we should just return one of those instead of
706
		 * continuing to GC dirty LEBs. Hence we request
707
		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
708
		 */
709
		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
710
		if (ret) {
711
			if (ret == -ENOSPC)
712
				dbg_gc("no more dirty LEBs");
713
			break;
714
		}
715
716
		dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
717
		       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
718
		       min_space);
719
720
		space_before = c->leb_size - wbuf->offs - wbuf->used;
721
		if (wbuf->lnum == -1)
722
			space_before = 0;
723
724
		ret = ubifs_garbage_collect_leb(c, &lp);
725
		if (ret < 0) {
726
			if (ret == -EAGAIN) {
727
				/*
728
				 * This is not error, so we have to return the
729
				 * LEB to lprops. But if 'ubifs_return_leb()'
730
				 * fails, its failure code is propagated to the
731
				 * caller instead of the original '-EAGAIN'.
732
				 */
733
				err = ubifs_return_leb(c, lp.lnum);
734
				if (err)
735
					ret = err;
736
				break;
737
			}
738
			goto out;
739
		}
740
741
		if (ret == LEB_FREED) {
742
			/* An LEB has been freed and is ready for use */
743
			dbg_gc("LEB %d freed, return", lp.lnum);
744
			ret = lp.lnum;
745
			break;
746
		}
747
748
		if (ret == LEB_FREED_IDX) {
749
			/*
750
			 * This was an indexing LEB and it cannot be
751
			 * immediately used. And instead of requesting the
752
			 * commit straight away, we try to garbage collect some
753
			 * more.
754
			 */
755
			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
756
			continue;
757
		}
758
759
		ubifs_assert(ret == LEB_RETAINED);
760
		space_after = c->leb_size - wbuf->offs - wbuf->used;
761
		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
762
		       space_after - space_before);
763
764
		if (space_after > space_before) {
765
			/* GC makes progress, keep working */
766
			min_space >>= 1;
767
			if (min_space < c->dead_wm)
768
				min_space = c->dead_wm;
769
			continue;
770
		}
771
772
		dbg_gc("did not make progress");
773
774
		/*
775
		 * GC moved an LEB bud have not done any progress. This means
776
		 * that the previous GC head LEB contained too few free space
777
		 * and the LEB which was GC'ed contained only large nodes which
778
		 * did not fit that space.
779
		 *
780
		 * We can do 2 things:
781
		 * 1. pick another LEB in a hope it'll contain a small node
782
		 *    which will fit the space we have at the end of current GC
783
		 *    head LEB, but there is no guarantee, so we try this out
784
		 *    unless we have already been working for too long;
785
		 * 2. request an LEB with more dirty space, which will force
786
		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
787
		 *    table, instead of just picking one from the heap
788
		 *    (previously it already picked the dirtiest LEB).
789
		 */
790
		if (i < SOFT_LEBS_LIMIT) {
791
			dbg_gc("try again");
792
			continue;
793
		}
794
795
		min_space <<= 1;
796
		if (min_space > c->dark_wm)
797
			min_space = c->dark_wm;
798
		dbg_gc("set min. space to %d", min_space);
799
	}
800
801
	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
802
		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
803
		ubifs_commit_required(c);
804
		ret = -EAGAIN;
805
	}
806
807
	err = ubifs_wbuf_sync_nolock(wbuf);
808
	if (!err)
809
		err = ubifs_leb_unmap(c, c->gc_lnum);
810
	if (err) {
811
		ret = err;
812
		goto out;
813
	}
814
out_unlock:
815
	mutex_unlock(&wbuf->io_mutex);
816
	return ret;
817
818
out:
819
	ubifs_assert(ret < 0);
820
	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
821
	ubifs_wbuf_sync_nolock(wbuf);
822
	ubifs_ro_mode(c, ret);
823
	mutex_unlock(&wbuf->io_mutex);
824
	ubifs_return_leb(c, lp.lnum);
825
	return ret;
826
}
827
828
/**
829
 * ubifs_gc_start_commit - garbage collection at start of commit.
830
 * @c: UBIFS file-system description object
831
 *
832
 * If a LEB has only dirty and free space, then we may safely unmap it and make
833
 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
834
 * correspond index nodes that are required for recovery.  In that case, the
835
 * LEB cannot be unmapped until after the next commit.
836
 *
837
 * This function returns %0 upon success and a negative error code upon failure.
838
 */
839
int ubifs_gc_start_commit(struct ubifs_info *c)
840
{
841
	struct ubifs_gced_idx_leb *idx_gc;
842
	const struct ubifs_lprops *lp;
843
	int err = 0, flags;
844
845
	ubifs_get_lprops(c);
846
847
	/*
848
	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
849
	 * wbufs are sync'd before this, which is done in 'do_commit()'.
850
	 */
851
	while (1) {
852
		lp = ubifs_fast_find_freeable(c);
853
		if (IS_ERR(lp)) {
854
			err = PTR_ERR(lp);
855
			goto out;
856
		}
857
		if (!lp)
858
			break;
859
		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
860
		ubifs_assert(!(lp->flags & LPROPS_INDEX));
861
		err = ubifs_leb_unmap(c, lp->lnum);
862
		if (err)
863
			goto out;
864
		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
865
		if (IS_ERR(lp)) {
866
			err = PTR_ERR(lp);
867
			goto out;
868
		}
869
		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
870
		ubifs_assert(!(lp->flags & LPROPS_INDEX));
871
	}
872
873
	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
874
	list_for_each_entry(idx_gc, &c->idx_gc, list)
875
		idx_gc->unmap = 1;
876
877
	/* Record index freeable LEBs for unmapping after commit */
878
	while (1) {
879
		lp = ubifs_fast_find_frdi_idx(c);
880
		if (IS_ERR(lp)) {
881
			err = PTR_ERR(lp);
882
			goto out;
883
		}
884
		if (!lp)
885
			break;
886
		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
887
		if (!idx_gc) {
888
			err = -ENOMEM;
889
			goto out;
890
		}
891
		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
892
		ubifs_assert(lp->flags & LPROPS_INDEX);
893
		/* Don't release the LEB until after the next commit */
894
		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
895
		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
896
		if (IS_ERR(lp)) {
897
			err = PTR_ERR(lp);
898
			kfree(idx_gc);
899
			goto out;
900
		}
901
		ubifs_assert(lp->flags & LPROPS_TAKEN);
902
		ubifs_assert(!(lp->flags & LPROPS_INDEX));
903
		idx_gc->lnum = lp->lnum;
904
		idx_gc->unmap = 1;
905
		list_add(&idx_gc->list, &c->idx_gc);
906
	}
907
out:
908
	ubifs_release_lprops(c);
909
	return err;
910
}
911
912
/**
913
 * ubifs_gc_end_commit - garbage collection at end of commit.
914
 * @c: UBIFS file-system description object
915
 *
916
 * This function completes out-of-place garbage collection of index LEBs.
917
 */
918
int ubifs_gc_end_commit(struct ubifs_info *c)
919
{
920
	struct ubifs_gced_idx_leb *idx_gc, *tmp;
921
	struct ubifs_wbuf *wbuf;
922
	int err = 0;
923
924
	wbuf = &c->jheads[GCHD].wbuf;
925
	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
926
	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
927
		if (idx_gc->unmap) {
928
			dbg_gc("LEB %d", idx_gc->lnum);
929
			err = ubifs_leb_unmap(c, idx_gc->lnum);
930
			if (err)
931
				goto out;
932
			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
933
					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
934
			if (err)
935
				goto out;
936
			list_del(&idx_gc->list);
937
			kfree(idx_gc);
938
		}
939
out:
940
	mutex_unlock(&wbuf->io_mutex);
941
	return err;
942
}
943
944
/**
945
 * ubifs_destroy_idx_gc - destroy idx_gc list.
946
 * @c: UBIFS file-system description object
947
 *
948
 * This function destroys the @c->idx_gc list. It is called when unmounting
949
 * so locks are not needed. Returns zero in case of success and a negative
950
 * error code in case of failure.
951
 */
952
void ubifs_destroy_idx_gc(struct ubifs_info *c)
953
{
954
	while (!list_empty(&c->idx_gc)) {
955
		struct ubifs_gced_idx_leb *idx_gc;
956
957
		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
958
				    list);
959
		c->idx_gc_cnt -= 1;
960
		list_del(&idx_gc->list);
961
		kfree(idx_gc);
962
	}
963
}
964
965
/**
966
 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
967
 * @c: UBIFS file-system description object
968
 *
969
 * Called during start commit so locks are not needed.
970
 */
971
int ubifs_get_idx_gc_leb(struct ubifs_info *c)
972
{
973
	struct ubifs_gced_idx_leb *idx_gc;
974
	int lnum;
975
976
	if (list_empty(&c->idx_gc))
977
		return -ENOSPC;
978
	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
979
	lnum = idx_gc->lnum;
980
	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
981
	list_del(&idx_gc->list);
982
	kfree(idx_gc);
983
	return lnum;
984
}