~ubuntu-branches/ubuntu/utopic/faust/utopic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/************************************************************************
 ************************************************************************
    FAUST compiler
	Copyright (C) 2003-2004 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/



/*****************************************************************************
******************************************************************************/

/** \file node.hh
 * A Node is a tagged unions of int, float, symbol and void* used in the implementation of CTrees.
 * Nodes are completly described by the node.h file, there is no node.cpp file.
 *
 * <b>API:</b>
 *
 * 	Node(symbol("abcd")); 	: node with symbol content
 * 	Node(10);				: node with int content
 * 	Node(3.14159);			: node with float content
 *
 * 	n->type();				: kIntNode or kFloatNode or kSymNode
 *
 * 	n->getInt();			: int content of n
 * 	n->getFloat();			: float content of n
 * 	n->getSym();			: symbol content of n
 *
 * 	if (isInt(n, &i))	... : int i = int content of n
 * 	if (isFloat(n, &f))	... : float f = float content of n
 * 	if (isSym(n, &s))	... : Sym s = Sym content of n
 *
 */

/******************************************************************************
*****************************************************************************/


#ifndef     __NODE__
#define     __NODE__

#include <iostream>
#include "symbol.hh"

using namespace std;

/**
 * Tags used to define the type of a Node
 */
enum { kIntNode, kFloatNode, kSymNode, kPointerNode };


/**
 * Class Node = (type x (int + float + Sym + void*))
 */
class Node
{
	int		fType;
	union {
		int 	i;
		float 	f;
		Sym 	s;
		void* 	p;
	} fData;

 public:
	// constructeurs
	Node (int x) 				: fType(kIntNode) 		{ fData.p = 0; fData.i = x; }
	Node (float x) 				: fType(kFloatNode) 	{ fData.p = 0; fData.f = (float)x; }
	Node (const char* name)		: fType(kSymNode) 		{ fData.s = symbol(name); }
	Node (const string& name)	: fType(kSymNode) 		{ fData.s = symbol(name); }
	Node (Sym x) 				: fType(kSymNode) 		{ fData.s = x; }
	Node (void* x) 				: fType(kPointerNode) 	{ fData.p = x; }

	Node (const Node& n) 		: fType(n.fType) 		{ fData.p = n.fData.p; }

	// predicats
	bool operator == (const Node& n) const { return fType == n.fType && fData.p == n.fData.p; }
	bool operator != (const Node& n) const { return fType != n.fType || fData.p != n.fData.p; }

	// accessors
	int		type() 		const 	{ return fType; }

	int		getInt() 		const 	{ return fData.i; }
	float 	getFloat() 		const 	{ return fData.f; }
	Sym 	getSym() 		const 	{ return fData.s; }
	void* 	getPointer() 	const 	{ return fData.p; }

	// conversions and promotion for numbers
	operator int() 	 const 	{ return (fType == kIntNode) ? fData.i : (fType == kFloatNode) ? int(fData.f) : 0 ; }
	operator float() const 	{ return (fType == kIntNode) ? float(fData.i) : (fType == kFloatNode) ? fData.f : 0.0f ; }

	ostream& 	print (ostream& fout) const; 					///< print a node on a stream
};

//printing
inline ostream& operator << (ostream& s, const Node& n) { return n.print(s); }



//-------------------------------------------------------------------------
// Perdicates and pattern matching
//-------------------------------------------------------------------------

// integers
inline bool isInt (const Node& n)
{
	return (n.type() == kIntNode);
}

inline bool isInt (const Node& n, int* x)
{
	if (n.type() == kIntNode) {
		*x = n.getInt();
		return true;
	} else {
		return false;
	}
}


// floats
inline bool isFloat (const Node& n)
{
	return (n.type() == kFloatNode);
}

inline bool isFloat (const Node& n, float* x)
{
	if (n.type() == kFloatNode) {
		*x = n.getFloat();
		return true;
	} else {
		return false;
	}
}



inline bool isZero (const Node& n)
{
  return ((n.type() == kFloatNode) && (n.getFloat() == 0.0f))
          || ((n.type() == kIntNode) && (n.getInt() == 0));
}

inline bool isGEZero (const Node& n)
{
  return ((n.type() == kFloatNode) && (n.getFloat() >= 0.0f))
          || ((n.type() == kIntNode) && (n.getInt() >= 0));
}

inline bool isGTZero (const Node& n)
{
  return ((n.type() == kFloatNode) && (n.getFloat() > 0.0f))
          || ((n.type() == kIntNode) && (n.getInt() > 0));
}

inline bool isOne (const Node& n)
{
  return ((n.type() == kFloatNode) && (n.getFloat() == 1.0f))
          || ((n.type() == kIntNode) && (n.getInt() == 1));
}

inline bool isMinusOne (const Node& n)
{
  return ((n.type() == kFloatNode) && (n.getFloat() == -1.0f))
          || ((n.type() == kIntNode) && (n.getInt() == -1));
}


// numbers in general
inline bool isNum (const Node& n)
{
	return isInt(n)||isFloat(n);
}


// symbols
inline bool isSym (const Node& n)
{
	return (n.type() == kSymNode);
}

inline bool isSym (const Node& n, Sym* x)
{
	if (n.type() == kSymNode) {
		*x = n.getSym();
		return true;
	} else {
		return false;
	}
}


// void pointer
inline bool isPointer (const Node& n)
{
	return (n.type() == kPointerNode);
}

inline bool isPointer (const Node& n, void** x)
{
	if (n.type() == kPointerNode) {
		*x = n.getPointer();
		return true;
	} else {
		return false;
	}
}




//-------------------------------------------------------------------------
// Mathematical operations on nodes
//-------------------------------------------------------------------------


// arithmetic operations

inline const Node addNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)+float(y)) : Node(int(x)+int(y)); }

inline const Node subNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)-float(y)) : Node(int(x)-int(y)); }

inline const Node mulNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)*float(y)) : Node(int(x)*int(y)); }

inline const Node divNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)/float(y)) : Node(int(x)/int(y)); }

inline const Node divExtendedNode (const Node& x, const Node& y)
	{ return  (isFloat(x)||isFloat(y)) ? Node(float(x)/float(y))
			: (float(int(x)/int(y))==float(x)/float(y)) ? Node(int(x)/int(y))
			: Node(float(x)/float(y)); }

inline const Node remNode (const Node& x, const Node& y)
	{ return Node(int(x)%int(y)); }

// inverse functions

inline const Node minusNode (const Node& x)
	{ return subNode(0, x); }

inline const Node inverseNode (const Node& x)
	{ return divNode(1.0f, x); }


// bit shifting operations

inline const Node lshNode (const Node& x, const Node& y)
	{ return Node(int(x)<<int(y)); }

inline const Node rshNode (const Node& x, const Node& y)
	{ return Node(int(x)>>int(y)); }


// boolean operations on bits

inline const Node andNode (const Node& x, const Node& y)
	{ return Node(int(x)&int(y)); }

inline const Node orNode (const Node& x, const Node& y)
	{ return Node(int(x)|int(y)); }

inline const Node xorNode (const Node& x, const Node& y)
	{ return Node(int(x)^int(y)); }


// compare operations

inline const Node gtNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)>float(y)) : Node(int(x)>int(y)); }

inline const Node ltNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)<float(y)) : Node(int(x)<int(y)); }

inline const Node geNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)>=float(y)) : Node(int(x)>=int(y)); }

inline const Node leNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)<=float(y)) : Node(int(x)<=int(y)); }
#if 1
inline const Node eqNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)==float(y)) : Node(int(x)==int(y)); }

inline const Node neNode (const Node& x, const Node& y)
	{ return (isFloat(x)||isFloat(y)) ? Node(float(x)!=float(y)) : Node(int(x)!=int(y)); }
#endif



#endif