~ubuntu-branches/ubuntu/trusty/postgresql-9.3/trusty-updates

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML
><HEAD
><TITLE
>Comparison of Different Solutions</TITLE
><META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK
REV="MADE"
HREF="mailto:pgsql-docs@postgresql.org"><LINK
REL="HOME"
TITLE="PostgreSQL 9.3.13 Documentation"
HREF="index.html"><LINK
REL="UP"
TITLE="High Availability, Load Balancing, and Replication"
HREF="high-availability.html"><LINK
REL="PREVIOUS"
TITLE="High Availability, Load Balancing, and Replication"
HREF="high-availability.html"><LINK
REL="NEXT"
TITLE="Log-Shipping Standby Servers"
HREF="warm-standby.html"><LINK
REL="STYLESHEET"
TYPE="text/css"
HREF="stylesheet.css"><META
HTTP-EQUIV="Content-Type"
CONTENT="text/html; charset=ISO-8859-1"><META
NAME="creation"
CONTENT="2016-05-09T21:13:26"></HEAD
><BODY
CLASS="SECT1"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="5"
ALIGN="center"
VALIGN="bottom"
><A
HREF="index.html"
>PostgreSQL 9.3.13 Documentation</A
></TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="top"
><A
TITLE="High Availability, Load Balancing, and Replication"
HREF="high-availability.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="top"
><A
HREF="high-availability.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="60%"
ALIGN="center"
VALIGN="bottom"
>Chapter 25. High Availability, Load Balancing, and Replication</TD
><TD
WIDTH="20%"
ALIGN="right"
VALIGN="top"
><A
TITLE="Log-Shipping Standby Servers"
HREF="warm-standby.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="SECT1"
><H1
CLASS="SECT1"
><A
NAME="DIFFERENT-REPLICATION-SOLUTIONS"
>25.1. Comparison of Different Solutions</A
></H1
><P
></P
><DIV
CLASS="VARIABLELIST"
><DL
><DT
>Shared Disk Failover</DT
><DD
><P
>     Shared disk failover avoids synchronization overhead by having only one
     copy of the database.  It uses a single disk array that is shared by
     multiple servers.  If the main database server fails, the standby server
     is able to mount and start the database as though it were recovering from
     a database crash.  This allows rapid failover with no data loss.
    </P
><P
>     Shared hardware functionality is common in network storage devices.
     Using a network file system is also possible, though care must be
     taken that the file system has full <ACRONYM
CLASS="ACRONYM"
>POSIX</ACRONYM
> behavior (see <A
HREF="creating-cluster.html#CREATING-CLUSTER-NFS"
>Section 17.2.2</A
>).  One significant limitation of this
     method is that if the shared disk array fails or becomes corrupt, the
     primary and standby servers are both nonfunctional.  Another issue is
     that the standby server should never access the shared storage while
     the primary server is running.
    </P
></DD
><DT
>File System (Block-Device) Replication</DT
><DD
><P
>     A modified version of shared hardware functionality is file system
     replication, where all changes to a file system are mirrored to a file
     system residing on another computer.  The only restriction is that
     the mirroring must be done in a way that ensures the standby server
     has a consistent copy of the file system &mdash; specifically, writes
     to the standby must be done in the same order as those on the master.
     <SPAN
CLASS="PRODUCTNAME"
>DRBD</SPAN
> is a popular file system replication solution
     for Linux.
    </P
></DD
><DT
>Transaction Log Shipping</DT
><DD
><P
>     Warm and hot standby servers can be kept current by reading a
     stream of write-ahead log (<ACRONYM
CLASS="ACRONYM"
>WAL</ACRONYM
>)
     records.  If the main server fails, the standby contains
     almost all of the data of the main server, and can be quickly
     made the new master database server.  This can be synchronous or
     asynchronous and can only be done for the entire database server.
    </P
><P
>     A standby server can be implemented using file-based log shipping
     (<A
HREF="warm-standby.html"
>Section 25.2</A
>) or streaming replication (see
     <A
HREF="warm-standby.html#STREAMING-REPLICATION"
>Section 25.2.5</A
>), or a combination of both. For
     information on hot standby, see <A
HREF="hot-standby.html"
>Section 25.5</A
>.
    </P
></DD
><DT
>Trigger-Based Master-Standby Replication</DT
><DD
><P
>     A master-standby replication setup sends all data modification
     queries to the master server.  The master server asynchronously
     sends data changes to the standby server.  The standby can answer
     read-only queries while the master server is running.  The
     standby server is ideal for data warehouse queries.
    </P
><P
>     <SPAN
CLASS="PRODUCTNAME"
>Slony-I</SPAN
> is an example of this type of replication, with per-table
     granularity, and support for multiple standby servers.  Because it
     updates the standby server asynchronously (in batches), there is
     possible data loss during fail over.
    </P
></DD
><DT
>Statement-Based Replication Middleware</DT
><DD
><P
>     With statement-based replication middleware, a program intercepts
     every SQL query and sends it to one or all servers.  Each server
     operates independently.  Read-write queries must be sent to all servers,
     so that every server receives any changes.  But read-only queries can be
     sent to just one server, allowing the read workload to be distributed
     among them.
    </P
><P
>     If queries are simply broadcast unmodified, functions like
     <CODE
CLASS="FUNCTION"
>random()</CODE
>, <CODE
CLASS="FUNCTION"
>CURRENT_TIMESTAMP</CODE
>, and
     sequences can have different values on different servers.
     This is because each server operates independently, and because
     SQL queries are broadcast (and not actual modified rows).  If
     this is unacceptable, either the middleware or the application
     must query such values from a single server and then use those
     values in write queries.  Another option is to use this replication
     option with a traditional master-standby setup, i.e. data modification
     queries are sent only to the master and are propagated to the
     standby servers via master-standby replication, not by the replication
     middleware.  Care must also be taken that all
     transactions either commit or abort on all servers, perhaps
     using two-phase commit (<A
HREF="sql-prepare-transaction.html"
>PREPARE TRANSACTION</A
>
     and <A
HREF="sql-commit-prepared.html"
>COMMIT PREPARED</A
>.
     <SPAN
CLASS="PRODUCTNAME"
>Pgpool-II</SPAN
> and <SPAN
CLASS="PRODUCTNAME"
>Continuent Tungsten</SPAN
>
     are examples of this type of replication.
    </P
></DD
><DT
>Asynchronous Multimaster Replication</DT
><DD
><P
>     For servers that are not regularly connected, like laptops or
     remote servers, keeping data consistent among servers is a
     challenge.  Using asynchronous multimaster replication, each
     server works independently, and periodically communicates with
     the other servers to identify conflicting transactions.  The
     conflicts can be resolved by users or conflict resolution rules.
     Bucardo is an example of this type of replication.
    </P
></DD
><DT
>Synchronous Multimaster Replication</DT
><DD
><P
>     In synchronous multimaster replication, each server can accept
     write requests, and modified data is transmitted from the
     original server to every other server before each transaction
     commits.  Heavy write activity can cause excessive locking,
     leading to poor performance.  In fact, write performance is
     often worse than that of a single server.  Read requests can
     be sent to any server.  Some implementations use shared disk
     to reduce the communication overhead.  Synchronous multimaster
     replication is best for mostly read workloads, though its big
     advantage is that any server can accept write requests &mdash;
     there is no need to partition workloads between master and
     standby servers, and because the data changes are sent from one
     server to another, there is no problem with non-deterministic
     functions like <CODE
CLASS="FUNCTION"
>random()</CODE
>.
    </P
><P
>     <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> does not offer this type of replication,
     though <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> two-phase commit (<A
HREF="sql-prepare-transaction.html"
>PREPARE TRANSACTION</A
> and <A
HREF="sql-commit-prepared.html"
>COMMIT PREPARED</A
>)
     can be used to implement this in application code or middleware.
    </P
></DD
><DT
>Commercial Solutions</DT
><DD
><P
>     Because <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> is open source and easily
     extended, a number of companies have taken <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
>
     and created commercial closed-source solutions with unique
     failover, replication, and load balancing capabilities.
    </P
></DD
></DL
></DIV
><P
>  <A
HREF="different-replication-solutions.html#HIGH-AVAILABILITY-MATRIX"
>Table 25-1</A
> summarizes
  the capabilities of the various solutions listed above.
 </P
><DIV
CLASS="TABLE"
><A
NAME="HIGH-AVAILABILITY-MATRIX"
></A
><P
><B
>Table 25-1. High Availability, Load Balancing, and Replication Feature Matrix</B
></P
><TABLE
BORDER="1"
CLASS="CALSTABLE"
><COL><COL><COL><COL><COL><COL><COL><COL><THEAD
><TR
><TH
>Feature</TH
><TH
>Shared Disk Failover</TH
><TH
>File System Replication</TH
><TH
>Transaction Log Shipping</TH
><TH
>Trigger-Based Master-Standby Replication</TH
><TH
>Statement-Based Replication Middleware</TH
><TH
>Asynchronous Multimaster Replication</TH
><TH
>Synchronous Multimaster Replication</TH
></TR
></THEAD
><TBODY
><TR
><TD
>Most Common Implementation</TD
><TD
ALIGN="CENTER"
>NAS</TD
><TD
ALIGN="CENTER"
>DRBD</TD
><TD
ALIGN="CENTER"
>Streaming Repl.</TD
><TD
ALIGN="CENTER"
>Slony</TD
><TD
ALIGN="CENTER"
>pgpool-II</TD
><TD
ALIGN="CENTER"
>Bucardo</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
></TR
><TR
><TD
>Communication Method</TD
><TD
ALIGN="CENTER"
>shared disk</TD
><TD
ALIGN="CENTER"
>disk blocks</TD
><TD
ALIGN="CENTER"
>WAL</TD
><TD
ALIGN="CENTER"
>table rows</TD
><TD
ALIGN="CENTER"
>SQL</TD
><TD
ALIGN="CENTER"
>table rows</TD
><TD
ALIGN="CENTER"
>table rows and row locks</TD
></TR
><TR
><TD
>No special hardware required</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
></TR
><TR
><TD
>Allows multiple master servers</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
></TR
><TR
><TD
>No master server overhead</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
></TR
><TR
><TD
>No waiting for multiple servers</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>with sync off</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
></TR
><TR
><TD
>Master failure will never lose data</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>with sync on</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
></TR
><TR
><TD
>Standby accept read-only queries</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>with hot</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
></TR
><TR
><TD
>Per-table granularity</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
></TR
><TR
><TD
>No conflict resolution necessary</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&nbsp;</TD
><TD
ALIGN="CENTER"
>&bull;</TD
></TR
></TBODY
></TABLE
></DIV
><P
>  There are a few solutions that do not fit into the above categories:
 </P
><P
></P
><DIV
CLASS="VARIABLELIST"
><DL
><DT
>Data Partitioning</DT
><DD
><P
>     Data partitioning splits tables into data sets.  Each set can
     be modified by only one server.  For example, data can be
     partitioned by offices, e.g., London and Paris, with a server
     in each office.  If queries combining London and Paris data
     are necessary, an application can query both servers, or
     master/standby replication can be used to keep a read-only copy
     of the other office's data on each server.
    </P
></DD
><DT
>Multiple-Server Parallel Query Execution</DT
><DD
><P
>     Many of the above solutions allow multiple servers to handle multiple
     queries, but none allow a single query to use multiple servers to
     complete faster.  This solution allows multiple servers to work
     concurrently on a single query.  It is usually accomplished by
     splitting the data among servers and having each server execute its
     part of the query and return results to a central server where they
     are combined and returned to the user.  <SPAN
CLASS="PRODUCTNAME"
>Pgpool-II</SPAN
>
     has this capability.  Also, this can be implemented using the
     <SPAN
CLASS="PRODUCTNAME"
>PL/Proxy</SPAN
> tool set.
    </P
></DD
></DL
></DIV
></DIV
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
SUMMARY="Footer navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="high-availability.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="index.html"
ACCESSKEY="H"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="warm-standby.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>High Availability, Load Balancing, and Replication</TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="high-availability.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>Log-Shipping Standby Servers</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>