~ubuntu-branches/ubuntu/trusty/postgresql-9.3/trusty-updates

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML
><HEAD
><TITLE
>Introduction</TITLE
><META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK
REV="MADE"
HREF="mailto:pgsql-docs@postgresql.org"><LINK
REL="HOME"
TITLE="PostgreSQL 9.3.13 Documentation"
HREF="index.html"><LINK
REL="UP"
TITLE="Full Text Search"
HREF="textsearch.html"><LINK
REL="PREVIOUS"
TITLE="Full Text Search"
HREF="textsearch.html"><LINK
REL="NEXT"
TITLE="Tables and Indexes"
HREF="textsearch-tables.html"><LINK
REL="STYLESHEET"
TYPE="text/css"
HREF="stylesheet.css"><META
HTTP-EQUIV="Content-Type"
CONTENT="text/html; charset=ISO-8859-1"><META
NAME="creation"
CONTENT="2016-05-09T21:13:26"></HEAD
><BODY
CLASS="SECT1"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="5"
ALIGN="center"
VALIGN="bottom"
><A
HREF="index.html"
>PostgreSQL 9.3.13 Documentation</A
></TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="top"
><A
TITLE="Full Text Search"
HREF="textsearch.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="top"
><A
HREF="textsearch.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="60%"
ALIGN="center"
VALIGN="bottom"
>Chapter 12. Full Text Search</TD
><TD
WIDTH="20%"
ALIGN="right"
VALIGN="top"
><A
TITLE="Tables and Indexes"
HREF="textsearch-tables.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="SECT1"
><H1
CLASS="SECT1"
><A
NAME="TEXTSEARCH-INTRO"
>12.1. Introduction</A
></H1
><P
>   Full Text Searching (or just <I
CLASS="FIRSTTERM"
>text search</I
>) provides
   the capability to identify natural-language <I
CLASS="FIRSTTERM"
>documents</I
> that
   satisfy a <I
CLASS="FIRSTTERM"
>query</I
>, and optionally to sort them by
   relevance to the query.  The most common type of search
   is to find all documents containing given <I
CLASS="FIRSTTERM"
>query terms</I
>
   and return them in order of their <I
CLASS="FIRSTTERM"
>similarity</I
> to the
   query.  Notions of <TT
CLASS="VARNAME"
>query</TT
> and
   <TT
CLASS="VARNAME"
>similarity</TT
> are very flexible and depend on the specific
   application. The simplest search considers <TT
CLASS="VARNAME"
>query</TT
> as a
   set of words and <TT
CLASS="VARNAME"
>similarity</TT
> as the frequency of query
   words in the document.
  </P
><P
>   Textual search operators have existed in databases for years.
   <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> has
   <TT
CLASS="LITERAL"
>~</TT
>, <TT
CLASS="LITERAL"
>~*</TT
>, <TT
CLASS="LITERAL"
>LIKE</TT
>, and
   <TT
CLASS="LITERAL"
>ILIKE</TT
> operators for textual data types, but they lack
   many essential properties required by modern information systems:
  </P
><P
></P
><UL
COMPACT="COMPACT"
><LI
STYLE="list-style-type: disc"
><P
>     There is no linguistic support, even for English.  Regular expressions
     are not sufficient because they cannot easily handle derived words, e.g.,
     <TT
CLASS="LITERAL"
>satisfies</TT
> and <TT
CLASS="LITERAL"
>satisfy</TT
>. You might
     miss documents that contain <TT
CLASS="LITERAL"
>satisfies</TT
>, although you
     probably would like to find them when searching for
     <TT
CLASS="LITERAL"
>satisfy</TT
>. It is possible to use <TT
CLASS="LITERAL"
>OR</TT
>
     to search for multiple derived forms, but this is tedious and error-prone
     (some words can have several thousand derivatives).
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     They provide no ordering (ranking) of search results, which makes them
     ineffective when thousands of matching documents are found.
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     They tend to be slow because there is no index support, so they must
     process all documents for every search.
    </P
></LI
></UL
><P
>   Full text indexing allows documents to be <SPAN
CLASS="emphasis"
><I
CLASS="EMPHASIS"
>preprocessed</I
></SPAN
>
   and an index saved for later rapid searching. Preprocessing includes:
  </P
><P
></P
><UL
><LI
STYLE="list-style-type: none"
><P
>     <SPAN
CLASS="emphasis"
><I
CLASS="EMPHASIS"
>Parsing documents into <I
CLASS="FIRSTTERM"
>tokens</I
></I
></SPAN
>. It is
     useful to identify various classes of tokens, e.g., numbers, words,
     complex words, email addresses, so that they can be processed
     differently.  In principle token classes depend on the specific
     application, but for most purposes it is adequate to use a predefined
     set of classes.
     <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> uses a <I
CLASS="FIRSTTERM"
>parser</I
> to
     perform this step.  A standard parser is provided, and custom parsers
     can be created for specific needs.
    </P
></LI
><LI
STYLE="list-style-type: none"
><P
>     <SPAN
CLASS="emphasis"
><I
CLASS="EMPHASIS"
>Converting tokens into <I
CLASS="FIRSTTERM"
>lexemes</I
></I
></SPAN
>.
     A lexeme is a string, just like a token, but it has been
     <I
CLASS="FIRSTTERM"
>normalized</I
> so that different forms of the same word
     are made alike.  For example, normalization almost always includes
     folding upper-case letters to lower-case, and often involves removal
     of suffixes (such as <TT
CLASS="LITERAL"
>s</TT
> or <TT
CLASS="LITERAL"
>es</TT
> in English).
     This allows searches to find variant forms of the
     same word, without tediously entering all the possible variants.
     Also, this step typically eliminates <I
CLASS="FIRSTTERM"
>stop words</I
>, which
     are words that are so common that they are useless for searching.
     (In short, then, tokens are raw fragments of the document text, while
     lexemes are words that are believed useful for indexing and searching.)
     <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> uses <I
CLASS="FIRSTTERM"
>dictionaries</I
> to
     perform this step.  Various standard dictionaries are provided, and
     custom ones can be created for specific needs.
    </P
></LI
><LI
STYLE="list-style-type: none"
><P
>     <SPAN
CLASS="emphasis"
><I
CLASS="EMPHASIS"
>Storing preprocessed documents optimized for
     searching</I
></SPAN
>.  For example, each document can be represented
     as a sorted array of normalized lexemes. Along with the lexemes it is
     often desirable to store positional information to use for
     <I
CLASS="FIRSTTERM"
>proximity ranking</I
>, so that a document that
     contains a more <SPAN
CLASS="QUOTE"
>"dense"</SPAN
> region of query words is
     assigned a higher rank than one with scattered query words.
    </P
></LI
></UL
><P
>   Dictionaries allow fine-grained control over how tokens are normalized.
   With appropriate dictionaries, you can:
  </P
><P
></P
><UL
COMPACT="COMPACT"
><LI
STYLE="list-style-type: disc"
><P
>     Define stop words that should not be indexed.
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     Map synonyms to a single word using <SPAN
CLASS="APPLICATION"
>Ispell</SPAN
>.
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     Map phrases to a single word using a thesaurus.
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     Map different variations of a word to a canonical form using
     an <SPAN
CLASS="APPLICATION"
>Ispell</SPAN
> dictionary.
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     Map different variations of a word to a canonical form using
     <SPAN
CLASS="APPLICATION"
>Snowball</SPAN
> stemmer rules.
    </P
></LI
></UL
><P
>   A data type <TT
CLASS="TYPE"
>tsvector</TT
> is provided for storing preprocessed
   documents, along with a type <TT
CLASS="TYPE"
>tsquery</TT
> for representing processed
   queries (<A
HREF="datatype-textsearch.html"
>Section 8.11</A
>).  There are many
   functions and operators available for these data types
   (<A
HREF="functions-textsearch.html"
>Section 9.13</A
>), the most important of which is
   the match operator <TT
CLASS="LITERAL"
>@@</TT
>, which we introduce in
   <A
HREF="textsearch-intro.html#TEXTSEARCH-MATCHING"
>Section 12.1.2</A
>.  Full text searches can be accelerated
   using indexes (<A
HREF="textsearch-indexes.html"
>Section 12.9</A
>).
  </P
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="TEXTSEARCH-DOCUMENT"
>12.1.1. What Is a Document?</A
></H2
><P
>    A <I
CLASS="FIRSTTERM"
>document</I
> is the unit of searching in a full text search
    system; for example, a magazine article or email message.  The text search
    engine must be able to parse documents and store associations of lexemes
    (key words) with their parent document. Later, these associations are
    used to search for documents that contain query words.
   </P
><P
>    For searches within <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
>,
    a document is normally a textual field within a row of a database table,
    or possibly a combination (concatenation) of such fields, perhaps stored
    in several tables or obtained dynamically. In other words, a document can
    be constructed from different parts for indexing and it might not be
    stored anywhere as a whole. For example:

</P><PRE
CLASS="PROGRAMLISTING"
>SELECT title || ' ' ||  author || ' ' ||  abstract || ' ' || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
FROM messages m, docs d
WHERE mid = did AND mid = 12;</PRE
><P>
   </P
><DIV
CLASS="NOTE"
><BLOCKQUOTE
CLASS="NOTE"
><P
><B
>Note: </B
>     Actually, in these example queries, <CODE
CLASS="FUNCTION"
>coalesce</CODE
>
     should be used to prevent a single <TT
CLASS="LITERAL"
>NULL</TT
> attribute from
     causing a <TT
CLASS="LITERAL"
>NULL</TT
> result for the whole document.
    </P
></BLOCKQUOTE
></DIV
><P
>    Another possibility is to store the documents as simple text files in the
    file system. In this case, the database can be used to store the full text
    index and to execute searches, and some unique identifier can be used to
    retrieve the document from the file system.  However, retrieving files
    from outside the database requires superuser permissions or special
    function support, so this is usually less convenient than keeping all
    the data inside <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
>.  Also, keeping
    everything inside the database allows easy access
    to document metadata to assist in indexing and display.
   </P
><P
>    For text search purposes, each document must be reduced to the
    preprocessed <TT
CLASS="TYPE"
>tsvector</TT
> format.  Searching and ranking
    are performed entirely on the <TT
CLASS="TYPE"
>tsvector</TT
> representation
    of a document &mdash; the original text need only be retrieved
    when the document has been selected for display to a user.
    We therefore often speak of the <TT
CLASS="TYPE"
>tsvector</TT
> as being the
    document, but of course it is only a compact representation of
    the full document.
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="TEXTSEARCH-MATCHING"
>12.1.2. Basic Text Matching</A
></H2
><P
>    Full text searching in <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> is based on
    the match operator <TT
CLASS="LITERAL"
>@@</TT
>, which returns
    <TT
CLASS="LITERAL"
>true</TT
> if a <TT
CLASS="TYPE"
>tsvector</TT
>
    (document) matches a <TT
CLASS="TYPE"
>tsquery</TT
> (query).
    It doesn't matter which data type is written first:

</P><PRE
CLASS="PROGRAMLISTING"
>SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat &amp; rat'::tsquery;
 ?column?
----------
 t

SELECT 'fat &amp; cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 ?column?
----------
 f</PRE
><P>
   </P
><P
>    As the above example suggests, a <TT
CLASS="TYPE"
>tsquery</TT
> is not just raw
    text, any more than a <TT
CLASS="TYPE"
>tsvector</TT
> is.  A <TT
CLASS="TYPE"
>tsquery</TT
>
    contains search terms, which must be already-normalized lexemes, and
    may combine multiple terms using AND, OR, and NOT operators.
    (For details see <A
HREF="datatype-textsearch.html"
>Section 8.11</A
>.)  There are
    functions <CODE
CLASS="FUNCTION"
>to_tsquery</CODE
> and <CODE
CLASS="FUNCTION"
>plainto_tsquery</CODE
>
    that are helpful in converting user-written text into a proper
    <TT
CLASS="TYPE"
>tsquery</TT
>, for example by normalizing words appearing in
    the text.  Similarly, <CODE
CLASS="FUNCTION"
>to_tsvector</CODE
> is used to parse and
    normalize a document string.  So in practice a text search match would
    look more like this:

</P><PRE
CLASS="PROGRAMLISTING"
>SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat &amp; rat');
 ?column? 
----------
 t</PRE
><P>

    Observe that this match would not succeed if written as

</P><PRE
CLASS="PROGRAMLISTING"
>SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat &amp; rat');
 ?column? 
----------
 f</PRE
><P>

    since here no normalization of the word <TT
CLASS="LITERAL"
>rats</TT
> will occur.
    The elements of a <TT
CLASS="TYPE"
>tsvector</TT
> are lexemes, which are assumed
    already normalized, so <TT
CLASS="LITERAL"
>rats</TT
> does not match <TT
CLASS="LITERAL"
>rat</TT
>.
   </P
><P
>    The <TT
CLASS="LITERAL"
>@@</TT
> operator also
    supports <TT
CLASS="TYPE"
>text</TT
> input, allowing explicit conversion of a text
    string to <TT
CLASS="TYPE"
>tsvector</TT
> or <TT
CLASS="TYPE"
>tsquery</TT
> to be skipped
    in simple cases.  The variants available are:

</P><PRE
CLASS="PROGRAMLISTING"
>tsvector @@ tsquery
tsquery  @@ tsvector
text @@ tsquery
text @@ text</PRE
><P>
   </P
><P
>    The first two of these we saw already.
    The form <TT
CLASS="TYPE"
>text</TT
> <TT
CLASS="LITERAL"
>@@</TT
> <TT
CLASS="TYPE"
>tsquery</TT
>
    is equivalent to <TT
CLASS="LITERAL"
>to_tsvector(x) @@ y</TT
>.
    The form <TT
CLASS="TYPE"
>text</TT
> <TT
CLASS="LITERAL"
>@@</TT
> <TT
CLASS="TYPE"
>text</TT
>
    is equivalent to <TT
CLASS="LITERAL"
>to_tsvector(x) @@ plainto_tsquery(y)</TT
>.
   </P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="TEXTSEARCH-INTRO-CONFIGURATIONS"
>12.1.3. Configurations</A
></H2
><P
>    The above are all simple text search examples.  As mentioned before, full
    text search functionality includes the ability to do many more things:
    skip indexing certain words (stop words), process synonyms, and use
    sophisticated parsing, e.g., parse based on more than just white space.
    This functionality is controlled by <I
CLASS="FIRSTTERM"
>text search
    configurations</I
>.  <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> comes with predefined
    configurations for many languages, and you can easily create your own
    configurations.  (<SPAN
CLASS="APPLICATION"
>psql</SPAN
>'s <TT
CLASS="COMMAND"
>\dF</TT
> command
    shows all available configurations.)
   </P
><P
>    During installation an appropriate configuration is selected and
    <A
HREF="runtime-config-client.html#GUC-DEFAULT-TEXT-SEARCH-CONFIG"
>default_text_search_config</A
> is set accordingly
    in <TT
CLASS="FILENAME"
>postgresql.conf</TT
>.  If you are using the same text search
    configuration for the entire cluster you can use the value in
    <TT
CLASS="FILENAME"
>postgresql.conf</TT
>.  To use different configurations
    throughout the cluster but the same configuration within any one database,
    use <TT
CLASS="COMMAND"
>ALTER DATABASE ... SET</TT
>.  Otherwise, you can set
    <TT
CLASS="VARNAME"
>default_text_search_config</TT
> in each session.
   </P
><P
>    Each text search function that depends on a configuration has an optional
    <TT
CLASS="TYPE"
>regconfig</TT
> argument, so that the configuration to use can be
    specified explicitly.  <TT
CLASS="VARNAME"
>default_text_search_config</TT
>
    is used only when this argument is omitted.
   </P
><P
>    To make it easier to build custom text search configurations, a
    configuration is built up from simpler database objects.
    <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
>'s text search facility provides
    four types of configuration-related database objects:
   </P
><P
></P
><UL
COMPACT="COMPACT"
><LI
STYLE="list-style-type: disc"
><P
>     <I
CLASS="FIRSTTERM"
>Text search parsers</I
> break documents into tokens
     and classify each token (for example, as words or numbers).
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     <I
CLASS="FIRSTTERM"
>Text search dictionaries</I
> convert tokens to normalized
     form and reject stop words.
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     <I
CLASS="FIRSTTERM"
>Text search templates</I
> provide the functions underlying
     dictionaries.  (A dictionary simply specifies a template and a set
     of parameters for the template.)
    </P
></LI
><LI
STYLE="list-style-type: disc"
><P
>     <I
CLASS="FIRSTTERM"
>Text search configurations</I
> select a parser and a set
     of dictionaries to use to normalize the tokens produced by the parser.
    </P
></LI
></UL
><P
>    Text search parsers and templates are built from low-level C functions;
    therefore it requires C programming ability to develop new ones, and
    superuser privileges to install one into a database.  (There are examples
    of add-on parsers and templates in the <TT
CLASS="FILENAME"
>contrib/</TT
> area of the
    <SPAN
CLASS="PRODUCTNAME"
>PostgreSQL</SPAN
> distribution.)  Since dictionaries and
    configurations just parameterize and connect together some underlying
    parsers and templates, no special privilege is needed to create a new
    dictionary or configuration.  Examples of creating custom dictionaries and
    configurations appear later in this chapter.
   </P
></DIV
></DIV
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
SUMMARY="Footer navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="textsearch.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="index.html"
ACCESSKEY="H"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="textsearch-tables.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>Full Text Search</TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="textsearch.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>Tables and Indexes</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>