JGraph Cser Mancal

J9rapri.

svalize everything

ﬁafﬁ ancfﬁgpﬁ
I{{}/out :757‘0

User j‘Z;nuaf

Forﬁgp/f%rﬁon 5.10.0.1 antfﬁ‘gp/ffayout Pro 1.4.0.2 - 07‘537‘2;}/1007

ﬁtg&/f Chser JZZnuaf

‘M/‘é are afw‘ayo‘ interested in ﬁetf[;ack‘ on g]o/ldfror[ucta, #"}/ou Fave any Yuea‘tion& Jo[eawe ﬁef
ﬁee to contact us uﬁnj any oftFe ﬁffowinj methods:

Post : ﬁgp[Led
35 Parracombe m'}/,
W;rtﬁamf ton
HAs 3HD
UK.

Telephone: #44 {o)20 7871 2332
Fax: L4 &)&70 762 4282
C77‘1ternet.‘ Fttp.’//www.iqrap/z com/contact. thfﬁrfrivate contact or

Fttp.‘//www.;'qrapﬁ com/forum ﬁr communz’t}/ discussion

fmaz'f.‘ info nospam @iqraw/f. com , remove the _nospan Juﬁ'%m.

Copyright (c) David Benson 2004-2007

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the author.

The programs in this book have been included for their instructional value. They have been tested with care but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations nor does it accept any liabilities with respect to the
programs.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from JGraph
Ltd.

Neither JGraph Ltd. nor its employees are responsible for any errors that may appear in this publication. The information in this
publication is subject to change without notice.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

ﬂjﬂje 2

http://www.jgraph.com/contact.html
mailto:info_nospam@jgraph.com
http://www.jgraph.com/contact.html
http://www.jgraph.com/forum
http://www.jgraph.com/contact.html

JGraph User Wanual

Table of Contents

L INEEOAUCTION. ..ttt b e et e b e et e bt et e e s bt e et e e saeeebeesbbeenbeennee 7
1.1 What does JGIaph dO?oeeeiiiieiiieeee ettt et e et e e e e ssae e e enaeeenseeennns 7
1.2 What 1S @ GTAPRN?....cceiiieiiie ettt s e st e e st e et aeessaeeesseeesseeessseesnsseesnsneesnneens 7

1.2.1 Graph ViSUQHZAtIONoeieiuiiieiiieciie ettt et e e e et e e e e e taeesssaeessseeesnsaeennees 8
1.2.2 GTraph INTETACTIONcccuviiiiiiiieciiieeciee ettt ettt et e et e e e e e saee e eseeesabeeesneeesseesaneeennnns 8
1.2.3 Graph LaYOULSccueertiiiiiiiieiteet ettt ettt sttt et sttt s e e ens 9
1.2.4 GIaph ANALYSIS ..ccueeeiiiiiieiieeieetteee ettt ettt et et e b e st e et esabeeseesnbeenbeeenseenseas 10
1.3 AbOUt this ManUAL.......c..coouiiiiiiiiiiieiiiece ettt s 12
1.3.1 Pre-requisites for this Manual.............ccccoeiiiiiiiiniiiiieie e e 12
1.3.2 Getting Additional RElP........c.ccovieiiiiiiiiiieieee e 12
1.4 ADOUL JGTAPN....coiiiiiiiie ettt ettt e s b e et e e b e eteeesbeenseeenseenseennnas 13
1.4.1 JGraph Swing Compatibility........c..cccveeeiiirieriiieiieeiieie et ae e 13
1.4.2 The JGraph Packages........c..ooviuiiiiiiiieiieeeiie ettt e s 13
1.4.2.1 JGraphpad Pro......cooccuiiieiieeie ettt et et e e e e e s eae e enaeeennaeeens 14

LR I\, 0. (1715 s PSPPSR 16
1.4.4 JGTaph HICENSINE......vvieeiiieeeiieeeieeeeiee ettt e et e et e et e e steeesaeaesaeeesaaeessaeesssaeesssaeessseeensseens 16
1.5 GEtING STATTE. ...c.eeeiiieiieeee et ettt et ettt e st e bt e s aee et e e saeeenbeenees 17
1.5.1 The JGraph Web Sitecccuiiiiiiiiiiiiiieiecce et 17
1.5.2 Downloading JGIaph........ccccoooiiiiiiiiieie ettt e 17
1.5.3 InStalling JGTaPh.....cooueiiiiiiiieiiee ettt ettt ete et e enbeeees 18
1.5.4 Project structure and build OPtioNS........cccuieevieriieiieiiieiieeie ettt 18
1.6 The Desig@n Of JGTaph.......cccviiiiiiiiiiiieiieee ettt ettt s ae e e ssaeesaesasaens 19
1.6.1 The Use 0F ODJECE TYPES...cecuieriierieeieeitieiieeiteeete et eeteeteesereeseessaeeseesseessseensaesseeseennne 20

2 JGraph and the Graph MOdEL...........cooiiiiiiiiiiiiieie ettt e eaeeeee e 21

2.1 Understanding the HelloWorld application.............ccceeeeieeeiieeiiieeeiieeeiee e 21
2.1.1 Creating the JGIaph........ccoviiiiiiieiecce ettt e e e e e s eaeeeaaeeens 22
2.1.2 INSEIEING CIIS....uuiiiiiiieiiiieeiie ettt ettt e e st e e sae e e saaeeeaaeeensaeesssaeesnseeensseeennses 24

2.1.2.1 Configuring Cells' Attributes before InSertion............ccceecveeecieeeiieeecieeeeiee e 26
2.1.3 Editing Graph CellS........cc.oiiiiiiieiiieieeeee ettt st 28
2.1.3.1 Removing Cell AHITDULES.cooueriiriiiiirienieeeetete ettt 30
2.1.4 RemMOVING CelIS.....uiiiiiiiiiiiieieee ettt ettt st e s ebee e 30
2.1.5 ATEIDULE IMAPS. .. eieiiiieiieeiieiie ettt ettt ettt et e st e et e sate e b eeseaeebeeeateenseesseeenseennaaens 31
2.1.5.1 Attribute Map changes after edit callS..........ccceevieriieniiiniiiiieeeee e 32
2.1.6 SUIMMATY.....coiiuiiiiiieeeiie et te et ee et ee et e et e ettt e etteesabeeesateeessseeensseeasseessseessseesnsneesnsneenas 33

2.2 Creating and Configuring the JGraph class..........cccoocvieiiieriiiiiienieiieeeeeeee e 35
2.2.1 Configuring JGTaPN......cccviiiiiiiiieiieeie ettt ettt et e e e steeeveesaeeesbeeseesnseeseans 36

2.3 The GIaph MOEL.......uviiiiiiiiiieeiie ettt et e et e e tae e e ateeeraaeesnseeennseeennnes 39

2.3.1.1 TNEEOAUCTION. ...ttt ettt ettt et e et e aee s as 39
2.3.1.2 The 3 editing MeEthOdS........cccveiiiiiieiieciie et ree e e e sree e 39
2.3.1.3 Accessing the Graph Model Data.............coociiiiiiiiiiiieieceeeeeee e 39
2.3.1.4 Cloning the Graph Model..........c.c.cooiiiiiiiiiiiiecee e 41
2.3.1.5 Navigating Connections Using the GraphModel interface..........c.ccceceevveevenenncnnen. 41

2.3.1.5.1 Obtaining a collection of edges connected t0 @ VerteX........oceeveevvereenueruennnene 43

2.3.1.5.2 Obtaining the Source and Target Vertices of an Edges..........c.ccccevviierineneenne. 43

B RIS ettt h et h e bttt e a e bttt et h e bt et e bt eaeeaee 44
3oL TYPES OF CIIS ..ottt ettt ettt e e et e st e et e s abeesseeesseesaesssaenseensseenseas 44

gjaje 3

JGraph User Wanual

3.2 Cell Interfaces and Default Implementations.............cocveriieiienieeiienie et 44
3.2.1 GraphCell INtErface.......cccuievuiieiiiiieeiieie ettt ettt e 44
3.2.2 The Edge and Port INterfaces.c.ceecuierieiiieiiieeiieitesee ettt 45
3.2.3 The DefaultGraphCell...........ccccooiiiiiiiiieiiecieeiiece ettt eane s 46

3.2.3.1 The Default Graph Cells Constructors and Methods...........ccccoevieriieiieniienieennnnnn, 47
R TN A O 0] 111 o O] SR 48

R B U < o @ o) 1Tt 1SS 48
3.3.1 Obtaining and Changing the User ObJECt..........cccvuieeiiiieiiieeiiieeie et 49

R Oc] U Y4 T £ TSRS 49
3.4.1 Cell HANAICS.....ccuveeeiiie ettt ettt e e st e e e b e e ave e e abeeenseeessseeenneeennnes 50
3.4.2 The Cell View hierarchy.........ccccoeiiriiiiiniiniiieeicetcreeee et 52

3.4.2.1 getPerimeterPOINT.....c..coiiiiiiiiiii ettt et e 53
3.4.2.2 GEEREIACTET.......eiiiieeiiieiie ettt ettt ettt et e st e st e e seeenbeesaeeenseessaeenseens 53
3.4.2.2.1 How to Create your Own Cell View and Renderer............cccccceeeviieninnieennnnnne. 54

3.4.3 Creating Cell Views and Associating them with Cells...........cccoeevieviieiieniiiiiiiieeenee 55
3.4.4 default cell view and Renderer implementations.............ceecueerieeiienieeieeneesieeee e 56
3.4.4.1 THE CeIL VIBWS.....eiiuiiiieiieiieieeie ettt ettt ettt sttt e b et e bt beeneesaeens 56
3.4.4.2 The Cell RENAETETS.cc..eiiiiiiieiieiiieeeeeeee ettt 57
3.4.4.2.1 POTtRENAETET. ..ottt 57
3.4.4.2.2 VerteXRENAEIET.....c..coiiiiiiiiiiee ettt st e 58
3.4.4.2.3 EAERENACIET.......ooeiiiiiiie ettt e e e e e e aae e s eeennaees 58

3.5 USINE CIIS ittt ettt ettt et e st e et e s ebe e bt e sate e bt e saeeebeesaneens 59

3.5. 1 USINZ VETEICES. ..cuvivtetieiieeiteieeit sttt ettt ettt ettt sb et sttt et e bt e bt et sae e bt etesaeenaeeaee 59
35101 BOUNAS. ...ttt sttt et ettt 59
3.5.1.2 Constraining VerteX BoUunds............coociiiiiiiieiiiiiieiecieeeee e 60
3.5.1.3 Resizing and AULOSIZING.........cecueeriieriieiieeiienieeieeeieeeteestaeereeseeesaeesseeenseeseesnseenees 60
35104 TCOM. et ettt et e e ea 61
3.5 1.5 LaDL TOXL. ettt sttt sttt 62
3.5.1.6 BOTARTS. ..ottt 63
3517 COLOTS. .ttt et sttt et st ea 63
BS L8 IS ettt et ettt s s 64

3.5.2 USING EdES...uuvieiiiieiiiieeie ettt et e et e e et e et e e st e e e sbeeessaeeessaeessaeennaeens 64
R TR 0 B 57011 4 1c SRS 64
3.5.2.2 Control Points and ROULING..........ccccuiiiiiiiiiiiieciic et eiae e 64
3.5.2.3 Positioning edge 1abels.........ccccoiiiiiiiiiiiiiieeiee e 65
3.5. 2.4 EAQE StYLES.. ittt ettt et eane s 68
3.5.2.5 Edge end deCOTatioNnS.........cccueieiiiiiuiieiieiie ettt ettt ettt st 69
3.5.2.6 CONNECLIONS TESITAININE.eevieriieeiieeiiertieeieeteeeteesseeereesteeesseensaeeseenseessseesseesseens 70

3.5.3 Attributes for Both Vertices and EdAZes..........ccceeviiiiieiiiiniieiiicieeiecie e 71
3.5.3.1 Constraining Basic Editing FUNCHIONS............cccieriiiiiieiiieiieiecieeeceieesee e 71
3.5.3.2 OPAQUEIIESS.eeeeueeeeeirieeeiiieeeieeesiteeeseteeeseteeesaeeassseessaeessseeeassesensseesnsseesnssessnsseesssseenns 71
3.5.3.3 SELECLION. ...ttt ettt et et 72

3.5.4 USINE POTLS.....eiiiiiie ettt ettt et e et e e st e e s sbe e e saeeessbeeessaeensseesnneeennnes 73
3.5.4.1 POTt POSTHIONINE....cceiuiiieiiiieeiiieeiiieeeiieeeiee et e et e eseae e e aaeestaeestaeesssaeessseeensseessseeanns 73

RTI4TN 75

4 AdVanCed EdITING.......coeiieiiiiieeiieee ettt st ettt et e et e st e enb e nee et e saneens 77

4.1 GIOUPINE. ...ttt ettt ettt et e e sbe et et e ea e e bt eatesbe e bt eateebe e bt eatesbeenbe et e eaee bt eabesaeenbeenseeanen 77

4.1.1 Graph Model Representation of GrOUPING.........cccueevvierireiiienieeiienieeieeeie et 78

ﬂjaje 4

JGraph User Wanual

O N (1 1LY 21 o OO 79
4.1.3 GIOUP INSELS. .netiieiiieeiiie ettt ettt e et e et e e st e e st e e sbteesnbeeesaneeas 80
4.1.4 MOVE INLO/OUL OF ZIOUPS....vietiiiiiiiieeiiieiie et eite ettt e steeteeeteebeessaeeseesaseesseensnesnsaenseeans 80
4.1.5 Removing Child CellS.........cccecieriiiiiiiie ittt e sae e ese e 81
4.2 CONNECTIONSEL.eutetieiieiie ettt ettt ettt sttt e sat et e st e esee st e entessee bt enseentesseensesneenneenseas 82
4.3 The GraphLayoutCache.........c.ceevcuiiiiiiieiieeiee ettt e e e e enaee e 83
4.3.1 View-Local iIndePendence.............cccueieeiuiiieiiiieciieeeieeesreeesieeesreeeineeseeeessaeesaeeesnseeenans 83
4.3.2 VISIDIIIEY ..ttt ettt ettt et e et e bt et e e ne et e et e entesaeenteennenneen 84
4.3.2.1 Configuring Visibility after Editing Operations...........ccceeeveeeviieerciieeniieesieeesvee s 84

4.3.3 VIeW-10Cal @ttrIDULES.ueieiiiieeiiecciee ettt et e e ae e e etaeeesbeeensaeeeanaeeennes 85
4.3.4 Expanding and CollapSing GIOUPS.......cceevueruerieniiriineeieetenieete sttt sieesie e 86
4.3.5 Other GraphLayoutCache OPtiONS.........cc.eeeuieriieeiieiieeieeriie ettt ettt e siee e e seeeeneeens 87
4.4 Advanced Model FUNCHIONS.cc.eeiiriiiiiiiriieieciereee ettt 88
4.4.1 MOAEl OTAETING......ccuvieiieieiieiieeie ettt ettt ettt e e be e saesabe e aaeeabeessbeenseessnesnseens 88
A2 BitS. et sttt et h et et h et e e aeeaeeaee 89
4.4.2.1 UNAO/REAO....ueeiiiiieiieieeteee ettt sttt ettt sttt e sae e 89
4.4.2.1.1 Undo-Support REIAY.......cccviriiiiieiiieiieeie ettt s 89
4.4.2.1.2 GraphUndOMAaNaEET..........ccccvieeiiieeiieeeiieeeieeeeiteeeieeesaeeesseeesnseeennseeenveeennes 90

4.5 DIag and DIOP.......eeeeiieeiiie ettt ettt e et e et a e et e e et e e e teeeenbaeeasrae e nbeeennaeeeraeeennaeas 91
4.0 ZIOOTIING.eeeuveeeeieeeiieeetteeeteeeeteeeasteeessseeassee e seeessaeesssaeeasseeeasseeassaeanssaeassseeensseessseessseesnsses 93
4.7 SUINIMIATYeeiieiiiieeeeiieee e et e e e et eeeeeteeeeestteeeeesaseeeeassseeesasssseeeassssaeesenssseessanssaeesssnnsneessnnseees 93
R B 11RO SSRRUPPRSR 95
5.1 Graph Change Events and LISTENETS.ccuerueiiirieriiiieniienieeieeieeeeeestesee ettt 95
5.2 The GraphUI and handling MOUSE INPUL.........ccceiriiiriiiiiieiieeie e 96
5.2.1 MOUSE TOIETANCE.ccueriiiiiiieiiiiritete ettt sttt ettt ettt s nae e 96
5.2.2 ZIOOIMMUING.cuvieiieetieeiie et eetie et e eite et e sttt ebeeeateesbeeesbeenseessbeenseassseensaesnseenseeanseenseeenseenseennne 97
5.2.3 MarqUECHANALET...........ooiuiiiiieiieeiieee ettt ettt e s enbeenee e 97
5.2 4 HANAIES. ...ttt ettt sttt et as 97

6 INPUL ANA OULPUL......eiiiiieeiiie e et e et e et e e et eeetaeesstaeesnseeeanseeensseeennseeenseesnnees 99
6.1 XML PEISISEEIICE.euteeiiiiiieeiie ettt ettt ettt ettt et e s bt e bt e s bt e e bt e saeesbeesaeeens 99
6.2 TMAZE EXPOTING....cuiiiiiiiieeiie ettt ettt e et e et e et e e et e e saaaeeestaeesssaeessseeensseeensseeennes 101
(R IV € 0 25 4 010 ¢ F PRSPPI 102
6.4 Exporting in a Headless ENVIrONMENt.............cccoeviiiiiiiiiiieceeeee e 103
6.5 Working without the SWing COMPONENL.............cociiiiiiiiiiiieiee e 104
0.0 PIINTING....ootiiiiiieiie ettt ettt e et e bt e st e e bt e eab e e st e e bt e ateenbe e tteenbeenaeeenne 104
T LAYOULS. ..ottt ettt ettt ettt e et e ettt e e bt e e e bt e e ab e e e ab e e e bt e e e bt e e ebbeesbteeenbeeeeabeeas 107
7.1 INETOAUCTION .ottt et st b ettt sb e et sae e bt e te bt enae e 107
7.2 Installation and COMPIIATIONccuiieiiiiiiiiiiieie et 107
7.2.1 REQUITEIMENLS.eeviieuiieiieeiieeiieeteestteeteeeiteeseesaseesseessseeseessseenseessseeseessseenseessseensaessanns 107
7.2.2 INSTAIIATION. ...ttt sttt sttt et 107
7.2.2.1 Project structure and build OPtiONS.........cccueeriieriieriieeiieieecie et 107

7.3 The Design of JGraph Layout Pro..........cccvieriiiiiiiicieeeeeee et e 110
7.3.1 What does JGraph Layout Pro do?........ccoeeriiieiiiieiieceeeeeee et 110
7.4 RUNNING @ LAY OUL......eiiiiiieiiiiieciie ettt ettt et e et e e st e e s beeessseeeesseeessseeennseesnnseesnnseas 110
7.4.1 Writing Your OWn LaYOUL.........cccvieiiiieeiiie ettt vee e e e seneeeeneeennneas 112
7.4.2 Edge Control POINES.......c..ciiiuiiiiiiieciieeciie ettt e e iee e st e e veeeseveeesaeesnsaeesnnneees 112

T A3 EXAMPIES.eieiieiiietie ettt ettt ettt et sttt e ettt e e teeenbeenees 113
7.5 USING the LaYOULS......eeiiiiiiieiieie ettt et ettt ettt et e s bt e eee et e e saeeenneees 114

Fige s

JGraph User Wanual

7.5.1 The TTEE LaYOULS....cc.eeetieiiiieiieeie ettt ettt ettt et e et e st st e ebee s b e enseesnseeneeenne 114
T.5. 1.1 TTEE LAYOUL..c.uetieiiieeiiieetee ettt ettt e et e s tae e st e e s e eans 114
T.5. 1101 ANGNIMENL. ...ttt ettt saaeebeessseensaesnneenne 115
7.5.1.1.2 OTI@NTATION. c..ceueeiietieiteeite sttt ettt ettt ettt et sttt et et e b entesneenbeennesaeas 116
7.5.1.1.3 levelDistance and nodeDiStance.............ceoereerirrierieniieieneeieee e 118
7.5.1.1.4 combineLevelNOAES........cccueeiuiiiiiiiiiieeee e 119
7.5.1.1.5 positionMultipleTrees and treeDistance............cecveeeviieeriieenieeeeieeeieeeieeens 121
7.5.1.2 Compact Tre€ LaAYOUL........ccccuiiiiiiiiiee ettt e e e saee e s e eaaee e 122
7.5.1.3 Radial Tree LayOuLt........c.ceeviiiiiiieeiie ettt et e e vee e ae e e seveeearee s 122
7.5.2 OrganiC LaAYOULS......ccccuiiiiiieiiieeeiiie et e et e ite s teeesteeesateeesateeesaaessaeeensaeessssaessseeensseens 124
7.5.2.1 Spring EMbedded.........cocuoiiiiiiiiiiiiieee s 124
7.5.2.2 Fast Organic LayOUL..........ccccuiiiiieiiieiierie ettt ettt et 125
7.5.2.3 Inverted Self Organising Map........c.cooeeeiierieniieeniieeiteee ettt 126
7.5.2.4 OrganiC LayOUL.......c.ccoiiiiiiiiieie ettt ettt ettt e beesbeeebeenseesabeeaee e 127
7.5.2.4.1 isOptimizeNodeDistribution and nodeDistributionCostFactor...................... 128
7.5.2.4.2 isOptimizeEdgeLength and edgeLengthCostFactor............c.ccccevvvieniieenennen. 129
7.5.2.4.3 isOptimizeEdgeCrossing and edgeCrossingCostFactor.............ccceeevvevivennenn. 130
7.5.2.4.4 isOptimizeEdgeDistance, edgeDistanceCostFactor, isFineTuning and
FINETUNINZRAIUS.eeveeiiece et s 133
7.5.2.4.5 isOptimizeBorderLine, borderLineCostFactor and averageNodeArea........... 136
7.5.2.4.6 minMoveRadius, initialMoveRadius and radiusScaleFactor......................... 138
7.5.2.4.7 MAXITETATIONS.eeeiiieeiiieeiieeeieeeeiee e et e et eeereeesaeeesaaeeessseessseeesseessseesnneeas 140
7.5.2.4.8 unchangedEnergyRoundTermination.............cceceevieenieniieniienieenieeseeeeeee. 140
7.5.2.4.9 1SDEtETMINISTIC. ...cuveeuririiiiieieeiteriteteet ettt st 140
7.5.2.5 Hierarchical LayOuL..........ccccieriieiiiiiiieiieeie ettt ettt 141
7.5.2.5.1 OFIENLALION.eiuiiiiieiiiiieteeteeiteste ettt ettt ettt et sbeebesanenaeens 142
7.5.2.5.2 Intra Node Distance and Inter Rank Cell Spacing..........c.ccccevevievienieeninennen. 142
7.5.2.5.3 1SDELETIMINISTIC. c..eeuveeieniieieeeeteieete sttt sttt s 142
7.5.3 EAZE ROULING....c.uiiiiiiiieiiiciiecie ettt ettt et st e et e st e ebeeesbeesbeessseensaennneas 144
7.5.3.1 Orthogonal EAge ROULING.......cccuviiiiiiiiiiiiiiie ettt 144
7.5.4 STMPLE LaAYOULS.....oeiiiiiiiiiieiie ettt tte e st e e st e e ssbeeessseeessseeenseeesneeanns 145
7.5.4.1 CIrCle LaYOUL.......oiieiiieeiiie ettt ettt e e e e e et e e etaeeenseesnnaeeenneeas 145
7.6 Using the Example Source Code.........ccuiiiiiieiiiiieiieeiie ettt eaee e 146
7.6.1 TR PrOGIESS MNELET.....c..eiiiiieniieeiiieiie ettt ettt ettt ettt e st eebeesateebeesneeenbeesaeeenseenneas 146
APPENndixX A — DEfINITIONS. ...cueiiiiiiiiiiieiie ettt ettt e st e et e et e ebeesabeebee e 147

ﬂjaje é

ﬁtg&/f mer azjmuaf
1 Introduction

Zziazﬁia a mature, féature—ricﬁ open source jrtga/; visualization fz'l;rary written in Zava.ﬁnga/;
is written to be afu/fy ng‘ing comjaatz'[fe component, both vz'.;uaf{y and in its c[éefz:jn architecture.

ﬁzgyﬁcan be run on any system supporting c‘szaverm'on 1.4 or Jater.

1.1 What does JGraph do?

ﬁngaﬁd provides a range of jrtga/; t[rawinj functiona[z’ty ﬁr cfient-side or server-side
gjoJafz'catz’onJ. ﬁrgpﬁ fas a m’mJafe, yet Jaowerfuf gﬁi‘fenaﬁfinj you to visualize, interact with,
automaticaf{y fa{}/out anf]ae;form ana{y&z’& c?fjrtgaﬁdgf. Tke fb/fowinj sections t&eﬁne these terms in
more detail.

I:xamffe zgo]ofication& fbr ajngo/f visualization fiﬁrary include; Jprocess tﬁ'ajramw, workjf/ow and

'sualization, flowckarts, traffic or water flow, database and WWWvisualization, networks

and telecoms tfi{]o/a]&, mapping g]o]afz'catz'on& and mmajramJ, electronic circuits, VLY
t%ﬁ,ﬁnancz’af and social networks, data mz'nz'nj, Eiocﬁemiwtry, eco/c'jz'caf cycfes, entilE}/ and cause-
(gﬁéct refatz'on&/tdzjw and o;:yanz'sationa/ charts.

ﬁzgyﬁj tﬁroujﬁ itlffroyramminj ;@yjﬂovﬁfe& the means to conﬁ:jvure how the jrg]aﬁ or
network is tﬁ'{]o/aye([and” the means to associate a context or metadata with those t[z'{fafa]et[

elements.

1.2 What is a Graph?

JGraph visualization is bused on the mathematical theory of networks, graph theory. Jfyou're
seeking Jm/a[ar charts, pie charts, Gantt charts, kave a ook at the Zﬁeetﬁart project instead.

Fgraph consists of vertices, alsc called nodes, and of edyes (the connecting fines between the
nodes). Exactly kow a graph appears visually is not defined in graph theery. Jhe term cell will e

uJeJtFroquout this manual to describe an efement ofajnga/;, either ez{ye& or vertices.

Hllustration 1 : A simple Graph

Fige 7

http://www.jfree.org/
http://java.sun.com/products/jfc/index.jsp
http://java.sun.com/
http://www.opensource.org/
http://www.jgraph.com/

JGraph User Wanual

There are additional c[eﬁnz'tz'on& injrcgolf t/feory tﬁatJaron'c[e uJe"f‘uf[;ack‘jrounc[when r/bafinj
with graphs, t/fe}/ are Jfisted in z‘;%a]aentﬁ'ac %zfofz’ntere&t to you.

1.2.1 GRAPH VISUALIZATION

%uafization is the process of creatinj a uaef‘uf visual rg]are&entatz'on of ajr({]aﬁ‘: Tke scope of

visualization functz’ona[z’ty is one ofﬁ@/ﬁf’ main Jtrenjt/;. ﬁ‘{]’/’d supports a wide range gf
ﬁatureJ to enable the cﬁ'{]ofay ofceffJ to onf}/ be fz'mz'ter[lf}/ the Jk‘z'ffoft/;e t[bvefoJaer. Vortices may be

J/ﬁgae&, images, other 314/‘1'127 components (z’ncfuzﬁ'nj other ﬁgﬁ/ﬂf) animations, vz'rtuaffy any
jrtgo/zdz'caf operations available in 3w‘inj.

P
TDF!'IIW‘ CR— r.;
VAR i e
Ll A "
SHETLAND Lo
ISLANDS
ORKNEY
Roxkall BLANTS
LN WY [A

Cluertoey 15
sersey

-?‘-_:_:.-
b 22
o Madrid,
mm”“"{*’.én
7 SPAIN m.J_- e
G T ©
¥ Ceuia Alﬂl(‘ﬂ . ! {
Hlusmztmn 2 Graph VlSuallzatmn of a transpor. t System (c) Tourizm Maps 2003, http: //www world-
maps.co.uk

1.2.2 GRAPH INTERACTION

j;tteractz'on is the way in whick an af(]oficatz'on um’nj ﬁ?@]yﬁcan alter the jrtgaﬁd model tﬁdrouj/t"
the application QWﬁ@F supports dragging and cloning cells, re-sizing and re-skaping,
connectinj and’ cﬁ'&connectinj, tl;‘aj and d;‘offinj ﬁom external sources, etﬁ'tz’nj cell Jabels z'n—Ja/ace

gfaje 8

ﬁtg&/f Chser azjmuaf

and more. One of the fe] Eeneﬁta" ofﬁgﬁ/f is the jﬁaxiﬁifz’lfy of how interaction can be
programmed.

B - | {_,f \,I -
] 3
=
; 4
. d
e)
L .

Hlustration 4 : Live-Preview of a graph resize drag

1.2.3 GRAPH LAYOUTS

grg]af cells can be drawn anywﬁere in a u’mjafe zgafficatz'on, z'ncfucﬁ'nj on top of‘one another.
Gertain applications need to present their information in a generally ordered, or ectficall:
7P S J Y P v
ordered structure. Jhis mzjﬁ% involve enwurinj cells do not overfzgo and Jtay at Jeast a certain
distance ﬁom one another, or that cells appear in ﬂaecz’f?c(]yo&itz’on& relative to other cells, uJuaffy
the cells t”e}l are connected to lv:}/ ed:jeo“. This actz'vit:}/, called the fayout tg]offz’cation, can be used in a
number ofway& to assist users set out tlfeirjrtga/; For non- editable jrz{]aiif, ft{yout tgaffz'catz'on is the
rocess of applying a Jayout algorithm to the cells. ?or interactive qraphs, these that can bhe edited,
7 of applying a Jayout aly grap
fz{}/out tga(]afz'catz'on mz:y/tdt involve on{}/ affowinj users to make c/;anjes to certain cells in certain

JooJitionJ, to re-zgaf‘f}/ the faf}mut afjoritﬁm qﬁ?er each cﬁanje to the jrzgaﬁ or to zgyf'f}/ the fayout
when et[i’tz’nj is comffete.

Fige s

ﬁtg&/f Chser szmuaf

Activity J—D[Activity
Activity J—D| Activity

I
> Activity =
v

Swimnl,

B

§
S Activity
Activity J—D{ Activity

—l)‘ Activity]
Activity J—I}[BActivity J

I
> Activity >
P

Swimlane 2

Hlustration 5 : Layout of a workflow using the hierarchical layout in JGraph Layout Pro

ap vout Jro is the supported layout package within the aph sutte, designe or speed,
%FI« f Fe wpp t[f}/ Jofj h e Ja/f t[jl[{79([
mtaﬁiﬂt . functional Hexibifity and consistency. Ia out giro supports a ranqge of tree, force-
¥4 4 SR ass 4 I tg
directed and ﬁvz'erarc/tdz'cafft{}/outgf which wiffﬁt most ft{}/out needs. ‘3%79/1'&[Witﬁfuff&ource code,
ﬁrgyﬁzayout ﬂsrocyiveo“you Yuafz'z:‘}/ fayoutw at great value.
7/;1'5 mer %ua[cover& the use oft/;e ft{}/outfunctz'onafit}/, see the Jater t/ﬂgater&ﬁr details.

1.2.4 GRAPH ANALYSIS

tﬁlje 10

http://www.jgraph.com/layout.html

ﬁ?{g&/f Chser ﬂnuaf

— TS
T_ T o “‘* End '
7 oy
anka' BN LJ
0 S
| | | | |
{ |
| — SISS———C ! ii__u__da ;
[N
ol 2 | .
-]

D - | []
+ Jtart +
(S|

%naf!}/an'& ofjrtga/f& involves the zg:(jaficatz’on ofajoritffms ([etermz'ninj certain details about the

Hllustration 6 : Shortest Path Analysis

jngo/f structure, ﬁr emamjafe, cﬁstermz’nt’nj all routes or the JForteJtJaatF between tweo cells. yﬁere
are more comJofeyc jnga/; zmafy&z's a{yoritfms, these being oﬁen tgaJafz'et[z'n domain efjaecz'ﬂc tasks.
m’cfniyuew such as cftherinj, c[bcom]aou'tz’on, and oftz'mizatz'on tend to be ta;;yetec[at certain
flelds of science and current{y kave not heen implemented in the core ﬁyg]aﬁfacfajes. %Wever, a
number ofjenericjaerformance ojatimizef ana{ywis afjoritﬁdmw can be ﬁunz[n tfeﬁgp/fﬂyout
%‘O(jﬂa0£aje-

ﬂjaje 11

JGraph “Clser Manual
1.3 About this Manual

1.3.1 PRE-REQUISITES FOR THIS MANUAL

573 5eneﬁtfuffyﬁom this manuafyou will need to have a reascnable uncﬁsn@tanzfinj of‘ltvaanz[
at Jeast a /72{'7/;— Jevel overview of ggw‘z’nj. Wgt affa{]oect& of‘:gw‘z'nj are requirec[, but Enow[ec@ve of the
31«‘1’71 attern is important, in particular how the renderer components are used. ﬁw‘ou/([

15 P S P
also be uJeypufto Jtu([j/ one oft/fe major 31&/‘1'71{7 components in more detail, infarticufar the Z@ree
class, since ﬁ‘tg]ﬁﬁi& stmilar to Zﬁree in a number ofw‘ay& at a l[éé‘ij?‘l Jevel.

ﬂf‘r}/ou Jack e.xferience Witﬁfroyramminj the EZt;‘vafanjuuye, there are many jom{ books on the
Jué:]'ect available. %uwef‘ufﬁee introduction isthe dun %tva Jutorial.

1.3.2 GETTING ADDITIONAL HELP

There are many mechanisms ﬁr receiving /76{79 ﬁr wor(inj with the ﬁtgy/; Joﬁware. Tke
communz’ty /fefj9 forum Jarovi(lbw ﬁee assistance to ﬂnyﬂf users. Jke ﬁrum& combine the
at[vantajes of‘many users /fe{jaz'nj to answer questions afonj with the juz'c[ance of active ﬁzgy/;
dbvefojyera ensurinj the Yuafit}/ and correctness ofre{]oonae& and that as many 7ue&tz’ona aJJaoJJz'lffe
are answered. ?JCOWever, there is no assurance ofjettinj ﬁee assistance, either the answer 5ez'nj

correct, orjettinj an answer at all.

When posting at the ﬁrumJ Jafemse read these posting qui(/bfines,ﬁffowinj these will Fe{ja you

jet a better answer anc[encouraje more Jaeoffe to /fefja you. g%a&e remember feoffe Feffinj you on
the ﬁrum& are giving up t/reirﬁee time to do so, but note that the ﬁ@ﬁteam cannot guarantee
that answers Jarovilfecf on the ﬁrum& are correct as t/fey cannot afway& monitor alf discussion
threads. c%ou reyuz're juaranteetf response time JuJaJaortJafeaJe contact sales nospam @iqrap/f. com
ﬁr support contract z'nformatz'on. %rcﬁaaezfﬁg]oﬁfrmfuct& all come with 3o Jay& teckhnical

support, you also have the oftz'on ofa 12 months Juffortfacfaje.

gffezwe do not Jarz'vate‘f}/ contact ﬁgp” tfeve/ofenf tld‘)@.‘nj ﬁrﬁee support. ﬁz’& unfaz’r to expect
gyecz’aftreatment anc[JoutJ them in the aw‘EWarc[Jsz'tz'on OJ[‘lledl'nj you to re-post your question on
the f‘orumw. r;%nawerinj the Yuestz’on on the ﬁruma means other Joeof/e can read the thread and
solve t/?ez'rjaroﬁfem without Favinj to take more c[évefojaersr time.

Puge 12
g

mailto:sales@jgraph.com
http://www.jgraph.com/forum/viewtopic.php?t=357
http://www.jgraph.com/forum
http://java.sun.com/docs/books/tutorial/

JGraph User Wanual
1.4 About JGraph

1.4.1 JGRAPH SWING COMPATIBILITY

ﬁ@ﬁcomfﬁe& with affof ZSWz'an standards, such awffujjab'fe Jook anc[féef, c[ata-tran&fér,
acce&sz’ﬁz’fz’ty, internationalization and seriafization. Tor more advanced features suck as undo/redo,
Jprinting and muffort, the standard 31«‘1’717 c[b&g'jn& were afso used. Jke dbaz;yn ofﬁgp”ﬁaw
muck in common with that ofﬂee and the view concepts comes ﬁom gw‘injs text components.

ﬂyty”itaef]l‘iw an extension of ZComfonent , which is cgw‘inja base c/aJJﬁr affcomf onents. ﬁ‘!]’”
also complies with the J;Vll conventions for method and variable naming, source code fa{}/out and

J'ava([o cs comments.

1.4.2 THE JGRAPH PACKAGES

Tkere are three separate Jaack—ajees available ﬁom ﬁgpﬁcom.
The main Jaacftge z’JJGI'ath'tJefJCW/;Z'CF comprises the ﬂasicﬁgfaﬁswinj component:

JavaPackage Name Functionality
org.jgraph Lasic_JGraph class
org.jgraph.event Graph Fvent Modols
orgjgrapk.graph Graph Structure and nodes
orgjgraph plaf Graph Udlelegate component
org.jgraph utif General purpose utilities

Table 1 : JGraph Packages

JGraph Layout Pro is a set of functionality that builds on top o ﬁgfa/i providing utifities, a
number offayout& ant[variousjrtgo/f ana{yﬂ'&fuﬂctiona/t’ty. jtcome& with it's own tgoffz'catz'on note

and support in the ﬁrgpﬁﬁrum.

Page 1
ige 13

JGraph Cser Mancal

JavaPackage Name Functionality
com.jgraph. algebra Graph Ftnalysis Reutines
com. jgraph Jayout JGraph Tacade and wtifities
com.jgraphayout.organic Force directed Jayouts
com.jgraph.Jayout.tree Tree Jayouts
com jgraphSayout.routing Ldge routing algorithims
com jgraphSayout. kierarchical Hierarchical fayouts

Table 2 : JGraph Layout Pro Packages

Flso available ﬁom ﬁrgpﬁ isﬁgfaﬁ:jsatf gfro.
1.4.2.1 JGraphpad Pro

ﬁ‘g’@’”‘[gfm 7s aJaroﬁJJz’onaf imJafemen tation ofa comJofete ﬁ@ﬁgpfﬂcation ﬁamew‘ork‘.

& IGraphpad Pro - Dokument 1 # =12 =]
Datei Bearbeiten Ansichi Formal Zelle Fenster Hilfe
RECIFEIE 2l [@ala HE
& [ojoo¢/g =@ /r'¢'| |[&l=][&al=][= |_|'|~ﬂi| ||_l |=1=]
| Ubersicht | s o B
orlage ¢ r.’r'&'f_ﬁ?
aa
4
@
=
| 'i INSERT
a
1 ¥ |
22 Wurrelknaten Guranalert Edlitier bar 100% 521 269 S'EISK Frai / 137924 Total

Hllustration 7 : The German version of JGraphpad Pro

ﬂfaje 14

ﬁtg&/f Chser azjmuaf

ﬁgpﬁ:paJ gsro fas an mmfezf conﬁ:juration w‘z’t/td(]aro.jrammab-fe user interfbce ﬁctory,
t[eﬁnz'nj frow you want the tgaffz’catz’on to appear in the conﬁyuratz’on ﬁfes. Jt afso uses aJofuj—z'n
architecture so your cga]ofz'cation a:]oecz'fi'cfunctz’onafit}/ can be zlbvefo(]aet[as a m’njfe module, J‘l’mf{}/
dropped into Gzz‘iﬁgaﬁ:jmc[Pro and you have a ready-made graph application. ﬁg]oé}mc[Pro comes
with a/f the extraféature& oj‘ﬁgpﬁ cﬁ‘o afreaclj/ intgjratel: as well as the option to incorporate the
fayout&ﬁom ﬁrgaﬁzlyout Pro. jf!}/ou need a complete, stand-alone graphing application, with
ﬁ?‘g]ﬂ@od([ﬂfro, Yyou are near{yﬁni&ﬁef when you start using t.

ﬁtgp/gfamf Pro is afurc/fase—onfy product ofﬁgpf that includes its own complete wser
manual, 30 c[ayo‘ or 12 months tecknical support anz[aranje ofad-di'tionafﬁatureﬁ not ﬁunc[in the
Jree ﬁgjﬂ/tﬂversz’on‘ These include standard W/@Jufjort, rich-text editors for vertex Jabels,
an overview Joanef (ﬁirtﬁf»c:}/e vz'ew‘), a fiﬁrary(]uznef Gejmwitory or Jaafette), etlje routing to avoid

nodes, mxfort and more.

Page 15
g

JGraph User Wanual
1.4.3 MXGRAPH

mx Graph is a browser é'ao“ec[jngaF fib'rary ﬁr aff majer Jafatf‘orma. mmgrtgolr uses the native
vector graphics drawing Janguage available to provide rick diagramming functz’onﬂfz't}/ in a thin
cfient architecture. mmzz‘nga/f also includes back- enc[functz’onafit] ﬁr ﬁ:j Want[lwa that
Jarovz'tfe access to the jrtga/: model antffer&z'&tence across the maJ'orz't!}/ of server tecﬁnofojies. Tke
Joﬁware s on'f}/ available under the terms oft/:de m,xgrzga/f License, a standard commercial ficense.

fvafuatz’on& are available on regue&t.

1.4.4 JGRAPH LICENSING

Tke core ﬁgpﬁ fz'lz_rm:}/ is open source Joﬁﬂ/ure. This means the source code is ﬁee{}l
available. The ficenﬁinj oftﬁe various components at the time oj‘w‘ritinj zs:

. (izzngaﬁd - Ijb'rar‘}/ General cﬁté'fz'c License (Igﬂ@veraion 2.1 antfﬁzgaﬁd License

version 1.1.

. ﬂnygﬁ Iayout ﬂfro —ﬁngo/f License version 1.1. ﬁnga/f Iayout cﬁ*o is also ﬁee ﬁr

non- commercial use under the terms ofan academic- Jt!}//;} Ffcense.

. ﬂigfﬁ(}amf ﬂsro - ﬁ@ﬁfjcen&e version 1.1.

Tke core chz;ngo/f fz’ﬁrary is available ﬁee{y under the Igﬁ Tke Igﬂﬁtateﬁ that you must
provide access to the source code to ﬁnyy/i (anr[onfyﬁrgpﬁ) ?'f!}/ou distribute an application that
uJeJﬁnyJ/; as a fz'/;rary. g‘f}/ou make C”ﬂnj&& to ﬁny)ﬁd or extend 1t Yyou must also Jarovit[e those
c/fanjes. The non—ﬁgyﬁfarm of}/our tgaffz’catz’on do not count as an extension, you may stilf
kdeg]a that code Jprivate. gifeaae note that az[tﬁ'nj a comment z'nyour user documentation stating that
the source code to ﬁ‘lgfoﬁmﬂy be found at the ﬁrzg:/fweﬁ site does not constitute adherence to

the Igﬁ
?For tlétaifet[ficen&z'nj 7ueJtion you are afw‘ay& advised teo consult af(yaffroﬁ&&iona[

Page 16
g

http://www.mxgraph.com/

JGraph User Wanual

1.5 Getting Started
1.5.1 THE JGRAPH WEB SITE

Jo start with naw:jate to the vzzczrapﬁ weh site. Jhe most uagfuf areas to you when Jtartinj
ﬁ@ﬁ are fisted helow. Ulse the navigation bar on the feﬁ hand side to Jocate the appropriate
section:

. ﬁocumentatz’on - z%fﬁee{y available documents refatinj to ﬁgp/i gf‘:}/ou are reac[inj this
as part oftﬁe ﬁzy”u&er manual, this is the most uf—to—cfate documentation at the time of
writing. Fddlitional e.xamjafea" to ﬁrgpﬁ are available at a small cost that demonstrate

eyaecz'JchéatureJ within ﬂyzgaﬁ
° Ee‘orum - ?fére you can ask the ﬁﬂg]ﬂ” communit] your 7ue5tz’on§. z';%time{}/ and correct

answer cannot be juaranteezf, Fowever the ﬁgp” zlbvefojaers tend to Eegfa a cJose eye on
questions posted. 3;:}/ to lfrea(yourfro[fem down into Jz'njfe smaller questions. :#:}/oujao&t
aJEinj te Kave someone write }/ourfroject ﬂr you, you are unfikdefr}/ to receive a rg]y'f}/. ff}/ou
reguz’re commercial-fevel support Jyfea&e contact Juf(}oort@c]jrqpfi com. ozgg%re posting to
the férum ffezwe search the documentation, the W@ancf search the ﬁrum un’nj the
Jearc/tdﬁcifit}/frovit[e(l: The ﬁtgpff team Hhave spent a great deal of eﬁ%rt putting those
resources z'n]aface, Jafease try to save them Faﬁnj to point you at them because you Fave not
Jearc/?e([your&eff.‘
NOTE: The majority of forum users ask plenty of questions, but answer none.
JGraph is set up to be a community project, it is reasonable that you will have
some questions initially and that you might ask 4 or 5 questions without giving
anything in return. But continuing to ask more than 10-15 questions without
contributing anything in return will be noticed by the JGraph developers, you
will find they will stop helping you in this case. If you don't know where to help,
look through the unanswered questions on the forum for a start.
. ?%g The mfggontains a number qf the guestion received most oﬁen in a summary
ﬂrmat.
o Jracker - Jke tracker contains current bugs within ﬁw{pﬁ Cgf:}/ou tﬂn(you fave a bug,
check it fas not afreaclj/ been re:fmrtez[and also check in the ﬂrum z'f:}/ou are unsure z'f‘it is a

real bugq. J ou are sure, please do report the bug.
gAY I P ‘7

1.5.2 DOWNLOADING JGRAPH

Tke comjsfete ﬁgfah—' suite consists of alf the components available to download. JThese are
ﬁny/ﬁ the main fiﬁrary, ﬁgpﬁzayout fro, an additional fz'l;rar!}/ comprising fzf}/outs and analysis

functionafz'z'?}/ that builds Jtraiyhﬂt on top ofﬁﬁgaﬁd. T;'naf'f}/, there is Zz:aazﬁdzazf, the ﬁee emamffe

application built on top ofﬁcg}aﬁ
O the downloads page on ﬁgfah—' weh site you w‘z’ffﬁncf the fateatﬁee fﬂc£ﬂjee’ available, both

the source and ﬁinary distributions. Ofder versions ofﬁgpﬁ are available ﬁom the Jource][‘orje

Page 1
ge 17

http://www.jgraph.com/downloads.html
http://www.jgraph.com/jgraphpad.html
http://www.jgraph.com/tracker/
http://www.jgraph.com/faq.html
http://www.jgraph.com/forum/search.php?search_id=unanswered
http://www.jgraph.com/forum
http://www.jgraph.com/docs.html
http://www.jgraph.com/

JGraph Cser Mancal

download site, a fink to this is cﬁ'e?afa ed on the c[ow':nfoar[]aaje:

Package Release (date) Filename

Latest [=]5.7.4.1 [Motes] (2005-11-16 D7:08)
jgraph-5.7 4 1-lgpl_jar 9557465
graph-5.7 4 1-gpl-src_jar 1136133

[#15.7.4 notes] (20051101 05:22)

[#5.7.3.1 Notes] (2005-10-05 13:22)

[#] 5.7.3 [Notes] (2005-08-27 05.25)

(2005-08-31 12:04)
jgraph-5.7_1-gpl_jar 946115
jgraph-5.7_1-lgpl-src._jar 1125321

[#) 5.7 Motes] (2005-08-28 15:28)

[*] 5.6.3 [Notes] (2005-D8-07 12.42)

Hlustration 8: : The JGraph files packages at sourceforge.net

Tke topmost group in a(}oacftge fist will contain the most up to date version ﬁom tﬁatjoac/{zzje.
Tke twe ﬁfes oﬁ[ére([(]arovife the source (w‘z’tﬁ -src Juﬁm) and [z’nary-onfy versions. Note that the
Fz’nar}/ verston is Fuiftﬁrlaval.tr and greater.

Note that the downloads Jor the Jatest aph versions provided on the ﬁrzga/f.com wel site
are Jocated on a dedicated aph download server with far greater handwidth and uptime than
the Jourcef‘orje.net servers. ﬁrgpﬁ;/fouﬁ[be E}/our(]oreﬁrretf downfoad Jocation ﬁr this reason.

ﬁ)‘g]g/t}omf can be olftaz’netfﬁom the same cfownfoatfjuye. jiz'& tested to work with a{]sec?']qc
version of‘ﬁﬂ(zphj this version number is stated in the er. %ajeneraf rule, the ﬁee
community version Ofﬁ?‘g]ﬂé})at[is tested with the Jast refeased version ofﬁrgfaﬁ at the date of
refease and skould have the same release number a&ﬁg]n/{.

1.5.3 INSTALLING JGRAPH

%w’nj downloaded the three ﬁ@ﬁfﬂc/{djes select a folder that will be the root development
Jolder somewhere on your kard” disk. ﬁrzgo/; is defivered in a self-extracting jar file. Double-
clicking the file in Windows will usually start the installation process. Jo start the installation from
the command fine type:

‘ >java -jar jgraph-5 10 0 O-src.jar

rg]afacz'nj the .J'arﬁfename as zgojarofrz'ate. ;%tﬁ'afocy wiffﬁr&t appear aJEz'nj you to agree to the
ficense under which you will useﬁgfa/z you are advised to read the ficense. ngt, the installation
process Wz'ffJaromJatet[}/ou te select the t[i’rector}/ to in&taffﬁnya/;z’nto.

1.5.4 PROJECT STRUCTURE AND BUILD OPTIONS

@ncegﬁt%z and %nt are installed Jaunck the commanc[Joromft on windows, or shell terminal on

gfaje 18

ﬁtg&/f Chser azjmuaf

*nix or 5752;:, navigate to the root ﬂlebr where you installed ﬁqfﬁd Ia}/out. jj/]oinj ant
command, where command Zs one oft/;e targets in the ant Fuz'ft[ﬁfe, w‘z'fffer:form the functz’on of
that command, as described helow. \?‘Zﬁﬂ'ﬂj out the command will build the clbfauft target, all.

doc/ Deocumentation root
src/ Jource root
examples/ Fxamples root
build/ Bl environment
Table 1. Project Directory Structure
ot Clean up and produce aff distributions (“the default target)
apidoc Generate the AP hpecification (javadoc)
build Run all tasks to completely populate the huild directory
clean Delete all generated filos and directories
compile Gompile the build tree

comfz’fe— emamffe

tomfz'fe the main examffe

dist Produce Jresk distributions
distclean Glean up the distribution ﬁfe& on[}/
doc Zjenerate alf documentation
examffe cggm the main eacamjafe

init Initiakize the huild

Jar Lt all_Java archives (JARI
_generate Generate the build tree

Table 2. Ant command options

Tor examffe, to comJaz'fe and run the e.xamffe Wyfe the ﬁffowinj:

‘ant example

1.6 The Design of JGraph

JTke core ﬁg]af fz'll—rary s ([86‘2:771 to be as small as Jwamz'l;fe, to use ﬁmifz'ar 31‘/‘1'71{7 Jb&iyn
Jorz’ncz{'}a/e&, to feave demonstration of g]affication—gaeczfic ideas to eacam]a/ew outside of the core
facfaje antfﬁr the Jorovim'on ofnew féature& tFroqu class extension ﬁom the core fi[rary.

Page 1
ge 19

JGraph User Wanual

1.6.1 THE USE OF OBJECT TYPES

;%retwonal;{}/ ﬁequent 7ueJtz’on is Wﬁ}/ are so many Jaarameter& and return values @bject t}/f&f
rather than %rtz’ce& or fa{yeo‘ or ﬂforta. To Yuote g‘aut[énz:

1. z;%n'}/ oé:]'ect can be used as a cell in a ?zrgp/mzzdb[c%i& not re?uz'ret[that cells im(]afement an
z'nte;:face. (3771'& was areguz’rement since one oft/;e models was aﬁﬂmn aremote mac/tﬂz'ne‘)

2. Jke ftlje and fﬁwt interf‘aceJ are on{y used in the eﬁeﬁluftg‘raf/mz;t/b[yﬁe}l are a contract
between the (lbfauft model and its cells. (yﬁe] are not used anywﬁdere else inﬂig]aﬁd.)

3. Tke g‘rzgaﬁd structure should onfy be accessed t/frouj/; the ch‘rtgrmzz&f interj‘ace, not t/tdrouj/;
the fz{ye or %rt inteif‘ﬂces. Gt is even not reguz'ret[that a grtgamzzt/éf uses ports (z't is kowever
reguz'rec[that every ed:je s rg]areﬁentet[b:}/ an ohject in the mot[ef).

4- Wgz'tﬁder the ﬁgpﬁ component nor one of the a{yorit/fma ﬁr jnga/f traversal uses the Fdge or
Port interfuce, they all use the GraphMode interface whick in turn wses the Edge and Port
interf‘ace to retrieve the Z%ngaﬁd structure ﬁom the cells. Jhis way, the storage structure can be
Fididon from the GraphMode! client.

Page 20
g

JGraph User Wanual
2 JGraph and the Graph Model

2.1 Understanding the HelloWorld application

In this c/fq]ater we will walk t/frouj/f eack fine ofa Jz'mJofe %ffo World zgajaficatz'on and emffaz'n
the main classes 5ez'nj used anftﬁefrimary %Je(f to create anJmanz(’]aufate aa’mf/e jrzgoﬁd. The
Jaacgaje statement anfimfcrt& are omitted, it is a&Jumez[you areﬁmifiar with the basics of{jzva:

public class HelloWorld {
public static void main(String[] args) {
GraphModel model = new DefaultGraphModel () ;
GraphLayoutCache view = new GraphLayoutCache (model,
new
DefaultCellViewFactory());
JGraph graph = new JGraph (model, view);

DefaultGraphCell[] cells = new DefaultGraphCell[3];
cells[0] = new DefaultGraphCell (new String("Hello")):;

GraphConstants.setBounds (cells[0] .getAttributes (), new
Rectangle2D.Double (20,20,40,20)) ;

GraphConstants.setGradientColor (
cells[0] .getAttributes(),
Color.orange) ;
GraphConstants.setOpaque (cells[0] .getAttributes (), true);

DefaultPort port0 = new DefaultPort();
cells[0] .add (port0) ;

cells[1l] = new DefaultGraphCell (new String("World")):;

GraphConstants.setBounds (cells[1l] .getAttributes (), new
Rectangle2D.Double (140,140,40,20));

GraphConstants.setGradientColor (
cells[1l].getAttributes(),
Color.red);
GraphConstants.setOpaque (cells[1l] .getAttributes (), true);

DefaultPort portl = new DefaultPort();
cells[1l].add(portl);

DefaultEdge edge = new DefaultEdge () ;
edge.setSource (cells[0] .getChildAt (0)) ;
edge.setTarget (cells[1l] .getChildAt (0)) ;
cells[2] = edge;

int arrow = GraphConstants.ARROW CLASSIC;
GraphConstants.setLineEnd (edge.getAttributes (), arrow);
GraphConstants.setEndFill (edge.getAttributes (), true);

Puge 21
g

JGraph User Mancal

graph.getGraphLayoutCache () .insert (cells) ;

JFrame frame = new JFrame () ;
frame.getContentPane () .add (new JScrollPane (graph));
frame.pack() ;

frame.setVisible (true) ;

2.1.1 CREATING THE JGRAPH

At the very core of the JGraph fibrary is the 0rg.jgraph.JGraph cfuss. Jhe JGraph class
extends JComponent and you create one JGraph instance per graph component in your
application, the same way as you would one JLabel for one Jabel. Fnstances of this class bind the
jrtga/f model, anyyrtga/f w'ew(s) and the user interf‘ace controf /fanc[fz’nj afftocyet/fer in one place.
(Greatz'nj a JGraph instance without any parameters creates an e.xamJafe jnga/f J‘/;OWZ'nj avery basic

wmtgram of the JGraph architecture:

public class Example {
public static void main(String[] args) {
JGraph graph = new JGraph()

ﬂfaje 22

ﬁtg&/f Chser szmuaf

JFrame frame = new JFrame () ;

frame.getContentPane () .add (new JScrollPane (graph));
frame.pack();

frame.setVisible (true) ;

JComponent : Componentl

GraphModel F Graphul
" |
impiernants impigments

DefaultGraph... BasicGraphUl

Hlustration 9 : Sample data presented on the creation of an empty JGraph

%Wever, this is not very z’nﬁrmatz’ve ﬁr our purposes. ﬁwteacﬁ n our emamffe we create a
model of the graph, using the default implementation provided, DefaultGraphModel. We
then pass the JGraph constructor this model whick re:]arewentec[the duata model we wisk to use to
describe the graph. We afsc create a default implementation of a view of the graph, the
GraphLayoutCache and inform the JGraph this is the view that will be used { don't worry
about the coll view factory for now J-

GraphModel model = new DefaultGraphModel () ;
GraphLayoutCache view = new GraphLayoutCache (model,

new DefaultCellViewFactory()):;
JGraph graph = new JGraph (model, view);

Information - The GraphLayoutCache is often thought of as the graph view, and in
previous versions of JGraph was named GraphView. The reason for the term layout cache is
that JTree has a class named AbstractLayoutCache that holds information about the
geometry of the tree nodes. The GraphLayoutCache is different to a standard view in Swing,
since it contains information that is solely stored in the view, i.e. it is stateful. It is the term
GraphLayoutCache we will use from now on when referring to what might be thought of as
the graph view.

cgpt/fe terms model and view are not ﬁmz’fiar to you, it is w‘ort/tdjettz'nj a basic overview ﬁom a
text such as /@iﬁ% a’mffe terms, the model kolds the data about the jngalf and provides various
methods to access that duta. Jhe w'ewﬁ") are one or more fayerw focyicaf'f}/ above the model that
perform the task of visuaff]fresentinj the graph and these are updated automatz’caffy when the
model data cFanjeJ. m@/dbfauft, views will skow the same jrtgo/;, but a varz'ety offunctz'onafz't}/ 7s
available to t[z'{;ofay the graph tﬁﬁ%rentfy in each view, if required. cftz’s(}ao&&ib_fe Jfor the model to

ﬂjaje 23

JGraph User Wanual

contain all the z'nformatz'on needed to represent the jrl{])ﬁ:’ focyicaf structure, its geometric fayout
and its visual representation. Dome of these aspects would be expected to onfy be considered in the
jrt{f/f views, but ajrzga/; césw‘inj component is somewhat more comffex than any oft/fe standard
3wz'nj components due to the vz'rtuaffy unfimitet[ﬂexiﬁifz’t] of cell positioning available. ﬁgpﬁ].o
cﬁ'([(]aface more Wez('th on storing visual attributes in the views over the model, ﬁn(z]a/fl.o reversed
this, Jﬁ;ﬁinj common visual attributes into the model and was ﬁunt[to be the better solution

arc/fz’tecturaffy.

GraphLayoutCache
[8

GraphLayoutCache

[H 1
CH

GraphLayoutCache

CH H
[H

o 3

GraphModel

[- 1
CH 1]

Hlustration 10 : Multiple views can share the same model

Information - For simple applications it is tempting to avoid the GraphLayoutCache
completely and work directly on the GraphModel, as the GraphModel provides all the
necessary methods to manipulate the graph. You are recommended, unless you have a solid
technical understanding and a good reason otherwise, to start by always working on the
GraphLayoutCache. People often find, as their application grows, that view-specific
features are required and all the calls to the GraphModel have to be changed to calls the
GraphLayoutCache. One important exception to this principle is that if you edit () an
invisible cell in the GraphLayoutCache, it becomes visible. In this case editing the model
directly is preferable. The GraphLayoutCache is discussed further in Chapter 4.

g;zb-etween the ﬁm‘t} fines ofmaz'n 0 that set up our JGraph and the /a&tlr fines that zﬁ'{]afar}/ the
JGraph in the application, fies the codes that creates the graph cells, configures them and inserts
them into tfejrgaﬁ We'll fook at them in order.

2.1.2 INSERTING CELLS

The three jraJaF cells we are joinj to create in the HelloWorld tgafficatz'on are two vertices

and one ezl:je connectz’nj the vertices:

C?j;lje 24,

ﬁtg&/f Chser azjmuaf

World

Hllustration 11 : The basic
Helloworld example shows two
vertices connected by one edge

cells[0] = new DefaultGraphCell (new String("Hello")):;
DefaultPort portO0 = new DefaultPort():;
cells[0].add(port0);

port0.setParent (cells[0]) ;

DefaultEdge edge = new DefaultEdge () ;

We can create new n’m(]ofe vertices lz:}/ constructing DefaultGraphCells and ec{yea with
DefaultEdge. Jkese classes can be instantiated with ne parameters, or with an ohject. »@/
dbfauft, whatever that o/{]’ect returns in its toString () method will appear as the textﬂr that
vertex or edge. @b—vious[}/, String chjects return themselves in LOString () and this is
sometimes the on'f}/ o/l:]'ect used in this parameter. jn the HelloWorld eacamJafe we use this
meckanism to assign one vertex the Jabel Hello” and other vertex the Jabel “Werld”

Tke other ohject, « DefaultPort, mzjﬁ% be confu&inj ?f‘}/ou are fbmz’fz’ar Wz'tﬁdjrgf/f tﬁdeorr}/.
Ports are an artificial addition in JGraph used to indicate places on a vertex where an edge may
connected to that vertex. The ends of edje& connect te vertices lf}/ these ports anc[fort& are
represented, at Jeast in the default model provided witfﬁgp/ﬂ as being children of one vertex.
The add () end setParent () calls are the meckanism wused in JGraph in indicate the
erent/c/;z'fc[relationship between the vertex and it&(}aort(f).

c@Sez?tz'nj up the vertices and edge to c[z'{]afaj/ kow we would fike them is done by mot[zfj/inj their
attributes. SN cells, including ports, have what is called an attribute map. Thkis is a
java.util.Map, the ﬁgpﬁ“&fauk implementation of an attribute map, AttributeMap, is
a subclass of Map. FEnsure you understand kow Ja‘vﬂm aps operate and their basic m#‘ore using
attribute maps. HAttributes are stored in Eey/vafue pairs where the £ey& are attributes fike color,
position and text font. It is worth, at this point, you having a Jook at the
org.jgraph.GraphConstants c/ass.

Page 25
g

JGraph User Wanual

/ Cell Attribute Map \

Feys Values
GraphConstants ATTOSIZE true
GraphConstants SELECTABLE false
GraphConstants BOUNDS Rectangle 20§ 1

S =/

Hlustration 12 : Key/Value pairs of a cell attribute map describing the cells
visual attributes

GraphConstantsisa utz’fz’?}/ class dez‘;gneJ to allow you to access attribute maps in a ?}/Ja&*—&{ﬁs
way, i.e. ensure you are using the correct types ofob:]'ectsfér the available attributes. ﬁa/&o Jarovz't[eJ
a uaef‘ufjuz'(lb to what attributes can be Jetﬁr the various cef/z:“}/(]oea. %1 GraphConstants, @Lier
some initial enumeration variables, you will find a Jist ofStrings that represent the possible fqy&
in attribute maps. Tke bottom Faﬁ‘#‘tfe source ﬁ/e, roujﬁfy, contains all the accessor methods
@etXXX () and set XXX () metﬁotf&) tﬁat]ou should use z'nyour tgaffz'catz'on to read and c/fanje
the attributes. y/fe <Zavzufoc& oftﬁeae methods and fe}l Jtrinjo“ are the most up to date and’ com]ofete
description available, repeating them in documents such as this one is avoided as such references

quicftfy become outdated.

2.1.2.1 Configuring Cells' Attributes before Insertion

TN graph cells kave a storage map that you can obtain using getAttributes (). When
inserting ceffayou can ohtain the attribute map that £efonja to that celf and manipulate it [ef‘ore
inserting the cell into the graph. This practice is on{}/ jeneraffy advised for inserting cells, when
ecﬁ'tz’nj celf the Jprocess ofum'nj transport maps, not the actual cell's map (th—'e storage map)JﬁoufJ
be used (Jee ft[itinj the g‘rgpﬁ) Delow is the call, as an example, of setting the gradient color on
the ﬁr&t cell to orange. The attribute map ﬁom the cell is obtained with getAttributes (), tke
construction of DefaultGraphCell ensures you receive a non-null map. Then the
appropriate setter method in GraphConstantsis caf/leaJJinj in the map and the new value to

set:

GraphConstants.setGradientColor (cells[0] .getAttributes(),
Color.orange) ;

%notﬁer examffe is:

GraphConstants.setBounds (cells[0] .getAttributes (), new
Rectangle2D.Double (20,20,40,20)) ;

Page 2
g

JGraph User Wanual

Cell bounds is Jomet/fz’nj you will come across many times using JGraph, in Jaartz’cufar the
setBounds () method when moving any cells in the jnga/f. Tke Founds Ofll cell is the minimum
rectanjfe that encloses the ceffcomffetefy. gz}t/fe above examffe anew dOUbleJarecz’Jion rectanjfe
is created and applied to the cell using the setBounds () metkod. Jhe %,y co-ordinates are set to

(20,10), the width oft/fe cell to 4o and the Fezj/ft to 20.

The process of(gaff}/z'nj attributes to er{ye& is the same, as shown in this examffe N

int arrow = GraphConstants.ARROW CLASSIC;
GraphConstants.setlLineEnd (edge.getAttributes (), arrow);
GraphConstants.setEndFill (edge.getAttributes (), true);

?fere the fine end is set to be a standard arrow and the creation of the end J‘Flz]&e ﬁr the e([je
enabled. %te that ec{yew all Kave a direction z'nternaf'f}/ within JGraph, i is up to you whether you
want to reveal this directed bekaviour on the visible jrtgafz ﬁi& also worth noting that the accessor
methods ﬁeguent{}/ onfy ’{7{]’[}/ to one or a fimited number oflfyfe& ofce/fd. 3ettz'nj the fine end of‘a
vertex is meaninjfeJJ an([not/;z'nj wiffﬁgpfen because ofit, no error is cauJe([b:}/ r[oz'nj Juc/fat/fz’nj
ﬁr Joe;formance reasons, since no harm will come of it. Jhe Javaz[oc& of the methods state when
tfey on{}/ tg;yafy to Joartz’cufar cefft:}gae Cf)

5;1 terms of inﬂcatinj Fow the ec@re is connected, in our eacamJafe, these are the fines that

Jnerf‘orm t/ﬁ'&functz’on;

edge.setSource (cells[0] .getChildAt (0)) ;
edge.setTarget (cells[1l] .getChildAt (0)) ;

%mentionetﬂ 8({766‘ kave a direction, internaf&, and connect to vertices 6:}/ the ports a&nc'jnet[to
those vertices. ft/je& can be viewed as going ﬁom a SOUrce te a target Tke methods
setSource () aend setTarget () on the Edge inte;j‘ace f]oec?f“}/ W/ficﬁfort& eack end oft/re
edge connects to. Inthe eacamjafe, the ports have been oitaz'net[ﬁom the vertices b:}/ am@nj ﬁr their
ﬁm‘t child. getChildAt (1Int) returns the child at the index {799«:1']99([in the m’njfe parameter.
We know there is one child attacked to eack vertex since we created the ports and mnﬂ:ynet[them as
children JoreViouJ{y. W;te that this method of tléterminz'nj ports is enouj/; fér our emamffe, but
sometimes isn't joot[programming practice when we get to non- trivial tgaffz’catz’ono" z'nvofvz'nj
muftz(']ofe ports.

%Vinj created our cells, conﬁiyuret[them and connected the et{ye to the vertices, we can now
insert this all into the jrzgo/r:

‘ graph.getGraphLayoutCache () .insert (cells) ;

We will afway& work on the GraphLayoutCache #n our examples of inserting, editing and
removing cells. %u w‘z'ffﬁnz[there a number ofvariant& oftﬁe insert method and the one shown is
the simplest. Jt takes an array of vertices and edges and inserts them into the graph. j;y running
the HelloWorld example provided with the JGraph package. Details of how to do this are in
the Introduction chapter. The code is skightly different, but the functionality is the same.

j;*y Joftf}/inj with HelloWorld ﬁr aféw‘ moments to see what Jimffe functionafz’t‘}/ the

Page 2
1ge 27

ﬁtg&/f Chser azjmuaf

JGraph fibrary provides to you. delect a vertex and what are called handles appear arcund the
vertex. “You can z[raj the kandles to resize the vertex, or click and c[rz{j the main part ofa vertex to
move it. Double-click avertex to hring up a simple editor that allows you to alter the Jabels, you can
do the same fér the ezl:je too. (szcg and Kold the mouse down near the toJa-feﬁ of the jrtgy/f area
and’ drag the mouse towards the bottom- right of the graph and release. Jke rectangle that is
Jormed during the drag istermed a MAYqQUEE refeasing the mouse causes alf three cells to be selected
?ft/fe marquee com(]a/ete[}/ overfaJoJ the cells. .ﬁrajjz’nj any part of the selection causes the whole

selection to move at once. Tunctz’ona[ity refated to this marquee is Fandled [7:}/ the
BasicMarqueeHandler.

2.1.3 EDITING GRAPH CELLS

When cﬁanjinj ajngo/tﬂ, collect your c/fanjeJ t(vjet/fer in one mnested map ancf]amw it to
GraphLayoutCache.edit (). Jkat will sort out the change on your view, pass it to the model,
create an undoable edit on your undo command /ﬁ'&tor}/ and ref‘reJ/; everyt/ﬁ'nj that needs
refresking. Tor example:

Map nested = new Hashtable();
Map attributeMapl = new Hashtable () ;

Jke nested map is the map Jalld‘o"et[inte edit () as the ﬁr&t parameter. attributeMapl

contains details of the attributes on aJaarticufar cell that we want te edit. Ietls say we want to
change the 11neColor of a cell:

‘GraphConstants.setLineColor(attributeMapl , Color.orange) ;

z;@m'n, GraphConstants is used to indicate the attribute setting. ﬁut there's a z[i_'ﬁ[érence to
the new HelloWorld example here. FJnstead of fetching the attribute map belonging teo any one
map, a new Hashtable fas feen constructed. Wﬁ}/ this is z[iﬁ%rent te mané}ou[atinj an attribute
map during an insert will be exffaz'net[Jﬁort{y.

%u can create attribute maps cfewcrilfinj the attribute cﬁanjew ﬂvr any number of cells. fac/f
attribute map describes all the c/fanjes f:;vr one cefl. jifyou af]ﬁﬁt the c/fanjeef ﬁr one ceff across many
maps, this would stilf work hut be ineyﬁqcient. Tke next step ﬁr our attribute map, assuming we
on(}/ want to set its color, isto PUL () the attribute map into the nested map. When c[oz'nj t/fz'syou
Jorovz'c[e the ceffyou want to alter as the kde'}/ to the attribute map, ie. this ceff is getting these

attribute cﬁﬂnjes.

‘nested.put(celll, attributeMapl) ;

%vu don't kave to calf edit () with the nested map J'uatyet, inﬁct it mz:jﬁdt be a bad idea to do
S0. (Gaffz'nj edit () adds that edit to the undo /ﬁ'&tory, SO ?'][:}/ou want a number cv]vt/zdz'nj& to be

ﬂjaezs
g

JGraph User Wanual

jrou(]aed- into one undo, makde sure tﬁdey areJae;formEt[tIJJ'JlITt ofone edit () “50, ma}/b—e you want
to ma(e the Jabel on another et{ye to fz'eﬁat afonj the et{je and this to be Joart oft/;e same atomic
c/fanje;

Map attributeMap2 = new Hashtable();

GraphConstants.setLabelAlongEdge (attributeMap?2 , true);
nested.put (cell2, attributeMap2);

;?,nt[a"o on. Finally we pass the nested map inte edit () and you skould find the resulting graph
y wep P Y g grap
zs cﬁanjef accorl[z'nj'f}/.

graph.getgraphLayoutCache () .edit (nested, null, null, null);

Hested Attrioute Map
BRRE N
|- - Cell2 Attribute DMap2] F .
Celll Lttriute Mapl — T Cell3 Attribute Map3
BACKGROUND | Color YELLOW EDITABLE false

VERTICAL ATLIGHNMENT JLabel TOP

Hllustration 13 : Representation of a nested attribute map passed into an edit call. The entries into the nested
map are key/value pairs representing the cell to be changed and a map of attributes to change in that cell.
Within that second attribute map are a set of key/value pairs representing keys from the GraphConstants class
and the new values that those visual attributes are to be assigned by this edit call.

When ezﬁtz’nj you should not edit the attributes ofa ceff(ﬁ'rectfy, you skhould store the cﬁanjea
in a new map and” ask JGraph to ‘{I’J’{}’ them ﬁr you. This meckanism was not necessary when
inserting because the ceff(f) have no existing attribute map to be altered. When an insert, edit or
remove call is made, the jrzga/f model creates an oﬁject that describes the cﬁanjeJ that are to he
made, this object is called” an edit. Jkis edit is executed on the current state of the jrtga/; to

FPage 2
ge 29

JGraph User Wanual

determine the reauftz'nj jrtg]a/f. Tke reasons ﬁr aélftractinj the c/fanje inte an actual oé:]'ect is two-
ﬁft[} 1) to Jorovz't[b fisteners oft/fe event that executing the et[i’tﬁre& a means to obtain z'nformatz'on
as to what /fzgojoenec[in the edit, 2) to Jarovz'c[e undo support within ﬁgpﬁlf}/ storing the edit on
the undo /ﬁ'&tory.

edit () cﬁdeck:f the regueﬁtec[jrzgo/r state cﬁanjew regueﬁtec[zyaz’no‘t the current jrﬂ(]d/l‘l state. fff
there isﬂuntf to be no cfanje regue&tetf then no action is taken. ﬁyou edit the attributes z'n—Jaface
on the cells attribute map b'gf‘ore an edit, the attribute maps passed in will be ckecked against those
currentf] Ee[([b:}l the cells lnu[fbunzf to be the same. Jhis is because tfey will be the same ob:]'ect
and so edit () dees not c/fanje the jnga/f stnce it sees notﬁinj ([zﬁérent in the c/ranje request.
Tke reason this process of creﬂtinj new map to pass inte edit () calls isn't necessary ﬁr
insert () calls is that ﬁr inserts the celf doesn't exist in the j”{]’ﬁ and so there is no attribute
map comparison to be done. cﬁ:}/ou dislike Faw’nj two rﬁﬂérent methods (t/fe simple insert and
nested map)ofconﬁjurinj attributes, the use ofneJtet[hashtables z'JJaoJJib'fe with both methods.
%Wever, editing in-place on inserts provides better performance. Tke corresponding call to insert
would be:

‘graph.getGraphLayoutCache () .insert (nested, null, null, null);

Jhere are a couJofe of items of termz’nofocz}/ uJer[ﬁr attribute maps. The permanent map
associated with a cell is called a storage map and reguz’rea‘ the use ofa a:]oecz'afz'zet[attribute map
cJass. r;%temjaorary map used on[y to indicate an edit change and then discarded is called a
transportmap, moest _generic Map implementations can be used for this.

2.1.3.1 Removing Cell Attributes

Hcommon mistake in ﬁg]yﬁ is to resort to using a cells attribute map cﬁ'rect'f}/ because the
meckanism to com]afete{}/ remove an attribute ﬁom an attribute map is not so obvious. Hsa result,
uJeriet the map cﬁrect‘f}/, remove the zga]orofrz'ate Ee}l and caff edit () . yﬁe correct Way to do this
isto caff setRemoveAttribute ():

Object[] keys = new Object[] { GraphConstants.ICON };
GraphConstants.setRemoveAttributes (map, keys);

Tkis eacamjafe removes the icon fe}/ﬁom a cells attribute map. Tke Joo&&z’ﬁfe set of(e]&you can
pass in with the array are at the top of the GraphConstants c/ess. &memﬁer to set aff the
removed attributes at once, as any new array will overwrite previous entries. %ernt;tive{y, fétcﬁ the
array um’nj getRemoveAttributes (), copy the Jprevious values inte a new array whilst alsc
at[t[z'nj the new values anr[fao"o" the new array to the setRemoveAttributes () method.

2.1.4 REMOVING CELLS

The remainz’nj Fam’cyrg]yﬁ ecﬁ'tz’nj operation is that ofremovinj cells. The m’m(]afeat remove ()

Page 30
g€ 3

JGraph User Wanual

method tafe& an array of cells te be removed. ,Ijk‘e insert() and remove (), this method is
available at both the model and fa:}/out cache Jevels. C@Jedll[consideration needs to be jiven when
removinj jroufet[cells, see t/ﬁgater Irﬁr more details.

2.1.5 ATTRIBUTE MAPS

Tke map of attributes that each cell Kolds is termed an attribute map. Tke c[bfauft class within
JGraphﬁ»r t[eﬁnz'nj attribute maps is named AttributeMap, fut afways try to access attribute
maps using the Map z'nterfbce ﬁr the usual reasons oj‘ encgp&u[atz’on and db—couffinj of the
z'nte;:face ﬁom the z'mffementation. Httributes are keld within the values oft/;e fey/vafue Jpairs in
the map and the Eeyo‘ are well-known constants that the d}awinj functiona[ilZ}/ understands and
interprets the values to Jarot[uce jr‘ﬂ(}aﬁ?&f conﬁjurec[as the attributes dictate.

ﬁew’ou&(f}/ mentioned was the use oftﬁde GraphConstants cfass to provide c[bﬁnitz'ona oft/:de
map fe}w that the defauft JGraph implementation understands and to provide a way to access the

values in a ?}/Jaeaaﬁ' manner. For eacamJafe, the im(]afementatz'on& of setFont () end getFont ()
in GraphConstants foek fike:

public static void setFont (Map map, Font font) {
map.put (FONT, font);
}

public static Font getFont (Map map) {
Font font = (Font) map.get (FONT) ;
if (font == null)
font = DEFAULTFONT;
return font;

Wgte that the methods are static, you goeczf‘}/ the Map tﬁde}/ are to act upon in the parameter fist.
These methods ensure that the type of the value ofject stored under the Key
GraphConstants.FONT is « Font. Ju the case of getFont () the method alse ensures that a
default font is used zfanyfartz’cufar cell does not have a font set. In another part of the ﬁﬂgpﬁ
ﬂﬁrary, the part that deals with c[raw’z'nj Jabels on vertices and e(@ee", the value of getFont () wi/f
be cobtained by passing in the attribute map of corresponding cell and used to render the Jabel
correctfy.

Gt should be noted that Ee}l& of attribute maps defined in GraphConstants refate a/most
entire‘f}/ to W'Juaffrojaertz'eo“ of cells. c%}jeneraf in JGraph, z'f‘tﬁde user would fike to add new
attributes then on{}/ visual attributes (color for example)am[visual control attributes (sefectable
ﬁr eacam(]ofe)J”oufc[be added to a custom class t/tdat(]arovi(lbw the appropriate Ee:}/ constant, as welS
as the static SetXXX () and getXXX () methods. One thing to remember is that attributes are
undoable, this mz:jhdt ﬁéct whether you mzjﬁdt it an attribute or associate it with your cell in
another way. There is no requirement Jor this custom class to be a sub-class of
GraphConstants, since w'rtuaf{y everytﬂnj in that class is Jtatz’caffy zﬁeﬁnezﬂ Tke Juéject of

Page 31
g€ 3

JGraph User Wanual

assoctating custom non-visual data with a cell is covered in chapter 3 in the discussion on cell user
g Lp

ohjects.

2.1.5.1 Attribute Map changes after edit calls

Tke standard way to alter the contents ofceff&’ attribute maps is to pass a new map ofattrib-utea"
with the cell in « Map entry as part ofa nested’ map to the edit () methods. Dince the attribute
map ofa celf afreadj/ exists there are ﬁur state cﬁanjeﬁ that mz:jﬁdt /ﬁg{]aen to individual attributes
within the attribute map:

1. Jke attribute remains uncﬁdanjecﬂ

2. Jke attribute is cFanjeJ:

3. Jhe attribute is removeJﬁom the map
. ;%new‘ attribute is added to the map.

\b

FPage 32
g€ 3

JGraph User Wanual

/_ Cell Storage Map before edit \
Fevys Values
| GraphConstants ATTOSIZE | true
| CraphConstants SELECTABLE | false / Cell Storage Map after edit \
Fey Value:
\ GraphConstants BOUNDS R.ectalgle}D$i/=-—.L e ues
| GraphConstants ATTOSIZE ‘ false
/— Transport Iap passed to edit call \
Feys Values - CGraphConstants BOUTNDS Rectangle2D31
GraphConstants ATTOSIZE false |\ GraphConstants OPAQUE ‘ false -/
|GraphConstants REMOVEATTRIBUTES| | selectable
| GraphConstants OPAQUE | false

N\

Hllustration 14 : How transport maps passed through edit calls affect cell storage maps.

g]fustratz'on 16 Jaictoriaf'f}/ shows the ﬁur Jm&n'[/e attribute entr}/ state cﬁanjew ([urz'nj an
edit () calt. Tke yellow box represents the state of the cell attribute map before the edit call and
the green box the attribute map Jaa&&e([z'n the €edit () calf within a nested map.
1. The BOUNDSttribute is not in the transport map and so remains unchanged in the post-edit

Jtoraje map.

2. Jke mﬁmttrilfute is in both the pre-edit storage map and the transport map. In this
case the Jth- edit Jtoraje map Folds the vafuefaowec[n th—'rouj/f the trano;]aort map.

The transport map folds an @b:]'ect array value with the WOWWEJ This

array fhas one element, Zzngamomftantw.cgmwﬁic” is actually a 3trz'nj of‘ value
“Jefectaﬁfe " yﬁe ed7t caffcﬁveck:s to see the rqferencec[k-er}/ iJJareJent in the pre- edit Jtoraje map.

C%Z’J in our examf/e and so the map entr}/ zs zléfetec[ﬁom the Jpost- edit storage map.
4- Jhe @ﬁ%g@ttnfute is present in the transport map, but not the pre-edit storage map. The
fe}l anc[wzfuefaz'r are coJaz'e([inte the Jpost- edit storage map.

2.1.6 SUMMARY

C% this section we Jooked at inJertz’nj cells into the jraya/f model and manz(']aufatz'nj them. fac/?

cell fas an attribute map used te describe its appearance and bekaviors. mnj the insert (),
edit () and remove () methods on the GraphLayoutCache we can cFanje cells in a way

that the jrgpﬁ model is uJac[ate(l: the screen is rgraz'ntea[(]aroferfy, an undo oftfe cﬁanje is added to
the undo /ﬁ'&tory and afl fisteners to the model are inﬁrmet[of 7t cﬁanjinj. These methods are

Fige »

ﬁtg&/f Chser azjmuaf

common{}/ rgférret[to as the 3 ecﬁ'tz’nj methods and it is worth remembering that t/:de'}/ﬁrm one of‘
the Eeyfart& oft/fe ﬁrgyﬁm‘ylfere current[y exists no method in the GraphModel inte;f‘ace
t/tdatjoerf‘orm a compound of} editing methods to enable insertion, attribute editing and removal

in one atomic, undoable oJaeratz'on‘

faje 34

JGraph User Wanual

2.2 Creating and Configuring the JGraph class

Jke JGraph class itself ties together the main components of the graph , provides top-Jevel
conﬁ:juratz'o:n of the jrg]y/f and a number ofjeneraf utz'fz'@/ methods. Jke model-view-controffer
pattern férﬁw{p/f is shown below:

|avas swing, Javas swing plaf
T omponent CotnponentTT
org.jgraph. graph. org. jeraph. JGraph org.jgraph plat.
Graphhiodel GraphlUlL
org jgraph graph. - . _
o jgraph graph. org jgraph plaf basic.
DetautiGpputiEas GraphLayoutCache BasicGraphlll

lllustration 15 : JGraph MVC

JGraph is a JComponent and Folds reférence& to its model, view and w‘yﬁe basic structure
of the component, namely the Swing MV Carchitecture, is inkerited from JTree. However,
JGraph fas an additional reférence to ajngo/f fayout cacke, whick is not q}/fz'cafef}/ used in cgwinj
VG The graph Jayout cacke is analogous to the root view in Owing's text components, but it is
not reférencecf b:}/ the ﬂgﬁfejate. Q%wtead: 7t s rejérence([[7:}/ the JGraph ob:]'ect such that it
preserves the state when the Jook- and- feel is changed.

When creating your JGraph instance and associated ohjects, it is important to get the order of
object creation correct and to ensure that the objects correctly reference eack other where
appropriate. The JGraph /Ao/ds reféren ces to the current GraphModel and
GraphLayoutCache and the GraphLayoutCache meeds to kave a reference to the
GraphModel. Tke a’mffe&t method ofin&tantz'atz’nj a JGraph zs!

JGraph graph = new JGraph()

This will create « DefaultGraphModel and GraphLayoutCache for you and set up the

reférence in the GraphLayoutCache to Jaoz’nt at the new model. 3{1}/,fér emamffe, you Fave
your oOwWn jrtga/F mO([ef, use.!

GraphModel model = new MyGraphModel () ;
JGraph graph = new JGraph (model) ;

Jke GraphLayoutCache wi/f fe set up correct{}/ Sor you in the same way as before. Weoxt,

Fige s

ﬁtg&/f Chser azjmuaf

your own GraphLayoutCache:

GraphModel model = new DefaultGraphModel () ;
GraphLayoutCache view = new MyGraphLayoutCache (model,
new

DefaultCellViewFactory()) ;
JGraph graph = new JGraph (model, view);

%u could pass null as the first parameter to the MyGraphLayoutCache (note that we're
llJ‘J‘umZ'nj your custom cache ob:]'ect constructors have the sarme mjnature& as
GraphLayoutCache)am[a DefaultGraphModel weuld be created and alf the references set
up ﬁr you. %Wever, exjyfz’cz't[y creating the model anzfjoa&n'nj it in makes the code much clearer.
@fcouro"e, the Jast permutation is a custom model tmt[ft{}/out cachie. amffy use your own model in
place of the DefaultGraphModel in the Jast example above to ackieve this.

Another area where references need to be Kept correct is when either the model or the Jayout
cacke are cﬁanyec[tg%er the JGraph Fas been constructed. 3‘3 do this use the setModel () and
setGraphLayoutCache () smethods on the JGraph cluss passing the new model and Jayout
cache instances r&yective{y. Yéaon setting the modelS any fayout cache current‘f}/ associated with the
JGraph instance will be updated to use the new model instead. When setting a new fayout cache,
the model associated with that ft{}/out cacke will be Jaa&o‘etf to jgraph. setModel ()
automatically. Jfyou wanted to Keep the current model associated with the JGTaph instance you
should create the new fz{}/out cache ant[]aa&f the current model to its constructor ll-eypore JoaJJinj the
Jayout cacke to jgraph.setGraphLayoutCache ().

2.2.1 CONFIGURING JGRAPH

x?lZn}/ oft/fe main ﬁature& in JGraph can be enabled or disabled t/:drouj/f the JGraph cfass.
Lelow is a fist of configuring methods worth Jearning, note that some are inkerited from
superclasses. Wgt af the conﬁjuration methods in JGraph are fisted below. Some others will be
introduced in Jater sections. @ga in mind these are accessor methods, ﬁr each SeT method there
is a correa{"]oonzfz'nj is, or get method. jf}/ou would fike to try out the tgﬁécta ofan] of‘t/fe set
methods mentioned, try gpffyinj them to the JGraph instance in HelloWorld, just afler}lou

create tt.

. setEnabled (boolean) is the kighest Jeve/ configuration in JGraph { the
method is actuaffy in JComponent) This determines whether or not mouse events are
fandled. Wﬁen set to ﬁf&e this disables selection, movinj cells, ecﬁtinj Jabels, reJizinj,
anyt/fz’nj that requires mouse interaction. The unt[er{yz'}y variable is LrUE by default.

. SetEditable (boolean) determines whether or not vertices and edyes may he
edited. f{lhﬂ'nj should not be confum’nj with ena[fz’nj, editing re:fénf Jofefy to the process of
cfic@nj on ajrzga/f a set number of‘tz'me,s (Jee setEditClickCount ())to bring up an
editor z'n—(]oface (over or around the vertex)tﬁat allows the string content oft/fe cells Jabel to

ﬂjajeﬁé

ﬁtg&/f Chser azjmuaf

be altered. Jke undbr‘f}/inj variable is LrUE /7:}/ tlbfauft.

. setEditClickCount (il’lt) determines the number oftz'me you have to cfick on a
editable cell (6:}/ cléfauft those allowed Jtrinj Jabels)lz_e:fore the editor ﬂr that Jabel is
invoked. Jke undbrfyinj variable zlbfauftd to 2, i.e. double- cfick to edit.

. SetMovable (boolean) determines whether or not vertices and etljew may be
moved. Wgte that ports cannct be moved in the tﬁefauft z'mffementﬂtz'on at any time. Jhe
u:m[er[yz’ny variable is LrUE 11:}/ zlbfauft.

. SetConnectable (boolean) determines whether or not new connections are
lowed to be establisked. Note that this on[y applies the connecting operations performed in
the gﬂjattemftw to Jaro.jrrammatz'cafef}/ connect an edge will stilf work even #‘t/fz’a method is
set disabled. Cgl:}/ou try this in the He11OWOr1ld example, the graph appears with the edge
connected. You can stiff disconnect the etlje 11:}/ Jefectz'nj the etlje, then cfz'ckdz'nj and d}ajjz’nj
one end of the edge away from the attacked vertex. However, if you try to drag the edge hack
onto the vertex there is no way to reconnmect it zf‘ Yyou kave called
setConnectable (false). Jke underfying variable is LXUE by default.

. SetDisconnectable (boolean) determines whether or not connected edges
may be di'&connectec[ﬁom their attacked vertices. c@oeaﬁcaf‘f}/, can you grab the end of the
edge attacked to the vertex and move it from its attackment point. JGraph hased
zgo(]afz'catz'on& fike w‘orkjf‘fow editors of‘ten do not allow disconnected ed:jea and so use this
method to enforce that behaviour. The unJer[yinj variable is Lrue by default, i.e. edges may
be disconnected.

. SetDisconnectOnMove (boolean) determines whether or not connected
edges should be disconnected when moved. This is different to setDisconnectable i
that it refates to moving the etlje as a whole, rather than one end oft/fe ec[je. Tke untfer'f}/inj
variable is false by default.

. SetGridEnabled (boolean) determines whether or not cells are 'snapped’ into
Joarticufar Jpositions in the jrzgo/f to ﬁrm a more r(yufar structure. Jke concept of ajrz'c[Zs
that a number of points are Jaid out throughout the graph co-ordinate space as a grid and
cells are Jao&itz’onet[on their closest jrz'd-Jooint, a _process naming snapping. Tke jrz'z[can be
conﬁ{'yuret[b:}/ the distance between each point. Tke um[erf}/z'nj variable is false by default,

Fige 7

ﬁtg&/f Chser azjmuaf

i.e. cells are inserted or moved te double Jorecz'&z'on co-ordinates and not moved onto the jrz'z[

Jaon'tz'on,s.

« setGridVisible (boolean) determines whether or not the grid’ is visible. ﬁ
setGridEnabled is set to true Joujet ’Jntyﬂjﬂ'nj' to jrz'z[]mz'nto“, otherwise no 'ango(]ainj'

will occur.

. SetMoveBelowZero (boolean) determines whether or not cells are alfowed to
Fave the Jaoaitz’on of their tof—féﬁ corner anywﬁere n ne:jatz've co-ordinate space. Jti;
jeneraf@ recommended not to allow this unless there is ajooc[reason. Jhe unt[er{}/inj

variable is Talse /7:}/ défauft, Z.e. afftg]a»feﬁ corners of cells are afwayw n Jao&z’tz’ve co-ordinate

o:]oace.

. SetAntiAliased (boolean) determines whether or not to enable antz’—afiaa'nj
ﬁr the ﬁn{qﬂf component. %nti»afz’zwz’nj is a tec/fnz'gue ﬁr I;furn’nj JFdI(‘]’J, jajjef fines using
cofor jratﬁ'entJ. The unt[er{}/inj variable is false 11:}/ t[efaufn

. SetSelectionEnabled (boolean) determines whether or not any cells may be
selected . Jhe uncﬁsr‘f}/inj variable is Lrue b:}/ tlbfauft.

ﬂjaje 38

JGraph User Wanual
2.3 The Graph Model

2.3.1.1 Introduction

The graph model stores the Jogical structure of the graph and this fits in with the j‘mtfea of
the data of an o[zr']'ect /fez’nj stored within the model. GraphModel cléﬁne& the interj‘ace ﬁr
objects that may serve as a data source for the graph. JThis interface dictates, to an extent, kow the
uncfer'f}/z’nj data that describes the jrgfah—' mode) must be stored within classes imffementinj this
interface. Jhe default implementation of GraphModel, DefaultGraphModel, net onfy is
uJef‘uf as an instructive tooffér emffaininj jrthF models, but also is suitable ﬁr the majorit}/ of‘
simple applications that use JGraph. cﬁ:}/ou want custom graph model bekavicur, your Srst
approack should be to extend DefaultGraphModel, even very stmple models are reasonaﬁ[}/
comffeac to imffement ﬁom scrateh.

Design Background - Jome Joeoffe are szc'ylft[}/ confu.sec[63/ the presence ofvz'wuaf inﬂrmation
being z'nt[z'rect_f}/ stered by the model, ggjaecz'fi'caf'f}/, the graph cell's attributes. Jhese attributes
comprise z'nformatz'on such as positioning, renderering details and controf hekaviours such as
whether the cell can be dragged. %}/jng:/f fibraries architect their graph model in suck a way
that it on[}/ jng:/f cells (vertz'ceef and ez{yew) and the relationships between the cells are stored.
@Z?ptythd is targeted at graph visualization over general graph ana[ym’a and the decision was taken
during its design to make the model represent that ofa visualized graph, not just a graph structure.
This makes the metter suited to jnga/f' visualization at the szj/;t expense offerﬁvrmance when
fe;formz'nj jrzgxff analysis.

2.3.1.2 The 3 editing methods

Jke insert (), edit () aend remove () methods on GraphModel perform the
corresponding function that their GraphLayoutCache methods perform, though their
parameters Jook ratker more comffeac. The wuse of these methods, and their corre{]oonc[inj
signatures methods in GraphLayoutCache wilf e covered in the section on Advanced
fzﬁtz’nj. %Jﬂfﬂ/z’ou&[}/ mentioned, inserting, ecﬁ'tinj and removing zﬁrectfy into the model means
that aff views hased on that model will receive the same changes. mnj on{}/ this approack means
that muftz(']ofe z'ntﬁs(]aenc[ent view's are not foJJiﬁfe, a decision that needs to be considered at the

gyecz’fi’catz’on stage ofan aJaJafz'catz'on.

2.3.1.3 Accessing the Graph Model Data

Tke next methods to be considered in GraphModel are getRootCount (),
getRootAt (), getIndexOfRoot () and contains(). ‘W"’@ the data structure of
ﬁ@”moc[ef& is how it is and wﬁ}/ these methods ofacce&s to the data structure are used requires

Tage 59

ﬁtg&/f Chser azjmuaf

kdnowfed:ﬂe oj‘/;ow the mode/ ofﬂee fas been extended toﬁq]ﬂﬁj as well as the termz’nofoyy used
to describe the relationship of nodes within aﬂee. agac@rount[on this topic in available in
;z]g]aencﬁ'm A

»@tﬁefau[t eack vertex or edge inserted into aﬁgy/fﬁrm& the root node of a tree in the graph
data model. ﬂforta, stnce t/fe}/ fcjz'caffy é'efonj to vertices and edje&, are children of‘tFe cells tﬁey are

attacked to. 7/7eref‘ore, at[tﬁ'nj the two vertices antf,n'njfe ec{ye as in the %[fowor[cf eacam]afe would
result in the roots structure fook‘inj fike this:

foots

1
@

Hllustration 16 : Representation of the roots structure after the Helloworld application has run.
The vertices and edges inserted into roots and the ports are children of the cells that they are
logically part of.

e convention s to call the structure that stores the top-Jevel vertices and edqges of the qgra
T fon i i th ke fie top-Jevel verti £ edy ke graph
roots. Jkis name will be used tFroujﬁout this manual to reﬁr to that structure, Eeinj the jrac]a/;
data model structure. Jke roots structure is tecﬁdnicaf‘f}/ aﬁreat oj‘connectez[trees. The trees can
become more comJafeac when zﬁm[inj Wit/fjroufecl. cells, but this will be covered in a Jater cﬁgpter.

c%&ﬁoufz[be clear now, ﬁom the above zﬁ'ajram, what function the ﬁur methods mentioned
Jaerf‘orm:

. getRootCount () returns the number ofefementJ in the YOOLS structure, this would

return 3 in the above example.

. getRootAt (int) takes a z'ntejer parameter and returns the element reférrinj to that
index in the TOOLS structure. Note that this implies that TOOLS is an ordered collection
and this is w'tafﬁr a number of]az'ecea offunctz'onafz'ty that JGraph Joroviclbo“. @ft/fe
methods that requz're navz{'yatz'on of‘t/;e roots structure, JELROOTAT () 4s b:}/ﬂr the most
used and so also the most Jaerformance sensitive method uJuaf‘f}/. %i&ﬁr this reason that
roots in DefaultGraphModel ésen ArrayList, by default, enabling this method to
comffete in constant time. taffz'nj jetcggotv%t(l) would return the vertex rg]areaentec[/7:}/
Vortexa in the t[z'ajram above. Jke convention Z’Jﬁr the ﬁmt entry in roots to have an index

ofzero.

+ getIndexOfRoot (Object) return the index oft/fe cell in the roots structure. %&a’nj
in the o[i]’ect correa;]aont[inj to fdjel in the above tﬁ'ajram would return 2. Cg“]fOOtS does

not contain the ob:]'ect the method returns -i.

- contains (Object) return a boolean z'n(ﬁ'catz'nj whether or not the goec%'fi'ez[oé:]'ect can

tﬁlje 4,0

JGraph User Wanual

iefoum[within YOOTLS.

Information - Changing roots to be something other than an ArrayList could be done
with a custom graph model, but there are a number of important reasons for this choice. As
mentioned, getRootAt () is usually the bottleneck method of the four and choosing
another List type or even a Map or Set would result in the method performance degrading
from constant time, O(1), to being proportional the number of entries in roots, O(| V| +|E|).
Also, getIndexOfRoot () naturally lends itself to using the indexOf () method of
List, the semantics of the return values match up. If a Set or a Map were used, keep in
mind that roots must be ordered, so a LinkedHashMap and LinkedHashSet would be
appropriate. They were only introduced in JDK 1.4, anyone using earlier version of Java has
little option but to use an ArrayList.

These ﬁur methods ﬁrm the basic means to navigate anc[z'nterrojate the roots structure. Jhere
are additional methods that deal with the parent/child relationshkip that will be covered in the
section on z.i‘roujw. .%J/ﬁ»u/t[be remembered that the GraphModel z'nterf‘ace should afw‘ay& be
used to access the graph data model structure. The interface provides the means to ohtain the
necessary inﬁrmatz’on about YOOLS and the type cﬁec@nj iwfurfodefuf‘f}/ weak, cells are afway&
passed as Objects, to alfow complete fkmz’ﬁz’fity in the way cells are designed. s, accessing
roots tfroujﬁ the GraphModel z'nte;face Jarovz'zfeJ z'nc[e:]aent[ence ﬁom the actual modeS
implementation. ﬂt/fe model needs to he exchanged for ome that provides improved performance
or database ef}/nchdronizatz’on, ﬁr examjyfe, this can be done without cfanjeJ to the caffz'nj code.

2.3.1.4 Cloning the Graph Model

2.3.1.5 Navigating Connections Using the GraphModel interface

Object getSource(Object edge) ad Object getTarget (Object
edge) methods in GraphModel provide the means to obtain the cells, zfany, that any
Joarticufar et[je connects to. Wgte that ec{yew imfficitfy have a direction in g]aﬁ Tkis does not
preclude the visualization of undirected graphs, Kowever. ;%voz'tﬁ'nj the use of arrowheads on edges
is all that is reguirez[to vi&uaf'f}/ make an'}/jrgr/f Jook undirected.

Jo obtain an 1Lerator of edyes connected to a particular ceff, edges (Object port)
is available. %Fvujﬁj the parameter is named :]mrt' the GraphModel interf‘ace does not enforce
that only POTLS may be connected to edges. However, DefaultGraphModel, for example,
does enforce this rule. Jhe arrangement ofvertice& kave children ports tﬁatﬁrm connection with
edges is the best design for the majority of graph models. Tkere are occasions when this isn't so
ﬁcient, ﬁr examffe, jrgp/ﬁf with very fmje numbers ofvertz'ce& each that on{}/ have one port can
be speed up and kave a reduced memory by combining the vertex and port into ome ohject. This
model arrangement is exffainetf in the Jater cﬁafter on Jaerformance issues. 4‘;%/;90, ?'f‘t/tde same cells

C?j;lje 41

ﬁtg&/f Chser azjmuaf

are to be used in muftz(']ofe models, with tﬁfférent connection refatz'onw/fz(']a& in eack model, the
DefaultGraphModel is not suitable. Tkis is because connection relationships are stored in
the cells, maginj 117 l’mJoOJJZ'b-fe to tlbﬁne connections Jg]aaratefy in tﬁﬁérent models. For this reason
it is advised not to share cells between graph models, this is a trait shared with JTreeModels.

boolean isEdge (Object edge) «xd boolean isPort (Object port) are
implementation dependent methods that must adkere to the idea that edges can cmfy connect to
ports anc[t/ﬁzt(]mrt& are alfowed to have ec{ye& connected to them.

The final methods that allow navigation between elements in the graph model data structure are
those that navigate Joarent/c/ﬁ'fz[refatz'onw/fz(']a&. These methods will afso be discussed in the context
ofjroufinj in a Jater c/ﬁgater.

. Object getParent (Object Chlld) returns the parent, ?f‘ any, of the

specified cell in the graph model duta structure. Hsin trees, ol children may only Kave one

Joarent.

. int getIndexOfChild (Object parent, Object child) returns the
index of the gaeqﬁ'e:[child in the collection the parent Ffolds of its children. Wgte that this

collection must be ordered te be deterministic.

. Object getChild (Object parent, int 1index) returns the child at
the {pecif;ez[index in the collection that eac/ffarent folds of its children. @m’n, ﬁr this
method te be deterministic the collection must be ordered.

. int getChildCount (Object parent) returns the number of elements in
the cgaecz'f‘iec[cells collection ofc/ﬁ'fﬁen.

For those SJamifiar with JTreeModel]ou will recognize that navigating up and down any tree
starting at an element of YTOOLS is afmost the same as the meckanism used in JTrees. From
these methods Jare&entetf we are able to nawﬂ'yate between aff elements of ajrac]a/; model data
structure, parents and children and between connections. %w’iffnow walk tﬁroujﬁd examJofe code
Jﬁowinj fow to navigate between the various elements using onfy the GraphModel z'nte;:face.
Tor this we have to assume some imffementation of‘t/7e jrg]aﬁd model since the refatz'ona"/fz(']a
between vertices and ports is not defined exfficz’tfy or imffz'cz'tfy in the GraphModel interface.
Tor this we will use the De faultGraphMode 1, where ports are separate ob:]'ecta to vertices and
ports are afu/a}/& direct chifdren of the vertices tﬁey are part of Wgte that utifz'@/ methods to carry
out the functionJ described below are afreadj/ available in zg]s/;, the e,xam(]afew to ﬁffow‘ are ﬁr
those wi&/finj to understand the architecture ofﬁgpﬁmore t/tﬂoroujﬁqef}/. %rgpre&entation oft/;e
refationa/fz(’]a between two vertices connectez[b:}/ one edge is skown in the diagram below.

Cﬁlje 4,2

JGraph User Wanual

roots

v

— Vertex 4 I Edge & e Vertex B kT
children SOUrce children
target
Fort a Fort b
parent parent
edges edges

Hllustration 17 : Representation of the associations between graph model data elements
with 2 vertices connected by 1 edges inserted into a DefaultGraphModel
2.3.1.5.1 Obtaining a collection of edges connected to a vertex

Jo obtain a collection cff‘ec{yeo" using on[y the E‘rajamzzt[ef z'nte;fﬂce given a vertex you must

L:}/cfe tﬁroujﬁ eacﬁJaort b'efonjinj to that vertex and then within eacﬁfort iterate tﬁroujﬁ each
ez[je connected to tﬁat]aort.‘

List listEdges = new ArrayList():

int numChildren = model.getChildCount (cell);

for (int i = 0; i < numChildren; i++) {
Object port = model.getChild(cell, 1i);
if (model.isPort (port)) {

Iterator iter = model.edges (port);
while (iter.hasNext ()) {

listEdges.add(iter.next ());
}

W;te the requz’rement te check zfa child ofa vertex is a port, vertices can also be children o]p
vertices, the basis ofﬁf@oﬁjroufinj functz’onafitf}/.

2.3.1.5.2 Obtaining the Source and Target Vertices of an Edges

by obtain the source and tarjet vertices that an e({ye connects to tFroqu the Jaort& on the
vertex, onfy using the @@mcﬁsﬁ you obtain the ports at either end of the et[:jes using
etcgource)ant[etmr et)anftﬁen obtain the parents of those ports:
J J J S S

Object sourceVertex = model.getParent (model.getSource (edge)) ;
Object targetVertex model .getParent (model.getTarget (edge)) ;

ﬂjaje 43

JGraph User Wanual
3 Cells
3.1 Types of Cells

%Jareﬂ'ou&fy mentioned, there are three types of graph cells in JGraph, vertices, edges and
ports. %rtice&ﬁrm the main oﬁject& that the user can see about the jrt{]ﬂﬁ‘; the squares, the circles,
the icons and even more comJafex ob:]'ects such as other JComponents. fdje& are uJuaffy fines
that represent jrzga/f structure connections between vertices. %u can FKave muftzc'fafe et{jew between
the same pair of vertices, termed parallel edges, or even etcfjes that start (Jource) ant[ﬁnz'&/f

(tarjet)at the same vertex, termed Self-IOOPS.

Vertex (with
multi-line label)

Cdcolors
C sports
1 fooul

Hllustration 18 : A variety of vertices, some connecting edges and
available ports visible as small squares

Jke above diagram skows some vertices and their connecting edges. Flso visible are small
squares, these are ports attacked to the vertices and edje&. ﬁrm w'&uaf{y represent points at which
the ends ofet{ye& may be connected to vertices or other ez{ye&. The reason ﬁr Faﬁnj a fojicaff -
separate entz’t}/ jz»r ports is that muftz(']ofe ports can be ﬁme:[(oﬂ;‘et)to eyaecz']QeJJoon'tionJ on
vertices, so the jrtga/f model data structure needs to t[iatinjuis/f between connections to t[zﬁérent

points within its boun t[ary.

3.2 Cell Interfaces and Default Implementations

3.2.1 GRAPHCELL INTERFACE

GraphCell is the interfuce to which graph cells should adkere. Note the use of the word
should. Jf desired another interface could he used and the correct use of the GraphModel
interfuace would mean this change is transparent to the user of the model. Thowever, many of the
application and extensions te JGraph as well as default interface implementations,
DefaultGraphModel for example, assume the use of the GraphCell interface. Unless you
have avery good reason otherwise, Kave your cells inkerit from GraphCell fierarchy.

Fage 14

JGraph User Wanual

org.jeraph. graph. GraphCell

JAN JAN

org.jgraph. graph Edge org.jgraph. graph Port

Hlustration 19 : The GraphCell interface hierarchy

The vertex is considered the defuult case and so uses the GraphCell interfuce itse/f. EAges
and POTYLS are considered to be {pect'afizatz'onJ of vertices and so Ffave their own interf’aceﬁ.
GraphCell itself only offers two methods, getAttributes () and
setAttributes (). Fhtributes were mentioned in Ghapter 2 and, as the GraphCell
interfuce suggests, are Key te defining kow cell appear visually. It is unfikely that you skould ever
need to caff SCLAttributes () on agraph cell, the 3 editing methods are the default route for
changing attributes and setting an attribute map directly would retain ne unde history and not
refresk the cell and display accordingly.

getAttributes () ismore commonly wsed, you saw it heing used instead of creating a
nested map for cell insertion in the He11O0WOT 1d example in Chapter 2. Hgain, this method of
accessing and altering in-place the cells storage map cﬁ'rect{}/ should on'f}/ jeneraf'f}/ be used for celf
insertion. Towever, there is ancther exception to this rule, when you wishk to change the attributes
of a celf or cells without adding the change to the undo ﬂ&tor] and you require kigh performance
for the operation. Thcommon example of this is a mouse rolfover. Galfing €dit () isexcessive, for
example, to highlight a celf when the mouse is over it. Fn this case you should obtain the attributes
of the cell, make the changes to the storage map in-place, refresh the cell and repaint the
appropriate area. Jhis operation is usually best performed on the view of the cell, see the section
Jater in this chapter on cell views.

3.2.2 THE EDGE AND PORT INTERFACES

Tke Edge z'nte;face lﬂaﬁnew the methods reguz'rec[to set and determine the connections fbr a
particular edye. Jkese are getSource (), getTarget (), setSource() and
setTarget (). Their functionJ will be reaJonalffy ohvious ﬁom the names, remember affezlje&
kave a direction in the model traveling from the source end to the target end. z‘;@m'n, the types
involved in these methods are aff ODJects to provide complete ﬂemiﬁz’fit}/. Fn combination with
the GraphModel interface it is possible to obtain the ceff(f)connectz'nj to edges, determine their
type anc[naw:jate con&i&tent'f}/, without reﬁ’rrinj to z'mjafementatz'on cyaecz'f;c&.

ﬂjaje 1,5

ﬁtg&/f Chser azjmuaf

y/fe Port z'nterf‘ace zlbﬁne& the necessary methods to add, remove and obtain the edjea‘
connected to it. &memﬁer t/fatfort& are conceftuaffy a entz’t}/ associated with a vertex to whick
any number ofetljew may connect. Edges may connect either their source or target end to a port,
mmgz'nj tFatJoort the source or tmjetfort, rea:]aectz'vef}/. z;%n ec{ye may also connect both its source
anc[tarjet ends to the same port, mm@nj the etlje aaeﬁlfoof. Wgte that Je[f—foof& are created when
an ez[je fas the same vertex as its source and tm;yet, not J’ust ﬁptfe source and tm;yet& port is the
same. Wﬁen teJtz’nj ﬁr Je[f—foof& you should ensure that you obtain the source and target vertices,
jenerafef}/ the parents oftﬁe source and tm:yet]aort, and see %'][‘t/zde!}/ are the same vertex.

Tke Edge interf‘ace also cléﬁneo‘ the static ROU.tiI’lg’ interf‘ace. This interf‘ace zlbﬁne& the route
method whick deal with drawing the edge given a number of points through whick the edge passes.
Tkis will be exJaanJeJ upon Jater in this tﬁ?gater on the section on using ed:jea.

Port defines the methods edges (), addEdge () axd removeEdge (). The add and
remove methods take an ODJject as _per-standard in the ﬁ‘lgﬁ” design. Edges () returns an
Jerator to the Gollection of EAges connected to this POTL, as set up by the add and
remove methods.

Wgte that POYT does not store any information about whether or not it is the source or target
port of edges that connect to it. This information is onfy in Bdges to avoid redundancy and the
c[anjer oft/fe inﬁrmation getting out ofaync/ﬁonz’zation.

The twe Jesser known methods in POYt are getAnchor () and setAnchor (). Jke idea
of anc/tdorz'nj also reguz’re& an exffanation xv]“ﬁow ports arefo&itionetl: be t/tde'}/ refative or absolute
and where the origin of their offset is or ?'ft/fe] kave no offset at all. Tkis is described in the Jater
section in this c/ﬁgoter on usz'nj eﬁvrt&.

3.2.3 THE DEFAULTGRAPHCELL

DefaultGraphCell is the standard imffementation ofajrcgo/r cefffrovit[etf n JGraph
and as with most of the default implementations is suitable either as-is, or as the superclass ofyour
cells ﬁr the majorz'zz}/ of g]o(]afz'cationﬁ. Like the correg]eonc[inj interj‘ace, vertices use the
DefaultGraphCell dass and edges and ports use default classes subclassed from
DefaultGraphCell:

ﬂjaje £

JGraph User Wanual

javax.swing tree.
DefaultMutableTreeNode

A

arg.jgraph.araph.
DefaultGraphCell

arg.jaraph.graph. arg.jgraph.graph.
DefaultEdge DefaultPort

Hllustration 20 : The class hierarchy for the default graph cells

Tke design extension of JGraph ﬁom JTree is again apparent here ﬁom
DefaultMutableTreeNode feing the super class of the default graph cells
implementations. Two important principles are inkerited from the tree nodes, that of the
Joarent/c/ﬁ'fr[re/ationef/ldzc'p that cells may have with one another and the user olr:]'ect. Tke
TreeNodes interface provides basic methods to determine a ceff&farenta and children. Where
JooJJi[fe, you should use the jngo/; model methods fbr traversing the Jaarent/c/ﬁ'f:[re/atz'on&/fzjw in
preference to that supplied by De faultGraphCell, since GraphModel is the interface and

the t[eenc'yn contract.

3.2.3.1 The Default Graph Cells Constructors and Methods

y/;i& Jeads us onto the ﬁur constructoers of De faultGraphCell, each ta@nj an additional
Joarameter. gfyou /ook~ at the source code to the cfaJJJ/ou will see eackh constructor passes a nulf
vafueﬁr mz'emz'nj parameters untift/fej/ afl end up caffz'nj this constructor:

public DefaultGraphCell (Object userObject, AttributeMap storageMap,
MutableTreeNode[] children)

The ﬁrJt two parameters you skhould be reaJona[{}/ ﬁmz’/z'ar with. Jke userObject
parameter becomes the user object of the cell, obvicusly. The storageMap parameter, if non-
null, is intended to be the AttributeMap used é:}/ that cell, jeneraf'f}/ ﬁr its fz'fétz'me. Tkits
parameter is most used when your application requires a custom attribute map for storage. Note
that celf cfoninj does not make use of this mechanism ﬁr traanf;srrz'nj attribute maps. Tke Jast
parameter, children, is an array of the ceffayou wish to make children of the current cell in the

ﬂjaje L7

ﬁtg&/f Chser azjmuaf

tree node refatz'ona"/fz(']a. gr‘ttﬁde HelloWorld examffe we could khave created the DefaultPort
earfier and inserted it using t/ﬁ'&]aarameter instead of adding it eacffz'cz'tfy Jater using the add ()
method of DefaultMutableTreeNode.

JThe otker methods in DefaultGraphCell are Just simple implementations of those in
GraphModel, other than the additional CloOne () method. SetAttributes () ensures
that an attribute map is created if null is passed in and onfy the 3-parameter version of the
constructor calls SetAttributes () within JGraph. gfyou FKave your own attribute map
sub-class, if possible, you should create sub-classes of eack of the default celf types with a new
instance of}/our custom attribute map within sSetAttributes (), N Case you ﬁrjet to create
an instance every time in the DefaultGraphModel constructor.

Jke clone () method returns a tlbg]o copy b:}/ um’nj the JuJaer—cfaJJ clone methods and the
clonemethod of the attribute map.

Jke DefaultPort imffementation is trivial, comprised maz’n'f}/ ofjettera* and setters and the
additiona) ClONE method. @fnote, the collection of edges is implemented as a HashSet, this
means that the order in whick the 1terator returnet[ﬁom edges ()Jareﬁent& the edje& s not
assured. “When GZavar 1.3 becomes end of Jife in December 2006 it is intended to change this to a
LinkedHashSet te retain ort[erz'nj. %u may wisk to make the c/ranje your&efj[‘untif then ?f‘
you are um’njlawtl.tr or higher and reguire this feature.

The DefaultEdge imffementation, again, z'a"jeneraf‘f}/ ohvious. jn the clone () method,
kowever, it might not be so clear w/z}/ the source and target ohjects are not copied. This is because
an edje may be cJoned inte a cﬁﬁérent model where the oriﬂinaf ports do not extst.
DefaultEdge afsc contains the default routing algorithm, DefaultRouting, whick afters
the fist omez'ntJ JanJet[into the route () method to route the etlje in a more aeJt/fetz’caffy

Jafea&inj manner.

3.24 CLONING CELLS

Jhe clone () method of DefaultGraphCell calls the superclass clone and adds a
cloned version of the attribute map of that cell to the new cell. Jeshould be noted that this cloning
mechanism does not add clones of children of the oréyinaf cell, or even reférence& to the oriﬂz’ﬂaf
children to the clone. Nor does this meckanism clone the wser ohject (fee section J/fort{}/ on User
@bject&), 117 on‘f}/ adds ar(?férence to the orz:jrinaf user ohject. Jo obtain a ”tlbejo{y " cloned version of
a cell, one with cloned children and cloned user ohject, there is a static utz'fz'ty method on
DefaultGraphModel to perform this action:

‘Object clone = DefaultGraphModel.cloneCell (graph.getModel (), vertex);

3.3 User Objects

Jke userObject of DefaultMutableTreeNodes, and so afse of
De faultGraphCell, is an Obj eCt that can Jafay an important part in the way you construct
more complex ﬁrgfalf—ﬁasecf applications. Usser objects store any data that is associated with the

ﬂjaje 48

JGraph User Wanual

jrg]o/f cell that does not Eefonj as part of the jnga/:d cell or it attributes. c%n examffe oj‘t/ﬁ'J is a
workflow editor designed to export to a particular Wor/@[‘fow format. Tke editor would kave cells
representing a start, a branch, ajoz'n an actz’vz'lz}/, and so on. Jhe userObject would be used to
store information specific to that type of cell, so this information could be fed into the export stage.
Tor an actz'vz'zzy cell this méyﬁt include a String oft/re name of the person a&nc'ynec[the actz'vit:“}/
and @« URL containing information about it. The application would provide some means to mot[z'f}/
the UserObject and so the UserObject needs to be acce&&et[b:}/ a specialization of‘ajrzgo/r
cell, usually of the DefaultGraphCell, so that it is aware of the real ofject type of the
userObject.

The on{}/ method that must be implemented in a userObject to be usable in IGraph is the
toString () method. Dydefuult the SLTING returned is what is displayed as the Jabel for that
cell. In simple applications with no data storage requirements for the userObject, use «
String itse/f as the USerObJeCt, as shown in the HelloWorld examp/le:

‘cells[O] = new DefaultGraphCell (new String("Hello"))

The parameter to the DefaultGraphCell 7s actuaf'f}/ the cells userObject. Since the
toStringmethod asa SLYING returns this, SLY1NgSs fits the minimum requirements for
user objects.

HNote that the value to he displayed in the cells Jabel kas an indirection through
JGraph.convertValueToString (Object). Jkis methed allows the cell Jabel to
t[z'{;of({}/ alternative text for the same cells in different instances of JGraphs.

3.3.1 OBTAINING AND CHANGING THE USER OBJECT

Tke user olr:]'ect ofa cell is on{}/ stored as an o[i]’ect associated with a celf, it is not stored in the a
cell's storage attribute map. :]f;vu/ever, to Jorovz't[e con&z’&tency with cﬁanjes to user ob:]'ecto“ tﬁroujﬁ
ecﬁ'tz’nj caffo‘you can obtain the user oé:]'ect um’nj:

‘GraphModel.getValue(Object)
and set the user ob:]'ect un’nj
‘GraphConstants.setValue(Object)

The attribute map will ensure the user ob:]'ect does not end up in the eventual storage map, but
setting the ob:]'ect in this way and caffz'nj etfz’t() will ensure that the c/fﬂnje te the user oli:]'ect 7s
correctfy added to the undo /ﬁJtor}/.

3.4 Cell Views

Tke Mattern zgaffies to jrzgaﬁ cells within JGraph, as well as the overal/ design z'tseff.‘ N
jrg]o/f cells Fave at Jeast one associated celf view that deals with various w'&uaffunctz'onafz'z:‘}/ and the

process of‘uft[atz'nj the visualization of that cell. 'Gell views associate a renderer, and editor and a
celS kandTe.

Figess

JGraph User Mancal

&ntferera are part oftfe 3w‘inj design, t/fey abstract the drawing functz’onafz'ty ofa component
inte a Jinjfe static class instance, a pattern also known as the ﬂjweigbt Jéa{yn. Tke idea isﬁr alf
component views that may draw the same t/;inj, J’th with tﬁﬁérent visual attributes, to share this
common instance. Jhis avoids excessive memory requirements fér fm;ye numbers gft/fe same
component. When ajraJa/; cell is rendered the attributes of the cell view are ﬁtcﬁef and inserted
into the renderer instance, a process known as conﬁ'jurinj the renderer. Jke cell is then Jdﬂl'ntetfb:}l
the renderer and t/ﬁ'&]:roce&a continues ﬂr eack cell. This method can save ajreat deal ofmemor}/
against the worst-case one instance per cell meckanism. %wever, the process of z'nstaffz'nj
attributes causes a small Jae;formance hit, but this is uJuaff}/ neyfzc'yz'b'fe comJoarez[to the
computational requirements offaintinj components. &m{ererw are described in more detail Jater
in this c/ﬂy:ter.

Tke editor associated with a cell view is the same principle as cell editors ﬁr JTables or
JTree efements. jf}/ou double- click on a vertex or edge in the HelloWorld example it brings
up what is called an in—place editor, that is a component where Yyou can edit text associated with a
cell at the Jocation where the ceffl;ez'nj edited is positioned. Tke défauft editor provided is a stmple,
.s‘z'njfe—fz'ne editor called DefaultGraphCellEditor, that extends CellEditor. C%Z'J
possible to implement multi-fine, rick text, or even a word processor J?}/fe editor z'f‘reguz'recl:

3.41 CELL HANDLES

Gelf Fandles do not Fave aeraffef concept in 314/2'127, in other 3%@7 components ceffez[z'tz'nj is
onfy JaerfbrmeJ lfy means of in-place editing. ﬁzga/; introduces the concepts of cﬁ'anjinj the
l;ounc[ary stze ofceffa, as well as movinj cells to ariz'trary Jocations. teffﬁanffesferﬁrm the task of

ﬂfaego
g

ﬁtg&/f Chser azjmuaf

tﬁ{]o[ayinj a visual representation indicating that the cell affords resizing and moving, as well as the
task of processing interactive manipulation on a cell or group of cells. The name handle implies
that they possess the properties that allfow you to handle the cell, using the mouse or other input
device. Handlos appear arcund cells that are currently selocted; indicating the celf may kave moving
and resizing operations applied. Handles are a common paradigm in many graphical applications,
for example in a word processer if you select an image handles will appear on the perimeter of the
image to indicate that it affords moving and resizing.

Handles are based on the Composite pattern inﬁnygli Hroot ohject provides access to children
based on a common interfuce, the CellHandle interfuce. Jhe Uddelegate creates a kandle,
usually calfed ROOtHandle, and the roct handle, in turm, wuses the CellView's
getHandle method to create its child kandTes.

Jkhe CellHandle interface defines the basic functionality a handle must provide, note that
the CellHandle interface is very similar to that of MouseMotionListener and
MouseListener. Ter visualization there s paint (Graphics g) and
overlay (Graphics g). Jke paint method draws handle for eack selected cell for when
the cells are static and the OVErlay method deals with drawing during five_preview, usually
implemented as fust XORed painting for speed whilst cells are being dynamically moved. We will
come back to handles in the chapter on Tvents.

The default implementations of handles in JGraph are the SizeHandle, the
EdgeHandle and the RootHandle. Jke root kandle is responsible for moving cells, the size
kandle is used to resize cells and the edge handle allows the connection and disconnection of edges,
as well as the interactive addition, modification and removal of individual points to/frem edges.

arg.jaraph.graph.

I CellHandle |::_ - _

R d4----- - I
Hllustration 21 : The static handle around a
selected cell and edge drawn by the paint
method of the cell handle

_____ -

Drg.j&r . ﬁpﬂ}“aph
t CE'@E dle |
! " -

Hllustration 22 : A dynamic handle drawn by
overlay when a cell is resized

Page 51
g

JGraph User Wanual

3.4.2 THE CELL VIEW HIERARCHY

arg.jaraph.graph.
CellView
&
org.joraph.araph. orojoraph.araph. org.jaraph.araph.
GraphCellEditor AhstractCellview CellHandle
L r.r i
org.joraph.araph. orojoraph.araph. org.jaraph.araph.
Portview Yertex\iew Edgeliew
arg.jaraph.graph. arg.jgraph.graph. org.jaraph.graph.
PortRenderer VertexRenderer EdgeRenderer
v
oro.jograph.araph. -1
CellviewRenderer

Hlustration 23 : The CellView interface, default implementations and static relations

Jke CellView z'nterflzce ([eﬁne.f a number of methods associated with on-screen ufc[atz'nj,
accessing and mozfzfyinj visual attributes and accessing associated visual components. Tke
getRendererComponent (), getHandle (), getEditor () methkods return the
renderer, the kandJe and the editor associated with the celf view, as described earfier in this section.

Jhe refresh () method iscalled whkenever the model cell that the cell view is associated with
cﬁanjeJ. This Joe;f‘ormw the necessary ufc[atinj to the cell view attributes, but does not cause the
cell views to repaint. Note that the 3 editing methods automatically call refresh and repaint for alf
views ajﬁ%ctecf /1:}/ the cﬁanje. gt:“waw mentioned earfier that z'f:}/ou wish to ajﬁct aﬁdzj/tﬂ-(]aerformance
change to a cell, without the need for an undo /ﬁ'&tor}/ of the change, you skould change the cells
attribute, caff refresh and then repaint. Jhe refresh is only called when the
corresponding cell has changed, not when a dependent cell of the graph cell changes

Jhe update () metked is the method that Yefresh wses te synchronize its own attrifutes
with that of the associated graph cel. This method iscalled when the associated mode/ cell changes,
but also when a t[eJoenc[ent cell cﬁanjea, or when J’uat a view uJaz[ate s required: which occurs
during five previews.

The update method z'Jjom[Ja/ace to z'mffement automatic attribute moz[zﬁcation, such as
edge routing or other functionality that is based on other attributes of the cell, or the graph

jeometry.
Tke cell view ﬁ?erarc/t}l stores Jaarent/c/ﬁ'fc[refation&ﬁé]a& Jg]aaratefy to the jraJaF model

Page 52
g

ﬁtg&/f Chser azjmuaf

structure. ;@tﬁoujlr this may seem confuainj, z't(]orovz'c[eﬁ ﬁr a great deal of]%acz'[z’fity and much of‘
the use of t/fz'sfunctz'onafz’t!}/ is hidden from the developer. Without this information you would
need to go ﬁom the celf view to its model cell, obtain its parent and navigate back to the accort[inj
parent cell view. %beenr[ency Jrom model to view is /ﬁj/”}/ undesirable. 7tn example of the use of
this structure is the way ec{ye& connected to cell within a coffg]me([jroujo w'&uaf{y attack to the
perimeter of the first visible parent of the cell. This is performed entirely in the view, without the
need to rejérence the model. Tke methods ﬁr accessing the cell view refatz'on&/ﬁ(']o& are
getParentView (), getChildViews (), removeFromParent () end isLeaf (),
aff(]oerf‘orm t/fefunctz'on o[fviou&ﬁom their naming.

3.4.2.1 getPerimeterPoint

getPerimeterPoint () 2s the ﬁr&t method in CellView you are in any c[llnjer of
actuaf{y Favinj to imffement ﬁr a Jimffe cgaffication. getPerimeterPoint returns the
point on the perimeter oft/fe view where the et{ye i"faecz'flet[in the parameter fist intersects. Jhis is
important to get r;_'ﬂ/tdt, since the basic type ofJoort, the ﬂoatinj port, uses this method to determine
where an et[je skhould terminate on the Eount[ary ofa vertex. Jhe use of]aorto“ antfﬁoatz’nj ports are
described in more detaif towards the end oft/rz'o“ c/fzgater.

;%Jtrﬂct((;eff%ew, the abstract JuJaercfaJJ cv]vaffcléfauft cell views will return the center point of
the ceffzf}/ou do not Jarovidb an im(]afementation of getPerimeterPointfurt/,‘er down the
class /fierarc@.

3.4.2.2 getRenderer

The other method you are fz'k‘etf}/ te have to comncern your&e[f with ?fe}/ou create a celf ZE}/fe 7s
getRenderer (). getRenderer is sot actually in the CellView interface, only
getRendererComponent i Jhe implementation of getRendererComponent ix
AbstractCellView, the class that you will subclass from directly or indirectly for 99.9% of
custom celf views, Jooks fike this:

public Component getRendererComponent (JGraph graph, boolean selected,
boolean focus, boolean preview) {
CellViewRenderer cvr = getRenderer();
if (cvr !'= null)
return cvr.getRendererComponent (graph, this, selected, focus,
preview) ;
return null;

%Jﬂﬁﬂ'ou&{y mentioned, each cefftf}/fe conststs oft/fe cell, the cef view and the cell renderer. 55”
a new celf t'}ljae you create s Vz'&uaff] distinct ﬁom the ones you afreat[j/ Fave, ﬁr examffe, you want
to add a circle cell, Yyou need to create a renderer class tﬁat(paint& a circle and ensure the view oj‘t/fat

celf returns that renderer.

¢%653

ﬁtg&/f Chser azjmuaf

3.4.2.2.1 How to Create your Own Cell View and Renderer
-»Z;e/ow‘ Zs atemffate ofwﬁat you mzj/;t start with when creatinj your own view:

public class MyView extends AbstractCellView ({

protected static MyRenderer renderer = new MyRenderer () ;

public MyView () {
super () ;

}

public MyView (Object arg0) {
super (arg0) ;

}

public CellViewRenderer getRenderer () {
return renderer;

}

public Point2D getPerimeterPoint (EdgeView edge, Point2D source,
Point2D p) {

if (getRenderer () instanceof MyRenderer)
return ((MyRenderer)
getRenderer ()) .getPerimeterPoint (this,

source, p);
return super.getPerimeterPoint (edge, source, p);

}

public static class MyRenderer extends JLabel implements
CellViewRenderer, Serializable ({

public void paint (Graphics g) {
}

public Component getRendererComponent (JGraph graph, CellView
view, boolean sel, boolean focus, boolean preview) {
}

public Point2D getPerimeterPoint (VertexView view, Point2D
source, Point2D p) {
}

Kﬁ‘?" in mind it is advised to stick to the ﬂyweight Jpattern and” kold a Jinjfe static renderer
instance ﬁr each tr}/Jae ofceffw'ew to reduce the memory fbotfrint.

ﬂjaje 54

JGraph User Wanual

3.4.3 CREATING CELL VIEWS AND ASSOCIATING THEM WITH CELLS

Tke Jprocess of creating a cell view ﬁr eac/:djrzya/:d cell created would be somewhat tedious to
perform manuaffy and so it is done behind the scenes using a cell view f}lctory. The interface
CellViewFactory tlbﬁne& one methed, CreateView () . This takes an instance ofajrg]o/r
model and the graph cell for whick the view isto be created, creates the appropriate cell view and
associates the cell and the view accortﬁnj{y. The cell view ﬂctor] is associated with the
GraphLayoutCache and some constructors of GraphLayoutCache cake the
CellViewFactory as a_parameter. %u can c/ranje and access the cell view ﬁctory Jurinj the
fife of the cacke using S€tFactoryaesd getFactory.

The default implementation of CellViewFactoryéws DefaultCellViewFactory, i
you do not specify a« CellViewFactory when creating « GraphLayoutCache, you wilf
get the tlbfauft filctor] instantiated ﬁr you. DefaultCellViewFactory, with the
deprecated methods removed, Jooks fike this:

public CellView createView (GraphModel model, Object cell) {
CellView view = null;
1f (model.isPort (cell))
view = createPortView (cell)
else 1if (model.isEdge (cell))
view = createEdgeView (cell);
else
view = createVertexView (cell) ;
return view;

}

protected VertexView createVertexView (Object cell) {
return new VertexView (cell);

}

protected EdgeView createkEdgeView (Object cell) {
return new EdgeView(cell) ;

}

protected PortView createPortView (Object cell) {
return new PortView(cell);

}

573 associate your new cells and cell views extend the DefaultCellViewFactory class,
add checks ﬂr your cell t}/JaeJ and return a new instance of the associated cell view tga]orojariatef}/.
?For examffe, z'f:}/ou aJJMyVertex am[MyVerteXView:

protected VertexView createVertexView (Object cell) {
if (cell instanceof MyVertex) {
return new MyVertexView (cell) ;

}

return new VertexView (cell);

ﬂjaje 55

JGraph User Wanual

Or z'f:}/ou J’th want to make the tfefau[t vertex use the circle view you kave created, without
creatinj your own ceff@gye:

protected VertexView createVertexView (Object cell) {
return new MyCircleView (cell) ;

}
&memﬁer, fike a/fﬁctorz’e&, the celf view returned must be a new instance. %ur g]affication will
not function correctfy #‘tﬁey are not.

3.4.4 DEFAULT CELL VIEW AND RENDERER IMPLEMENTATIONS

3.4.4.1 The Cell Views

The default cell view implementations for the 3 hasic cell types are VertexView,
EdgeView and PortView. VertexView is probably the simplest implementation of the
three, other than the SizeHandle (Jee C/ﬁgater 5 on fvent&) Jt& update method ensures
that the vertex view has a bounds and the getRenderer end getPerimeterPoint just
defer to the vertex renderer.

PortView /kas a size kard-coded inte the ﬁnaf variable SI1ZE and returned in the
getBounds () method. Ports tend to be visually rather simple and the default implementation
fias ne Ffandles, meaning no resizing. jf‘}/ou would fike variable sized ports you mz:jrﬁ“t subclass
POrtView and implement JEtBOUNAS to return the bounds attribute of the port's attribute
map instead.

PortView afse Fkas some additional functz’ona[ity refatz’nj to the port Jocation.
getLocation () axd shouldInvokePortMagic () previde Junctionality that make it
Jm&&z’ﬁfe te have interactive[}/ movable ports as well as the Jocal optimization of atﬁu&tz’nj a ports

position on avertex in order to Jtrazj/ften an etl:je or ec{yew connecting to it.

Hllustration 24 : A standard floating port edge (left) and an edge connected to port using
'port magic' (‘right)

Edge\/iew is @ﬁr the most comffe,x oft/fe t[éfauft views, since it needs to imffement most of

ﬂjaje 56

ﬁtg&/f Chser azjmuaf

it&functionafityﬁom scratch, as OJOJ’JOJE([to the vertex W/fic/rjeto“ a ot ofin/ferited‘functionafity in
its renderer from JLabel. Without going in undue t[btaz'fjustyet, there are some general design
Jorz’ncz(']afe& in the edje view worth mentioning.

fc[jeo" kave a Jabel fike vertices, but also have the concept ofeactra Jabels. The main Jabel bekaves
fike a vertex Jabel with the usual in-place editing and the extra Jabels do not kave in-place editing.
Tke primary reason for adding the extra Jabels was to support muftzc'jafz'cz't}/ in mtgrams. 7/76]
are Jgfaaratet[ﬁom the main Jabel to m'm(]afz'jj/ usage ﬁr those on{}/ requiring one Jabel and because
t/fey do not bekave in the same manner for in-place editing.

Tke actuaf]aat/; the edje takes is hel/d in « GeneralPath o/{]’ect, a GraphicsZD utz'fite}/
object that consists of a sequence of Java.awt .Shapes and inkerits from Shape itself. The
start and end d}aw‘injw on ec{ye&, whick ofi‘en consist ofﬁome type ofarrow/fea(l: are also Shape
ohjects. Tke positions through whick the edge passes are called points and a default edge has two,
the start point and the 971([(7902'7117. %Jaoint may, n ﬁct, be a reaf]mz'nt or a port o[i]’ect. r;%ny
additional points to these two are called controf points and the fine shape of the edge is drawn as a
sequence ofz'nd%'vi:fuaffz’ne J‘FQJGEJ between each Jequentz’af(]aaz’r of‘JoointJ in the points fist. Wgte
that for this reason, the collection that stores the fist of points must be ordered.

Extra Iabefﬁ?

W_\igintanel W
&Exﬂ‘a label 4

Hllustration 25 : An edge with its main label and
two extra labels. The edge has two control points
and the line style is set to GraphConstants.
STYLE SPLINE. Since the edge is selected all
points on the edge are indicated by the edge
handle

%tfe comments at the top ofEdgeView suggest, there are some class type assumptions made
about the renderer in about 5 oftﬁe methods. jf}/ou subclass EdgeView anc[frovi([e your own
renderer, you must re—z'm(]afement these methods rqf}erencinj your own renderer te}/Jae instead.

3.4.4.2 The Cell Renderers

3.4.4.2.1 PortRenderer

Jke PortRenderer is o simple JComponent. Have a Jook at the
getRendererComponent method, here is where you need to install the attributes of the
current cell view being Jadl'ntetl: &mem[er that there is on{}/ one POrtRenderer instance ﬁr

Fige o7

ﬁtg&/f Chser azjmuaf

I POTtViews and so when we paint each one we kave to setup the renderer ﬁr the current port
view. Jhis principle extends to all graph cell renderers using the f@waz:y/zdt pattern, the port
renderer is J'ua"t a Jimffe examffe of this. Jhis is w‘/:j}/ the cell view and the three cell states,
selected, preview end fOCUS are passed inte getRendererComponent () and
stored in the ren([erer'a" own variables. c%z the paint method the renderer uses these stored
variables to draw the cell in the appropriate manner. S€lected indicates whether or the cell is
selected, preview is whether or not the cell is b-ez'nj drawn in fz've—frevz'ew (t/:de X@&Jfrevz'ew
you got of the graph whilst dragging before you refease the mouse)and £OCUS is whether or not
the cell is current‘f}/ the ﬁcuo‘ (t/fz’& can be a tﬁfférent state to Selected).

3.4.4.2.2 VertexRenderer

Jke VertexRenderer inkerits from JLabel. Jhis provides a Jot of functionality for free,
although Jeeminj{}/ simple tasks can be constrained by the use of a JLabel. %ym’n,
getRendererComponent () sets the renderer uffér a gaecz']qc view and the celf view states.
In addition to storing these states Jocal, VertexRenderer adds an internal method called
installAttributes (). y/fz'&fe;f‘orms the task ofo[taz'ninj the attribute map of‘t/tde vertex
and storing alf the visual attributes that are taken into account during in the paint method Jocally
in the class. %te that most oftﬁde attributes Eefonj to JLabel rather than VertexRenderer
and this gives some idea of the usefulness of using JLabel as the parent class.

jr/z‘;o“t of the Jpainting functz’ona[z’l;‘}l fles in the parent class, apart ﬁom the Jpainting of the
selection border and of gradient color fills. %]ou would think, the selectedﬁ@fawe([into
getRendererComponent is wsed is trigger the painting of the selection border.
getPerimeterPolint () iswhere the actual calculation of where an incoming edge meets the
[z'ounc[ar}/ of the vertex i&fe;:f‘ormecl: Wgte tﬁdatﬁr a rectanjufar vertex the calculation isn't trivial,
the simplest getPerimeterPolint émplementation isactually for a circular vertex.

3.4.4.2.3 EdgeRenderer

EdgeRendererfof/oms the same pattern of z'thaffinj the view, its state and its attributes,
tfoujﬁ 117 requz’re& somewhat more code since it inﬁerit&ﬁom JComponent aexd mu&tferf‘orm
its own fa[effaintinj. Tke emtrafunctz'onafz’l:‘y also presents another issue with =f}/nc/tﬂronz'.,,zinj the
renderer and the cell view when one of the Jau[fz’c methods is called without the wuse of
getRendererComponent. For example, if you caf getLabelPosition (EdgeView
View) to determine the position oftﬁe main Jabel, the attributes necessary to determine the JabeS
position must be installed. Jhere is a method SetView () zo Joe;form t/ﬁ'&function, ancfyou will
see it used near the top of many of the public get methods to set the celf view and install the
attributes. ?72“15 can mean that ﬁr rg]aeatet[work on the same 61{79 there can he redundant
attribute instaflation whick can cause aferﬁvrmance hit, uefuaffy small in totaffercentaje terms,
kowever.

ﬁyou extend EdgeRenderer or attempt to z'mJafement your own version, bear in mind the

ﬂjaje 58

JGraph User Wanual

requirements to ensure attribute installation afw‘ay& occurs. cﬁ:}/ou ﬁnc[that ezljeef are Eeinj drawn
in the wrong place or with the Jabel of another edge, you fave Jaroﬁal;{}/ missed out a call to
setView or the eguz’vafent method z'n]our own class.

Unique to the EdgeRenderer duss are the CreateShape axd createlLineEnd
methods. Jkere are three Shape ol{]’ect& in the EdgeView that are created as necessary n
createShape, these are beginShape, endShape end 1ineShape. 1ineShape #s the
sequemnce of Shapes between Jeguentiaf(]aaira ofJaointJ in the ec{ye, each one drawn clé]oent[inj on
the fine style, the dask pattern applied and so on. DeginShape and endShape are the
decoration, uJuaf'f}/ arrowheads, that may be Jafacec[are either end of lineShape and their
creation is dealt with in CreatelLineEnd. Jf‘!}/ou are foofz’nj to create new Jfine Jtyfes or end
decorations, these are the methods you need to ac[cgat.

Fn the meckanism of z'nstaffz’nj cell view attributes in a renderer prior to painting, there is an
issue when t/fi&functz’onafiz:‘}/ can be caffec[ﬁom within more than one thread. cﬁ[‘e}/ou do need to
Jaerf'orm jﬂgjs/f structure operations in one thread and painting in another t/freat[you should split
the event ﬁrinj/catc/:dz'nj meckanism that finks these areas so that aff attribute installation and
painting cccurs within one thread onef}/‘

3.5 Using Cells
3.5.1 USING VERTICES

5@1 this section we will Jook at the various built-in ﬁaturea available ﬁr ﬂeyfayinj vertices. :;%9
mentioned, the t[efauft vertex renderer infferitsﬁom JLabel. JLabel can t[z'{]aft{}/ text anc[/or

an icon.

3.5.1.1 Bounds

One of the basic concepts of all cells isits bounds. Tke bounds of a cell is the minimum rectangle
that comffete{}/ encloses that cell. g]oﬁ uses double co-ordinates tfrouj/fout and so the z:“}/Jye of
any cell's bounds is Rectangle2D.Double. Jke bounds of alf cells are available through the
GraphConstants .BOUNDS Eej in their storage attribute map. Since the position and the
dimension of vertices are ertz’cufarfy useful data, VertexView stores a cacked value of the
bounds in the member variakle named bounds. JThis may be accessed t/frouj/f' the
getBounds () method on that class.

ﬁwaa mentionlereVz’ouJ[}l that the Update () method in celf views is ajom[fface to put
code that performs updating functions that need processing, not onfy during graph cell changes,
but afso c[urz'nj fz've-frevz'ew cﬁanjea. ﬁig VertexView. Update () that ujytfatea the cacked
bounds value in VertexView, it afso ensures that the value for bounds is non-null:

Fige 55

JGraph User Wanual

bounds = GraphConstants.getBounds (allAttributes);

if (bounds == null) {
bounds = allAttributes.createRect (defaultBounds) ;
GraphConstants.setBounds (allAttributes, bounds) ;

%yujeneraffy won't need to Jaerform any setBounds caffaﬁr interactive manz(']aufation oftﬁde
jrlga/;, ﬁngaﬁ takes care (v][‘t/fiJﬁr you. ﬁy‘you wish to frojrammaticaff}/]ao&itz'on or resize nodes,

create a nested map of ceff/trana:]aort map Jaaz’nf, as described in t/rzgater 2, anJJanJ the new
bounds values into the €A1t () call.

Whenever oﬁtaz’ninj the bounds ofa cell, you should do so ﬁom the cell view. gf]ou fave the
cell view ohject, getBounds ()Jarovz't[eJ a convenient method to do so. jfyou do not, there is a
utifity method in the JGraph class called getCellBounds (Object cell) whick will
return you the bounds value of the cell view for the cell passed in as the parameter. Fnother useful
utifity in the JGraph cfass is getCellBounds (Object [] cells). Jkis takes an array
of cells and returns the total bounds of the according cell views, ie. the minimum bounding
rectanjfe ofaffoft/fe cells.

3.5.1.2 Constraining Vertex Bounds

There are occasions when you want to ﬁrce the dimensions ofa vertex to he equaf /tqorz'.zontafef}/
and’ verticaffy. @b'vioua emamffe& are when the Jﬁdzgae ofa vertex must he a square, not J’u&t a
rectanjfe, or a circle instead ofajeneraf effz(']ase‘

GraphConstants.setConstrained (map, true);

wiffcauseﬁgpﬁto enforce this condition where the map is a transport map tgaffz'et[to the cell
c[urz'nj an edit call or the storage map oft/fe ceffﬁef‘ore the cel is inserted.

3.5.1.3 Resizing and Autosizing

When you insert a cell you may want to emsure that the Jabel in the celf { whatever the
userObject of the celf returns in its LOSLLING call) is entirely visible. Getting the font
metrics, calculating the width for the given font and String vafue would he tedious and so
calling:

‘GraphConstants .setResize (map, true);

will cause the cell to be resized upon insertion so that the Jabe/ i&fuf'f}/ visible. Tkis is a one- oﬂ‘
effect, kowever. ﬁgpi will remove the GraphConstants.RESIZE key from the storage
map oft/tde celf once the action z'JJoerf‘ormezlj g‘f}/ou wish one more resize to occur, set the attribute
te true again and caff €dit (). Note that aftering the cell's storage attribute map in-place and
caffz'nj rt.ff‘rea"ﬁd and repaint will not work, resizing clé]oent[& on ajrcga/:d model or jrq]a/; fc{}/out cache
change event being fired, whick reguires an edit ca/f

@fcour&e, Jettz’nj the cell to resize on every edit is not Jaracticaf ?'f:}/ou want the cell to afway& be

Page 60
g

JGraph User Wanual

set to Z'tJJ'JrL?f;?rrEC[st.ze. jnsteatl: you should use the AUTOSIZE fey:

‘GraphConstants.setAutoSize(map, true) ;

This will set the celf to its preferred size after model and Jayout cacke changes. One difference
L 54 ‘g
you will notice with cells that Fkave autesize enabled is that tﬁey do not kave a Fandle when
selected. c;%ﬁer afl, it iJﬁir&JaointfeJJ to allow the user to resize a celf ?'ft/tde g]a]afication will JZ'mJ'J.'[}/
revert the c/fanje immetfiate{}/.

—a—un
iz

| |
: somewhat :
1'1 too large 1'J
: to fit :
: intao this :

B et

Hllustration 26 : The right-hand vertex is autosized, note

both vertices are selected but the autosized one has no
handles

[N
L]
=
1]
H
ct
m
-
-
L]
a
=
ct
o
[i]
-
5]
m
[

The unc[fer[}/inj mechanism to determine the size ofa celf upon a resize or autosize event is
actuaf{y getPre ferredSize () én the cell renderer. m@/([bfdujt a vertex will return a rectanjfe
szc'j/;tf!}/ fmyer than the minimum ﬁountfinj rectanjfe oftﬁe icon and text oft/;e JLabel, ?fez't/t?zr

exist.

3.5.1.4 Icon

JLabels are cayaaﬁfe ofcﬁ'{ja/ayz’nj text and an 1 CON, the icon is set using:

‘GraphConstants .setlIcon (Map, Icon)

The specified icon will be displayed within the cell, if AUTOSIZE is enabled this will ensure
that the bounds of the celf are at Jeast farje enoujﬁd to accommodate the icon. Without autosize
enabled the bounds of the cell might clip the icon or be somewhat Jarger than the icon reguires.
%u mz;yﬁdt wish to ac[zgat the Jaaz’nt method oft/re renderer ?f'}/ou want to scale the icon, this could
be performed within a subclass of VErtexRenderer as follows:

public static class ScaledVertexRenderer extends VertexRenderer ({
public void paint (Graphics g) {
Icon icon = getlIcon();
setIcon (null);
Dimension d = getSize();
Image img = null;
if (icon instanceof Imagelcon)
img = ((ImageIcon) icon) .getImage () ;
if (img !'= null)
g.drawImage (img, 0, 0, d.width - 1, d.height - 1,
graph) ;
super.paint (g) ;

Page 1
g

ﬁtg&/f Chser azjmuaf

)

The methods available in JLabel are repeated in GraphConstants enabling you to align
the contents oftﬁe JabeS afonj the g—a.m'&:

‘GraphConstants .setVerticalAlignment (Map, int);

where the int parameter may be omne of the ﬁffowinj constants tfeﬁnetf in

SwingConstants: TOP, CENTER (the default). or BOTTOM. so for alignment of the fabel's
contents with the Xaxis

‘GraphConstants .setHorizontalAlignment (Map, int);

where the int parameter may be omne of the ﬁffowinj constants tfeﬁnetf in
SwingConstants: LEFT, CENTER (¢he defawlt for image-only Jabels), RIGHT, LEADING
(tﬁe tfefau/tﬁr text—on[y fa5e/3) or TRATLING.

TOP LEFT BOTTOM,
RIGHT

Hlustration 27 : An Icon aligned using various horizontal and/or
vertical alignment settings

3.5.1.5 Label Text

The text component of the JLabel may also be a/zjnec[relative to the icon. %rtica/refatz’ve
afzjnment z'esferf'ormet[using:

‘GraphConstants.setVerticalTextPosition (Map, int);

where the int Jparameter may be omne of the ﬁffowinj constants (ﬁeﬁner[in
SwingConstants: TOP, CENTER (thde tfefauft), or BOTTOM. %rixmnta[refative afz:jnment

is achieved using:
GraphConstants.setHorizontalTextPosition (Map, int);

where the int parameter maybe one of the following constants defined in SwingConstants:
LEFT, CENTER, RIGHT, LEADING, o TRAILING (t/e zlbfauft).

GraphConstants alse provides the SetFoONt () method to enable you to configure the
Jont of the text displayed and GraphConstants.setForeground() te set the color of
the text. T‘F‘u/fclbtaz'fs ofﬁow‘ to uaeﬁntw are ﬁeyonJ the scope (?f‘t/:ié‘ manual, see an}/jooz[reﬁrence
on lwayra(p/ﬁ'csﬁr more informatz’on.

Page s2
g

ﬁtg&/f Chser JZZnuaf

3.5.1.6 Borders

ﬁorrﬁarﬁ are a céSw‘z'njj‘uncz?z'on that enables you to Joaz’nt ae&tﬁeticaf@ffeawinj borders around the
ez{ye& ofyour :3w‘z'nj components. dince the standard vertex is rendered as a JLabe l,you can set a
border to your vertices using standard borders with:

‘GraphConstants .setBorder (Map, Border)

j‘ZZre z'nformatz'on on the ?}/Jaew of Borders avaifable can be ﬁuntf at the Border %‘
facfaje summary:

Fttp://]’ava.aun. co m/]':we/l. 5. o/do ca/apz'/;’avax/aw‘inq/ﬁorJer/pacfaqe— summary. htm/.

t;%f&o at Fttﬂ://imm.sun.com/izse/l. 5. o/t[oc&/ﬂpi/iavax/swinq/ﬁortﬂsr?actorv. htmS you wiffﬁm[
u&?f‘ufﬁctory methods an'm(]afz"fj/inj the process ofcreatz'nj those borders. For examffe:

‘GraphConstants .setBorder (map, BorderFactory.createRaisedBevelBorder()):;

creates a raised border oft/:de type ofe]?éctyou would see zfyficaffy on a button.

GraphConstants.setBorder (map,
BorderFactory.createlLineBorder (graph.getBackground (), 6));

will create a blank border around the vertex using the Eack:yrount[color of the graph to paint
out. Jkis is uesef‘uf iJ'}lou wishk to Fave ec{ye& terminate a short distances ﬁom vertices rather than
t[i’rect[}/ on the perimeter. Tke cofor may be also changed using
GraphConstants.setBorderColor ().

Hllustration 28 : On the left a line Border of the
color of the graph background. On the right a
raised bevel Border

3.5.1.7 Colors

‘GraphConstants .setBackground (map, Color)

set the Jqffcofor ofvertz'ce& to a constant color, whereas:

‘GraphConstants .setGradientColor (map, Color)

sets ajrmﬁ'ent ﬁ[[ﬂCTOJJ vertex, Jtartz’nj white ant[JarocyreJJivefy farfeninj across the vertex to

Page ¢
ge 63

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html

JGraph User Wanual

the =yaecz’f‘iec[cofor.

(102,255,102) | | (255,102,204) (0,204,204)

Hllustration 29 : On the left two vertices filled using setColor, and on the right filled using
setGradient. The (Red, Green, Blue) values of the colors used are indicated

3.5.1.8 Inset

GraphConstants.setInset () Jarovicﬂw a means to Joface a /fuﬁérec[area around a
Jabel, so getPreferredSize () returns « Dimension fmje enouj/?ﬁr the faﬁe/ffu& the
inset. Jhis Dimension s uJez[b}/ the one- shot resize and auto&izinjfunctz’ona[izz}/.

3.5.2 USING EDGES

3.5.2.1 Bounds

ﬁounzﬁf work szj/ft& cﬁﬁérent[y in ec{ye&. Tke values of BOUNDS ﬁr an ec[:ye is still the
minimum rectanjfe that enclosed the ezl:je, but its use is rather more fimited than ﬁr a vertex. Jke

bounds of an e(lje gives no indication where it starts or ﬁni&ﬁe&, or what Jmt/f it takes between
those two Jaoint&. The use ofe(l:je bounds skhould be fimited to tﬁaterminz’nj the cfzc'fa bounds ?'f:}/ou
need to manua[fyﬁrce arg]aaz'nt.

3.5.2.2 Control Points and Routing

%mentz’onezf JareVz'ouJ{y, the DefaultEdge folds a collection of ordered Jooz’nt& whick
describe the Jaat/f the ed: eﬁffowa. A its Jimffe&t the et[ge will be drawn as a sequence of&traz'yﬁt
fines between tFeJefointJ. %u can set tﬁe&e]mz'ntw uJinj an ordered L1St:

GraphConstants.setPoints (Map, List)

%Wever, ﬁgpﬁ also supports ortﬁdogyonaf, bezier and ,.yofine JI:L}/[E‘ (l;‘aWZ'an and the fine J?}/fe
Jproperty ofan e({ye is set using:

GraphConstants.setlLineStyle (map, int)

on the attribute map of the edge passing in GraphConstants.STYLE ORTHOGONAL,
GraphConstants.STYLE BEZIER o GraphConstants.STYLE SPLINE as
appropriate. &memlfer that these J@/feef require contro/sz’ntJ, otherwise tFey Wz'ffen'mffy appear
as Jtraéyﬁt fines.

(Controffoz’nw may either be added manuaffy or using a routing method. %5##@ mentioned

ﬂjaje sS4

ﬁtg&/f Chser azjmuaf

earfier in this c/ﬁgoter the ROU.tiI’lg interf‘ace tlbﬁne([inside the Edge class. %routz’nj a{yorz’t/fm
i&jeneraffy a static class instance shared b:}/ all the ec{ye& being routed in that manner. %u set
routz’nj ﬁr an ed:je uJinj:

‘GraphConstants .setRouting (map, GraphConstants.ROUTING SIMPLE) ;

to use DefaultEdge . DefaultRouting, the hasic routz’nj ajorz't/:dm JufJafiec[with
ﬁafﬁ. DefaultRouting sets appropriate contro/(}aoint&ﬁr the various fine J@fes, saving you
ﬁdavinj to c[eﬁne the Jaoz’ntJ your&e[]‘? DefaultRouting also sets the routinj ﬁr Jeff‘—foo(]ao“, S0
that tﬁe] vz'&uaffy Jeave the vertex and return to it.

| t’
\ \ R
——— i~ B
arthogonal
Beizer spline

&

Hlustration 30 : Three edges with the indicated line styles routed using the
DefaultRouting algorithm

Tke ROU.tiI’lg z'nterf‘ace z'teseff\dbﬁnees one method, route (), whick takes the Edge to be
routed and the fist of points to be altered as parameters. Two implementations of paralle/ edge
routers are available in the ﬁngp/{]yacf tommunz’te}/ fdi’tz'on, ?'f:}/ou reguire a tﬁﬁérent custom
implementation it is worth checking with the ﬁr@h‘team to see if someone has already done it.

jfyw wish to restrict the interactive (uesinj a mouse)at[cﬁtz’on or removal ofcontroffoint& to
and from an edge, sSetBendable (Map, false) will forbid these actions for the specified
edje even f'f‘an zgafficatz'on supports Jucﬁ‘functionafity.

3.5.2.3 Positioning edge labels

The configuring of Jabel positioning is somewhat more flexible than that for vertices and any
number of‘ Jabels are supported. Tke main Jabel cﬁ'{]ofay&, fike fér vertices, whatever the
toString () smethod of the user object attacked to the edge returns. detting of the label
position isperformed using:

‘GraphConstants .setLabelPosition (Map, Point2D);

Tke Jaoz’nt parameter r[bﬁnea the relative distance across the edje that the Jabel fies in the ;(
coordinate and the distance ort/ﬂyonaf to the et[je that the Jabel fles in the gcoortﬁnate. y/fe
relative distance across the ez{ye is measured ﬁom o, at the start of the edje, to

ﬂjaje sy

JGraph User Wanual

GraphConstants .PERMILLE, af the end oftﬁe ezlje. 30,]911&61’7@ n:

Point2D point = new Point2D.Double (GraphConstants.PERMILLE/2, O0);

will result in the fab'efb'einj centered mid- way between the start and enc[(]aoz’nt&.

g—a—u
¢ Hello ¢
g——a

(GraphConstanmts.PERMILLES2,0)

¥

WBrId|

Hlustration 31 :
(GraphConstants. PERMILLE/2, 0)

Point2D point = new Point2D.Double (GraphConstants.PERMILLE/2, 100);

will result in the Jabel ﬁeinj Jw&z’tionef mid- way between the X-axis positions on the start and
enJJooz'nt and 100 Joz’.xef& below the mz'z[»foz'nt oftﬁe start and enc[(]ooz'nt&’y»aﬂcz’&fo&ition&. Wgte,
when we write helow we are tafk;'nj about beneath tﬁe]afane the et{ye makes when the Jtart]aoz'nt
is the feﬁ oftﬁe enc[]aoz'nt.

= u []
Hello I }-IWgrlde

(GraphConstants.PERMILLE/2,100)

Hlustration 32 : (GraphConstants. PERMILLE/2,
100)

ggu can ll/d‘ojo [e'}/onzf the bounds oft/fe o to GraphConstants .PERMILLE range.

(GraphConstants.PERMILLE*2,-50)

Hello > World

Hlustration 33 : (GraphConstants. PERMILLE*2, -50)

ﬂjaje 66

ﬁtg&/f Chser azjmuaf

The extra Jabels on ed:jea are stored as Obj ects, whatever tﬁdey return in their toString ()
method is what is z[z'oyafz{}/et[Jt is unfz'k.e{}/ you will use anytﬁ?nj other than STTY1NgS as these
object&. The Jmm’tz’onz’nj {}/Jtem is the same mfﬂr the main Jabel The method Yyou use to set and

position these extra Jabels are:

GraphConstants.setExtralabels (Map, Object[])
GraphConstants.setExtralabelPositions (Map, Point2D)

Do um’nj this code:

Object[] labels = {new String("0...*"),new String("1") };

Point2D[] labelPositions = {new Point2D.Double
(GraphConstants.PERMILLE*7/8, -20), new Point2D.Double
(GraphConstants.PERMILLE/8, -20)};

GraphConstants.setExtralabelPositions (edge.getAttributes(),
labelPositions) ;

GraphConstants.setExtralabels (edge.getAttributes (), labels);

we can Jaface a Jabel at either end oftfe ezlje anz[&fzjh%{y oﬂ,‘setﬁom the Jafane oftﬁe ec@re so that
the Jabels are not overftga(]aec[b}/ the edge. ;@m'n, note the y—oﬂ:fet is refative to the Jafane oft/?e e({ge,
so rotating the et{ye You still kave the Jabels appearing in the correct relative Jpositions.

Hello

Hello

Hllustration 34 : Extra labels on an edge keeping their relative positioning after rotation, no
comments about the odd state of my galaxy please

Hnother eﬁbct that is uaef‘uf with rejart[J to Jabel ([rawinj is the aﬁz’fz'ty to ﬁrce the Jabel to be
Joara/fefwit/; the ed:je:

‘setLabelAlongEdge(map, true);

ﬂjaje 87

ﬁtg&/f Chser azjmuaf

_J |

Standayd labeal

L

Hllustration 35 : Labels being drawn parallel to their edges
Jke other consideration ﬁr e{ye Jabels is the color oft/fe text is set using:

‘GraphConstants .setForeground (Map, Color)

3.5.2.4 Edge Styles

There exist a number ofconﬁ:jruration oftiomf to cﬁanje the appearance oft/;e matin fine]aart of
an ec{ge (w‘e will discuss end decorations nenct). The two JimJafe options are:

GraphConstants.setLineWidth (map, 5); //sets the edge line width to 5
GraphConstants.setLineColor (map, Color.blue); // sets the edge line
color to blue

Tke other two et{ye Jt!}/fe conﬁ:juration methods (ot/fer than the fine J/ﬁgae Jarevz'ouo"f]

mentioned)are.‘

setDashPattern (Map, float[])
setDashOffset (Map, float)

7/;&99 two values correJJmnz[to the Jast two Joarameter& JoaJJec[inte the ogaaiccé‘jtrok-e

constructor:

‘Basicstroke(float, int, int, float, float[], float)

but the GZWadBCJﬁr these parameters is Jess than /fe{pfu[

Tke dask pattern is a sequence of sofid and clear Jengths of edge that repeats throughout the
ed:je. e, creating an array equa[to [10, 10/? would mean to ec{ye is drawn as Jofitfﬁr 10 units, then
clear for 10 units and this repeats along the edge. {10, 2, 2, 2/ would mean sofid for 10 units, clear
ﬁr 2, Jofz't[fbr 2 units and clear ﬁr another 2, and repeat. @b-viouw{y, 117 on{}/ rea/{y makes sense to
fave an even number gf’entriea to this array. y/fz’&(]aattern zs g]a(]afz’ec[con&z’&tent{}/, rejart[feJJ oft/;e

ﬂjaje é8

ﬁtga/r Chser ﬂnuaf

Jﬁg]ae or number ofJaoz’ntJ in the etlje. %Jtatic variable GraphConstants .dash representing
a t[ao"/fjmttern of‘ [5,5] is t[eﬁnet[in case you wisk to save memory b:}/ using this Jinjfe instance,
instead ofcreatinj an instance ﬁr every cell attribute map.

Hllustration 36 : Dash patterned edges with their pattern displayed

The dask oﬁ%et, afso known as the dask phase, determines how ﬁr into the dask pattern the
t[rawinj should be started. »@dbfauft the dash oﬁfet 7s 0, Jettz'nj 7t to 5ﬁr the [10,10] Jadﬁfattern
would result in the start of the edge drawing & units OJ[‘JOIZ'L{ fine, then 10 wunits of clear fine, then
back te the 10 sofid /10 clear repeating pattern. csetftiz'nj the value to 12 would resuft in the fine
starting with 8 units ofcfear fine and then back to the 10 sofid /10 clear repeating pattern.

Hlustration 37 : A {10,10} dash pattern using the indicated offset values

The most common zgojafz'cation ﬂr the dask oﬁ%et z'Jfbr animating et{ye&. ﬁ@ﬁfugao&gf&ffy
never assumes any muftz'~t/;rear[i'nj, so it can't cli'rectfy oﬁér such animation. ?Zfowever, a timer
thread triggering amethod in the event t[z'{]oatc/f thread to alter the dusk oﬁ%et and uffate the et{ge
is m’mJafe to imJafement. Tor eack update you would need to get a collection oftﬁe edje&’ cell views
to be uJat[atet[, c/fanje the dask oﬁ%et value z'n—Jaface, then caf/reﬁ*e&/f on the et{ge ant[ﬁnaf'f}/ reJoaz’nt
the entire affected area. This would require a static variable holding the current value of the dask
Oﬂ:fet, whick would be decremented zﬁer eack timer tick. Jke dusk o_ﬁ%et caffit&ef]cwouft[need to
use the modulus of the current dash offset value so it repeats between the fimits of the dash pattern

range. :‘For e.xamJofe, say the Ja&/f(}oattern Zs (/10,10/7, the comffete range oftﬁe modulus result used
Jor the dask offset needs to be o to 19:

‘GraphConstants.setDashOffset(map, 20 - Math.abs (dashOffset % 20));

o

should be used in this case. Note that the dask offset needs to be decremented in order to get
animation ﬁom the start of the edge to the end, and vice versa. Jo speed up the animation,
decrease the timer interval or decrement the dash offset value by more than one on eack tick.

3.5.2.5 Edge end decorations

;%tez'tﬁder end oftﬁe et{ge you can conﬁc'yure end decorations to he drawn, this uJuaf{y consists of
arrowheads. ﬁzgaﬁi]aroVi(/bJ a number of common{y used end decorations that may be enabled

ugn'nj.'

GraphConstants.setlLineBegin (Map, int)
GraphConstants.setLineEnd (Map, int)

Page <3

ﬁtg&/f Chser szmuaf

where the int parameter is one of the options available in GraphConstants. Jo remove a
decoration wuse the method above ﬁr the appropriate end of the etlje and pass in
GraphConstants.ARROW NONE. %u may also remove the attribute entirely from the
attribute map using GraphConstants.setRemoveAttribute (), as discussed in
t/fzgoter 2.

facﬁdof‘t/reo“e end Jlf}/fe may be ﬁffez[or not using:

GraphConstants.setBeginFill (Map, boolean)
GraphConstants.setEndFill (Map, boolean)

< FraphConstants ARROW_TECHMICAL ~
GraphConstants ARROW_CLASSIC
< =
. GraphConstants ARROW _SIMPLE
-
GraphConstants ARROW_DIAMOND !
b <
l GraphConstants ARROW_CIRCLE [
GraphConstants ARROW _LINE ,]
. GraphConstants ARROW _DOUBLELINE .]

Hllustration 38 : The available line end decorations, with fill set to true
on the left-hand side

jf}/ou wish to c/fanje the size oftﬁde end decorations, this is done um’nj:

GraphConstants.setBeginSize (Map, int)
GraphConstants.setEndSize (Map, int)

3.5.2.6 Connections restraining

jiz'& JaoJJiEfe, on a]aer—e{jre basis, to set whether or not the et[jeJ may be connected or
disconnected z'nteractz'vef] u&‘inj the mouse. Jhe methods are Jeff‘-eacffanatory:

setConnectable (Map, boolean)
setDisconnectable (Map, boolean)

ﬂjaje Jo

ﬁtg&/f Chser azjmuaf
3.5.3 ATTRIBUTES FOR BOTH VERTICES AND EDGES
3.5.3.1 Constraining Basic Editing Functions

Tke next three attributes require fittle ex(]afanation.
GraphConstants.setSizeable () controfs whether or not cells may be resized using the
mouse. 55“ set to ﬁf&e, the wuser is mnot JoreJente([with any handles to resize with.
GraphConstants.setMoveable determines whether or mnot the cell may be moved
(rg]oo&z'tz'oned: not resized) interactively. GraphConstants.setEditable (false)
disables in-place editing for Jabels. %m could set this value to Talse z'f:}/ou want double- cfic@nj
on a cell to Joerf‘orm a tﬁfférent function to Jabe/ etﬁ'tinj. ?th;wever, you mz:j/zdt also fike to c/fanje
the number of mouse clicks required to start editing using

JGraph.setEditClickCount ().
Whether or not cells can be moved on a per-axis basis can be conﬁyuret[using

‘GraphConstants .setMoveableAxis (Map, int)

where the int parameter is either GraphConstants.X AXIS or
GraphConstants.Y AXIS. Ofvicusly, to forbid moving entirely use setMoveable.
3ettz'nj the moveable axis to being X_AXIS causes the vertex to on{}/ be movable /forz'zontaffy and
Y_AXIS causes the vertex to on‘f}/ be movable vertz'caf[y.

3.5.3.2 Opaqueness

GraphConstants.setOpaque (Map, boolean)

will pass the DOOlean vafue up to the JCOmponent.setOpaque () methed of the
renderer of the cell. s the lavac[oc& Jor that methed say “If true the component paints every pixel
within its bounds. Otherwise, the component may not paint some or all of its pixels, allowing the
underlying pixels to show through. . Fn the case of vertices constant background fill and gradient fiff
colors are not painted if OPAQUE is set to false. Jext, icon images and borders are still painted
regardless of the setting of this attribute. In the case of edges, the default implementation of an
edge is not affected by this attribute, but you skould take it into account it you were to produce

your owmn, more comffex, imffementatz'on ofan ec{ye.

Page 71
1ge 7

ﬁtg&/f Chser azjmuaf

Background Gradient fill
- - Ic d red text and
fill and white b t and black text thick bori
text -
Gradient fill
le d red text and
bl xt and black text| Repiox porder

Backgro
fill and w
tar+

Hllustration 39 : The cells on the first and third sets of cell (from the top) are opaque, the second
and bottom sets of cells have opaque set to false

Tke ﬁjure above shows a set ofceffs, ﬁmt with opaque set to true and then te false. ftaﬁm
skows both sets ofceffJ overfagafinj eackh other to various degrees. The opaque versions comJerte{}/
obscure those tﬁey are z'nﬁont on, whereas, in the case oft/fe non-opague cells overfzga(]ainj, Just the
borders, icon and Jabels obscure ceffwfaintecf beneath them.

3.5.3.3 Selection

GraphConstants.setSelectable (map, boolean)

determines whetker or not the ceffmay be selected. ggettz'nj this value te £alse basically causes
the cell to stop reacting to any interactive function. The ceffmay not be resized, moved (unfeJJ it is
a connected edge that moves afonj with a connected vertex that is being mover[) or have z'n—Joface

aqge 72
Page 7

JGraph User Mancal
ecﬁ'tz’nj Jaerﬁvrmerﬁ

3.5.4 USING PORTS

3.5.4.1 Port Positioning

When a port is attacked as a child of a vertex, by default it is what is know as a floating port.
This means it kas no ﬁacez[(]m&z’tion, any etlje connecting the vertex will be seen to terminate at the
Founzfar}/ of the vertex. Note that the edge zlm't{just hidden by the vertex, floating ports terminate
ec[jeef emact'f}/ on the [ounc[ary, otherwise known as the Jaerimeter Jmint, OfCEffJ‘ and so arrowheads
are visible and correct{}/ffacezﬁ This cléfauft z'mffementatz'on works ﬂr the maJ'orz't!}/ of{gaffz'ctltions
since it resofves the issues associated with edje& travefinj across vertices to aﬁxeffoint on the
vertex Eounfary. W;te, this refies on the jetPerimeterPoint () method on the renderer of
the vertex being z'm(]ofementer[correctfy.

Hllustration 40 : Two vertices connected by an edge using their floating ports. Note the edge
terminates correctly on either vertex regardless of the edge direction

;zfeconJ type offo&itz'oninj ﬁrjaortw involves Oﬂ:ﬁ‘eté‘. j;tvok?nj.'

‘GraphConstants .setOffset (Map, Point2D)

on a_port cell fixes the port position relative to the cell. Ftvatue of (o,0) corresponds to the top
Jeft corner of the cell and (GraphConstants .PERMILLE,
GraphConstants.PERMILLE/ corresponds to the bottom right-kand corner of the cell.
Since the value are a proportion of‘tFe cells dimensions, the ports are afw‘ay&fface([in the same
relative positions reqardless of the size of the vertex.

Fige 7o

JGraph User Wanual

| World

Y Hell Hello
T ello

Hllustration 41 : The HelloWorld example with offset ports added at (0,

GraphConstants. PERMILLE/2) , (GraphConstants. PERMILLE/2, 0) ,

(GraphConstants. PERMILLE/2, GraphConstants. PERMILLE) , (GraphConstants. PERMILLE,
GraphConstants. PERMILLE/2). Connecting edges between offset ports means it is possible that the
edge or vertex might overlap each other. This doesn't happen with floating ports.

(0, GraphConstants.PERMILLE / 0.125)

(0, GraphConstants.PERMILLE ! 0.25) (GraphConstants.PERMILLE, GraphConstants.PERMILLE ! 0.25)

(0, GraphConstants.PERMILLE / 0.375)

(0, GraphConstants.PERMILLE / 0.5) (GraphConstamts.PERMILLE, GraphConstants.PERMILLE / 0.5)

(0, GraphConstants.PERMILLE / 0.625)

(0, GraphConstants.PERMILLE / 0.75) (GraphConstants.PERMILLE, GraphConstants.PERMILLE ! 0.75)

(0, GraphConstants.PERMILLE / 0.875)

Hllustration 42 : A vertex containing a number of visible ports with their offset values shown (the entire rectangle is the
vertex, the labels belong to the ports in this example)

gjaje T4

ﬁtg&/f Chser azjmuaf

Hthird method of&ettz’nj the port position is to do so in absolute coordinates relative to the
orzc'yz'n of‘t/re vertex. q”ﬂz’t/f absolute ports tﬁeirfo&ition& relative to the dimensions oftﬁde vertex will

not remain the same tFroqu rerﬁzinj, but their Joon’tz’on refative to the vertex orz:jz'n will. Whick
axis are absolute is conﬁjura[fe indbfenfentfy.‘

GraphConstants.setAbsoluteX (Map, boolean)
GraphConstants.setAbsoluteY (Map, boolean)

or both t(vjet/fer:

‘GraphConstants .setAbsolute (Map, boolean)

;izﬁer setting this flag, you position the ports using the GraphConstants.setOffset ()
method again, this time the POil’ltZDJaarameter isthe absolute oﬁketﬁom the vertex origin.

Hello Hello \\‘\;

World
World

Hllustration 43 : Absolute offset ports often do not appear correctly when the parent vertex is scaled

The fburt/f method is um’nj port anchors, whick invelves (ﬁ?ﬁninj another port that t/fi&(]aort
will be oﬁ:fet refative to. Jhis anchor is the anchor reférret[to in the Port interf‘ace in
getAnchor and SetAnchor. 3ettz'nj another port as anchor makes tﬁdatjoort the orzc'yin ﬁr
t/fz'JJoort, instead of the vertex origin. %m can Jtz'fft[eﬁne the oﬁ%et as a proportion of the vertex
dimensions um’nj J’th setOffset, or Yyou can tlbﬁne the o]?‘:fet as an absolute value udnj
setAbsolute (map, true) and setOffset (). Jke anchioring mechanism is useful if
you wish to tfeﬁne a chain offort& that have ﬁxec[fo&itz’on& refative to eack other. Note: Port
anchors are disabled in JGraph 5.6.2.1.x pending a bug resolution.

3.6 Summary

. %ranje ofconﬁ:juration oftz'ons ﬁr visual attributes oft/fe tﬁafauft cells is available tfroujﬁ the

Fige 75

ﬁtg&/f Chser azjmuaf

accessor methods of GraphConstants.

o TJo add a new cell type, define the new cell class, its view class and its renderer cluss. HAutomate

Lyr

the creation of the view um’nj the cell view ﬂctor}/ and ensure the view returns the renderer in
the appropriate metfotfﬂf}.

. cﬁ:}/ou wish to add new functiona[izz}/ to a ceffyou mzly/ft do so b:}/ 1) Juicfaa&inj attribute map
and adding new attribute type to support the new functionality, 2/ b roviding the

7 4 S -y Yy L ‘9

functz’ona[iz:‘}/ tﬁroujﬁd methods and variables on the cell class, or }) b:}/ storing the data in the
user ob:]'ect oft/;e cell.

o Oune important note about cells is that you can onl: ass cells into €dlt, insert end

P 54 'y P

Yemove calls, never celf views.

ﬂjaje Té

JGraph User Wanual
4 Advanced Editing

4.1 Grouping

Zz‘roufinj, within ﬁg]oﬁj is the concept offocyicaffy aemocz'atz'nj cells with one ancother. Jhis is
common{}/ reﬁrrecf to as the concept of&u[—jrtga/ﬁf in many graph toolkits. Z_Z‘roufinj involves one
or more vertices or e{ye& (JaortJ arejeneraffy not discussed witﬁjrou(]oinj functz’on&, even t/foujﬁ
they are children of other cells)hecoming children of a parent vertex or edge {usually a vertex Jin
the jrtgaﬁ model data structure. y’/fm causes the Jaarent ceff, also fnown as the group ceff, to tafe the
bounds of the minimum bounding rectangle that encloses all of the children cells. Once grouped,
the group ceffmay be moved and resized fike a stand-alone cell, but the operation affects af of the
children cells as well.

o] o o
o]]]
o ot] ot ot o

o] o
Hllustration 44 : Moving a group and resizing it

mzoovinj a group cell causes an eyuaf translation on the children ceff(f), Jcafz'nj a group cell causes
the children cells to be Jcafec[b}/ the same proportions.

Page 77

ﬁtg&/f Chser azjmuaf

4.1.1 GRAPH MODEL REPRESENTATION OF GROUPING

%mentz’onet/: cells that fle within a group are child cells oft/;e group cell. This refatz'on&/ﬁ(’]o can

be nested any number o times, so a group can contain another grou , and so on.
54 group group

& Y ¢]
‘Eial IGIH=5 QHHE’ ‘Hél;\\jélla' ‘]%H%’ n'II.'

Hllustration 45 : How the Graph Model will look after 3 vertices and 3 edges are
grouped (additional ports not shown for clarity)

Tke simplest method to group ce/f&fnvjrammaticafrf}/ is to set up the Joarent/cﬁ?ft[relationship
prior to all the group ceffﬂf)/;einj inserted. Wgte on{}/ the topmost group celf needs to be e379(9::1']9'9:[
in the INSert call if the child relationships are correctly formed prior to the insert. Jkis
could be done using the add () method available in DefaultGraphCell:

vertexl.add (vertex?2) ;

in the same way we ac[c[bc[]mrtw to vertices in the HelloWorld eacamf/e. %u may also use the
constructor of De faultGraphCell that accg]ot& an array ofc/;ift[ren.'

Object[] children = {vertex2, vertex3, vertex4, edgel, edge2, edge3};

DefaultGraphCell vertexl = new DefaultGraphCell (new String”Vertexl”,
null, children);

JGraph.getDescendants (Object[]) provides a method to obtain aff of the
descenduant cells (children) of those specified in the single parameter. Tong with the getROOLS
method, these two methods combine to make the primary commant[you should use to obtain alf
cells in the jraJalf:

‘graph .getDescendants (graph.getRoots()) ;

j&toﬁtaininj the roots w‘z'ffonfy work as fonj as there are no group structures.
Wgte that you must e;xJafz'cz'tef}/ create the group cell in the normal way you mzj/ft create any cell.
Z%rou ing together any number of cells will not automatically create a parent cell. Jkere is a helper
geirg teg Y Y S S
method in the GraphLayoutCache:

‘insertGroup(Object group, Object[] children)

that groups the cells in the array(]aarameter under the group cell a:m[]aerﬁvrm& the insert

ﬂjaje 78

ﬁtg&/f Chser azjmuaf

command.

These methods mentioned, FKowever, do not allow for the changing of the Joarent/c/fz'ft[
refationa/fz(’]a during edit and calls, nor are t/rey cg]aab'fe of adding the grouping operation to the
undo /ﬁ'&tor}/ as part ofan insert () ca For this, you must use a ParentMap.

4.1.2 PARENTMAP

Jke ParentMap class dbﬁne& the Jaarent/cﬂfc[refatz'onw/fz(']a& of‘ceffer. ﬁcan be used in the
appropriate €A1t () and insert () calls in GraphModel and GraphLayoutCache that
have a eﬁzrentﬂz;f as one oftﬁeir attributes. ParentMaps aere stored as part oj‘tﬁde jrq]a/; modeS
edit, or jﬂgjs/f ft{}/out cacke edit, so any c/fanjes to the erent/c/fz'fr[relationship Cs) are undoakle.
Tke idea with ParentMaps is to describe the Jaarent/c/fz'ft[relationship you would fike to alter
the graph model to represent and pass the parent map to the edit er insert method.

ParentMaps may be created in one oftﬁree ways. The ﬁr&t is to pass the children anffarent
to the ParentMap constructor:

ParentMap parentMap = new ParentMap(children, parent);

this causes the array of chifdren to have the gaecz’JQeszmrent in the parent map. Jo invoke this
c/fanje call:

graph.getGraphLayoutCache.edit (null, null, parentMap, null);

note that you can alse make c/fanjew to cell attributes using the ﬁr&t]nlrameter at the same time
as cFanjinj the group structure using the ParentMap. Within the €A1t call the cﬁanje made
to the group structure will be stored as well as the grouping structure prior to the edit call. This
enables undo/redo to be able to restore the current and previous states.

Tke second method of creating a parent map is to construct the class either using the c[bfauft
constructor, or the constructor just mentioned, and then to add further entries using the
addEntry () or addEntries () methods. addEntries afows you to assign multiple
children to a single parent and ll([l[fﬂt):}/ add a single child and associated single parent to the
parent map. These methods add one or more Entry ob:]'ecto“ to the ParentMap, each Entry
ohject representing one Jaarent/c/fift[relationship.

When we describe the ParentMap and kow it is composed of some number of ENLYY pairs,
remember that the Jparent ofan] EntrYfair may be NUL L. This is how you represent aJaarentfeJJ
cell, ie. a ceff}lou want to add to the model roots. g’enerafizinj the whole concept ofﬂfarent map,

there are three o(]aeratz'on& you can use it to describe. ﬁefow‘ we show those three o]aeratz'on&:

1. %yu current‘f}/ Fave a cell with no parent, you want to a&m‘fjn it a _parent. c%ﬂ[an entry to the
ParentMap with the cell as the chi/d and the new parent.

‘ParentMap pm = new ParentMap () ;

Fige 75

ﬁtg&/f Chser szmuaf

‘pm.addEntry(childCell, groupCell) ;

2. %u current[y kave a cell with afarent, you want it to kave no Joarent. %ﬁ[an entry to the
ParentMap with the cell as the chi/d and set tﬁe(]yarent to NUl1.

Object[] children = {childCell};
ParentMap pm = new ParentMap (childCell, null);

3. ou current{y fave a celf with a parent, you want to assign it a (ﬁﬁérent parent. %ftfﬂn entry to
ParentMap with the cel as the chi/d and the new parent.

ParentMap pm = new ParentMap()
pm.addEntry (childCell, newGroupCell) ;

Orthier examffew you mz:jr/t—'t ﬁn([uJ#‘ufare the oferatz'on to group selected cells:

DefaultGraphCell group = new DefaultGraphCell () ;
graph.getGraphLayoutCache () .edit (null, null, new ParentMap
(graph.getSelectionCells (), group), null);

and the oJaeratz'on to ungroup selected cells:

graph.getGraphLayoutCache () .edit (null, null, new ParentMap
(graph.getSelectionCells (), null), null);

4.1.3 GROUP INSETS

GraphConstants .setInset () can afso be used on group cells to Jyrovz'tlb aﬁouncfary
between the minimum [ount[inj rectanjfe oftﬁe child cells and the group ceffz't&eff:

.E] ol

Activ'rty)-[){ Acti\r'rty)

[,
o > Activity < >0 Activity > #
Acti\r'rty)—[}[Acti\r'rty)

" o o
Hlustration 46 : A group cell with an inset of 10

4.1.4 MOVE INTO/OUT OF GROUPS

In the JGraph class there exist two methods, SetMoveIntoGroups (boolean) and

ﬂjaje 8o

ﬁtg&/f Chser azjmuaf

setMoveOutOfGroups (boolean). Jkhese determine whether or not te make a cell part of
a group cell when you drag the cell into or comffete{}/ out of a group cell. o, with
setMovelIntoGroups set te true, moving cells so that the mouse position is inside the
bounds of an existing visible group cell will cause the cells to become direct child of that group.
With setMoveOutOfGroups set to true, dragging a child within a group cell completely
out oftﬁe group cell will cause the celf to hecome aroot cell, i.e. have no parent.

4.1.5 REMOVING CHILD CELLS

mnj the remove () call on cells that are part of a_ group structure Zs Jﬁjﬁtfy szﬁérent to the
pattern ﬁr other etﬁ'tz’nj calls. gfyou cafl remove on the vertices numbered 3 ant[lr in the ﬁjure

below:

Hllustration 47 : A group
structure before cells 3 and 4
are removed

those cells will be removet[ﬁom the group structure anc[feavz'nj:

ﬂjaesl
g

ﬁtg&/f Chser azjmuaf

Hllustration 48 : The group structure
after the remove() call

%ca//to remove () on{yfamn’nj in vertexi would be, eJJentz’affy, an ungroup command and
the same zgaJafz'eJ to any cell which acts as a group. Qqj‘f‘}/ou wish the remove the entire group structure
you need to caff JGraph.getDescendants (Object) (or use the method of the same
name in the aﬁey[&uftz%ngam:&f)on the topmost parent cell to obtain a collection containing the
cell and all its children and then pass all these cells to the remove () method.

4.2 ConnectionSet

ConnectionSet is the ﬁna/oftﬁe three main parameters to insert end edit calls, the
other two being the nested map of attributes and the parent map. sEConnectionSet describes
the connection state of‘any number of edges and so is also stored as part of‘any edit change ohject
to enable correct undo/ redos.

The design of ConnectionSet is simifar to that of the ParentMap, there is the overall
class that holds one or more entries, or connections in this case, and they may be set up through the

constructor, inc[i'vz'fuaf/j or as a coflection.

ConnectionSet (Object edge, Object port, boolean source)

creates am’mJafe ConnectionSet associating the egfoec%ﬁec[fort and edge and also indicating
whether or not the port is at the source or target end of the et{ye. Tkis creates « COnnection
ob:]'ect, whick is an inner class of ConnectionSet, and adds it to the set of connections held.
%u can also create the set ofconnectiomf your&e/f‘anffa&f it in using:

‘ConnectionSet (Set)

Individual connections can be created wsing:
‘connect (Object edge, Object source, Object target)

whick sets the edge within the COnnectionSet to have the specified source and targets,
‘connect (Object edge, Object port, boolean source)

which sets the et{ye to he connected te the port within the ConnectionSet end whetker or
not it is the source or target port is z'nzli'catez[b:}/ the bOOleanerameter. o

ﬂjaesz
g

ﬁtg&/f Chser azjmuaf

‘disconnect(Object edge)

sets the e([je as b-ez'nj disconnected at both ends within the ConnectionSet end

‘disconnect(Object edge, boolean source)

zﬁ'&connect&ju&t the source or target end, as a{"]aeczf‘z'ed: within the COnnectionSet.
;%fam available is the static utz'fit(}/ method, ConnectionSet.create ():

‘ConnectionSet create (GraphModel m, Object[] cells, boolean disconnect)

This returns a new ConnectionSet instance hased on the array of cells passed in whick
contains edges and/ or ports. cﬁdisconnect is true the ConnectionSet returned
describies those specified cells in a disconnected state. JFLYUE, it describes the edyes connected
accordingly to model.getSource (cell) and model.getTarget (cell) and ports
according to the return value of POTt.edges ().

4.3 The GraphLayoutCache

Tke GraphLayoutCache kolds the cell views, one ﬁr each cell in the model. ﬁﬁo/{f& a fist
of cell view roots and ancther cacked Jfist of port views for performance reasons.
GraphLayoutCache e ho/ds amapping from the cells to cell views, the only place in_JGraph
where you can translate in the model-to-view direction. GraphLayoutCache ectually
imJafementJ the CellMapper z'nterface whick tlbﬁne& methods to add anz[jet mappings between
cells and celf views. Jhe CellMapper interface is not such an obvious design contract as the
GraphModel is, but when obtaining the ceffviewﬁr a cef[}/ou must afw‘ay& use getMapping:

‘cellview = graph.getGraphLayoutCache () .getMapping (cell) ;

The reverse maJoJainj ﬁom jngaﬁd view to jngaﬁd model is not reguz’rec[stnce teff%ewa Fave
reﬁ)renceJ to their correJJoontfz’nj jl‘({]ﬂﬁd cells. 3eez'nj the role the grqﬁfg}/out(cac/;e Jaf({}/o“ in the
maJaJaz'nj between the model and view domain, it may make more sense now w‘ﬁj}/ the

grgp/;zqyout(cacﬁe kolds the reférence to the (Geff%ew?ﬂctory, the ﬁlctor] class that creates celf
view's zlb(]aendi'nj on the ceff?yjoe.

4.3.1 VIEW-LOCAL INDEPENDENCE

The GraphLayoutCache ohject provides the means to override inﬁrmation held in the
jrg]o/f model so that you may Fave mu/tz{']afe z'nclb]aenzfent view's of the same model. This enables
féatureo" such as cell vz'a'ﬁz'fz'ty, view- Jocal attributes and exJaant/i'nj and cofftgwinj‘ by — up a
GraphLayoutCache in this way you need to set its partial attribute to TLrue, this must
be done in the GraphLayoutCache constructor:

GraphLayoutCache (GraphModel model, CellViewFactory factory, boolean
partial)

ﬂjaje 83

JGraph User Wanual

Teo cﬁdanje the Joartiaf status of a GraphLayoutCache c[urinj its fz'fétz'me would cause
serious {}mc/fronization issues and so a S€tPartial () method isnot made available.

Once a GraphLayoutCache fas been made partial there i&ad%ﬁérence z'nfunctz'onafit'}/
between performing the 3 editing methods on the GraphLayoutCache and on the graph
model. gserﬁrminj them on the GraphLayoutCache will afw‘aya uJoc[ate the view Yyou are
working in. :ﬁvﬁrmz’nj them on the graph model will make the changes to the model, hut not
nff‘fect those c/:danjea" in any partial GraphLayoutCache. 3ozfyou insert cells tﬁ'rect'f}/ into
the model, they will not appear in views where the GraphLayoutCache s partial. Jhis is
the recommend tec/tdnz'yue ﬁr inserting invisible cells.

Jhe reason for the naming of the Partial attribute is te indicate that the
GraphLayoutCache Zs afartiaf representation of what fies in the model, aft/:douj/td the
boundary case is that the contents are the same and it isthe whole representation.

4.3.2 VISIBILITY

Witk afartz'af GraphLayoutCache,you are able to set any individual cell to being invisible

uainj:
‘graph .getGraphlLayoutCache () .setVisible(cell, false);

whick Wiff(pe;:form the edit and g]garojariate uJac[ateaﬁryou. %yu can also zlbﬁne a set of‘ceffa
to be made visible and another set OfCB[/J to be made invisible in one caffusz'nj.'

‘setVisible(Object[] visible, Object[] invisible)

A cell being set to be invisible Jimf{}/ means it is not drawn in that view, the model remains
uncﬁdanjezl: onfy the GraphLayoutCache folds acﬁﬁ'tiona[ﬁ&ilfz’fié}/ inﬁrmation when Jaartz’aﬁ

4.3.2.1 Configuring Visibility after Editing Operations

Tkere are a number ofconﬁiguration options ﬂr etﬁ'tz’nj operations that automﬂticaffy deal with
w'm'é'z'fity zlmue&jz»r cells that kave some refatz'on&ﬁdz:]o in the jrg]o/f model. Tor examjafe, ?'f‘a vertex is
made invisible it u&uaffy does not make sense to feave edges connected to that vertex visible. Tke
hidesExistingConnections variable set toe TYUE ensures this Fq]yaen& and TrUue is its
t[efauft value.

j’For the reverse oferation, ShOWSEXiStngCOHHeCtiOHS determines whether or not
ez{ye& that Kave hoth vertices connected to it made visible are made visible themselves. Jhe tléfauft
is, again, true.

showsChangedConnections determines whether or not edges skould be made visible
when t/fey are reconnected to tﬁﬁérent vertices whick are both visible, the clbfauft is true.

showsInsertedConnections determines whether or net inserted ec{ye& skould me
made visible zf‘ez’t/fer their source or target are afreadj/ visihle, the clbfauft value is LrUE.

?F;'naff!}/, hidesDanglingConnections determines whether or not et{ge& skould be made

ﬂjaje 84

ﬁtg&/f Chser azjmuaf

invisible when either connected vertex is removed ﬁom the model. Jke dbfauft ﬁr this value is
false

4.3.3 VIEW-LOCAL ATTRIBUTES

sz'ﬁz'fz't!}/ is one of the important view-independent features in ﬁﬂgpﬁ Fnother is view-Jocal
attributes. View-focal attributes enable you to kave any of the attribute types available (z’n
GraphConstants, er any extra attributes you might define)store a focal value in the cell view
storage attribute map and have that value override the value stored in the storage attribute map of
the corresponding graph model cell. Tkere are two variables in the GraphLayoutCache that
support this functionafity, al1AttributesLocal end localAttributes.

allAttributesLocal is « boolean flug that determines whkether or not to make all
attributes view-Jocal, so the alf attributes set in the GraphlLayoutCache are stored Jocally in
the cell views and those are the attributes uJec[fivr the visualization. 1OCcalAttributes isa
Set of attribute Eey& (e.j. GraphConstants.BOUNDS, GraphConstants.FONT, ete.)
that use the value in the cell view attribute map over that in the jr@pﬁ model cell. %u can set aff

attributes to view-Jocal um’nj:

‘setAllAttributesLocal(true);

and set the value gf‘focaf;%ttriﬁutew qu'nj:

‘setLocalAttributes(attributeSet);

Note the setting of the Jocal attribute set overwrite the current set, it does not add to it.
yﬁerefore, z'f:}/ou wish to add to it ca//getLocalAttributes () and add to the set obtained
z'n—JofaCe.

W;te, z'f:}/ou wish to remove a view-Jocal attribute this requires more than m’mjo{}/ removing the
key from the Jocal attributes set. The attribute value skould alse be removed from aff celf view that
have that attribute set. ﬁg]aen([z'nj on zgaffz'catz'on requirements, you will either Jeave the attributes
defeted or re-add them to the eguivalent graph model cells' attribute maps. From ﬁgp/ﬁ 5.6.3
onwards the method removelLocalAttribute (Object attribute, boolean
addToModel) s avaifable in the GraphLayoutCache to assist this process. Jhe
attribute #s ke Eey to be removed and the ffaj indicates whether or not to re-add the deleted
attribute to the model cells.

%Jareviou&{}/ mentioned, ?'f:}/ou Jaer_’f‘orm an insert call to the model with afartiaffz{}/out cackie,
the cell is invisible to start with in the ft{}/out cache. jf}/eu perform an edit on the mode/ tmt[you
cﬁanje an attribute whick is view-Jocal in ajrzgoﬁ fz{}/out cacke, the value does not jet(]ammec[to the
cell views' attribute maps. céSimifarfy, z'J[:}/ou perform an edit ([z'rect{}/ on a graph ft{yout cacke any
view-Jocal attributes are not Jaa&&ecf onto the model cells. Tkis means you can kave colors, cell
positions and size, text font, any of the attributes in GraphConstants rﬁ'{fa[a}/ cﬁﬁérent{y in
one view to another /7:}/ using Jaartz’a/fz{}/out caches, setting the appropriate attributes to be view-
Jocal and editing those attributes using the edit call on the Jaartz'afftfyout cacke.

ﬂjaje 85

ﬁtg&/f Chser azjmuaf

c%ztffe e;xam(]afeﬁ c[i'rectory of‘tFe (pacfaje you received with this user manuaf]ou w‘z’ffﬁnt[the ﬁfe
org.jgraph.example.GraphEdMV. java. Jkis is an example implementation of a
Jz'm(]ofe multi-view zgaffication. Tke ﬁffow‘inj code in the constructor of GraphEdMV sets the

view- Jocal attributes:

Set localAttributes = new HashSet () ;

localAttributes.add (GraphConstants.BOUNDS) ;

localAttributes.add (GraphConstants.POINTS) ;

localAttributes.add (GraphConstants.LABELPOSITION) ;
localAttributes.add (GraphConstants.ROUTING) ;
graph.getGraphLayoutCache () .setLocalAttributes (localAttributes) ;

Jettinj the ceff]ao&z'tz'on& and sizes, the et{ye Jaoint& anfroutinj and the faﬁeffo&z’tion& to be view
z'nJe;]aenfent.

4.3.4 EXPANDING AND COLLAPSING GROUPS

ﬁ”l]’ﬁ supports the exJoang’on and coffzgaesz'nj ofjrou(]oez[cells. @[vz'ou&fy, in your own
application you don't want to ask users to perform the grouping cperation, so you wiffjeneraffy
fave some means of détermz’ninj whick cells the user is reﬁerrinj to in a coffcgme operation and
perform the grouping and collapsing in one operation.

Tke Z%rzgo/f.f(&;CexamJafe demonstrates the manuafjroufz'nj and emfanr[z'nj and coffzgmz’nj of
cells. The Sigure below skows a selection of cells being grouped, collapsed and expanded again. Tke
Z%rzgo/f.f(&;cemurce code can be ﬁunt[in the exam]ofe& tﬁ'rectory ofyour mer j‘zjmuafor ﬁrgpﬁ
installation. Jhe demeo renderers a small -" or “+ in the top Jeft corner of the group cell to
indicate that the group tyﬁ%rrf& Eez'nj coffcgmez[and ex]oand‘edj j‘z:;u&efre&a events on that corner
need to be captured (Jee chapter 5, Fvents)to trigger the calls to expand and collapse.

Tke actual call that causes cells te coffzgme 7s:

‘graph.getGraphLayoutCache().collapse(graph.getSelectionCells());

and to exJoanz[’

‘graph.getGraphLayoutCache().expand(graph.getSelectionCells());

The ceff(s)]oaemez[in as the Jz'njfe parameter is the group cell. %yu mzc'g/ft notice that the et{ye
ﬁom cell 11 into the group terminates on the Jaerz’meter on the group when 7t is cofftgwef This
beliavior is Jtanzfarr[ﬁr Vl’Jua[CO[fa(]dJl’ﬂj and exJoanr[inj. When cells are invisible it is checked to see
?ft/fey fhave a visible parent, direct or indirect. jfum, any et/je& connected to the invisible celf are
Jaromote([, in the view on]}/, to terminate at the perimeter point oftﬁe ﬁr&t vz'efz'ﬁfefarent cel). Tkere

are no model cﬁanjeJ involved in t/ﬁ'&frocew&.

ﬂjaje 86

JGraph User Wanual

1

10 » 15 » 22 » 32 Y10 » 15 » 22 » 32
5 g o
33
ﬂ zaﬂ 2 23ﬂ33
15\ 16
24 —>{35 \“24—}35
= T CRA|
o — = o
25 \‘1_'/,25
17 17
[

—a— o

3 7 4 A

G I

'l 4

!\

2 —» 35

™ LRE|

d = o
I P \‘1_'/, 25
17

Hllustration 49 : A selection of cells being grouped (2), collapsed (3) and expanded again (4)

For example, in the case of a user application invelving a tree structure that can expand and
collapse, you might prefer to render the "~ on the hase of all cells. The user cﬂc@nj on that ef}/m[of
would cause the application to find alf cells beJow that tree node, group them and the node itself;
then co/fgfwe the group, alf in one operation.

4.3.5 OTHER GRAPHILAYOUTCACHE OPTIONS

Jke GraphLayoutCache fkus a few more visual configuration options:

- autoSizeOnValueChange - when set te LXUE alf vertices are resized to their preferred
Ji.ZeJa[uJ any inset value in the celf view attribute map every time their Jabel text C/;anjeJ. This
functz’on mz:jr/ft be seen as aj/oﬁa/ override of‘t/tde Joer—ceff autosize functz’on. The important
t[iﬁéren ce between this functz’on and the per- cel/ autosize attribute is
autoSizeOnValueChange stif allows you to resize cells manually.

« selectsAllInsertedCells - determines whether or not inserted cells are selected.
Jhe default value is Lrue.

+ selectsLocallInsertedCells - determines whether or not Jocal inserted cells, that is,

gjaje 87

JGraph User Wanual

cells inserted to a(]aartz'afjnga/f fz{}/out cacke, are sefected. The tlbfauft value is Lrue.

4.4 Advanced Model Functions
4.41 MODEL ORDERING

Tke jngo/f model kas an order to its cells dbﬁnef[{}l the order oftﬁde roots collection. "GhRild cells
are afso tﬁetermini&tz’ca[fy ordered when accessing them ﬁom the parent and so the entire model Kas
an order. Jhis is important when Jae;ﬁrmz’nj ana(f}lm’a on the jngo/f model, or fzf}/outa, since this
ordering means the results can be refied upon to be deterministic. Tke ordering in the model also is
used for layering the cells.

Iayerinj refates to the way in whick any celf can overfzgo any other and there needs to he some
method to determine whick cells fie in front of which. Tke rule is that the cell at the start of
roots fes upon the hack-most fayer and each Jeyuentiaf root cell fes upon the next fayer up untif
Yyou reackh the Jast entry in TOOLS which fles on the topmost ft{}/er. gf‘:}/ou ferﬁvrm an insert
operation acfzﬁ'nj two cells the order the cells are inserted in is the same as the orc[erz'nj in the cell
array(]ga&&e([inte 1nsert (). The ﬁr&t cefl will be the ﬁr&t entry inte roots and fie bekind the

second in the fz{}/erinj structure.

Inserted

Insered first
second

Inserted

second

Hllustration 50 : The layering resulting
from the insertion of two cells

&aﬂ[fe&& of how you drag the cells, the cell inserted second will remain over the first when t/fey
overfaf. Since child cells ofjrouf& fze entz’re/}l within the bounds oftﬁe group cell, the wheole group
fas the ft{}/erfosz'tion of the root cell. Within the group eack Jevel of child cells are ordered and,
again, the ﬁrst entry of any Jevel fies on the back-most /a}/er within that group. This pattern
continues to an arﬁitrar] JeveS ofne&tz'nj.

&t/fer than Jaroviclb uftra—ﬁne jraz'nel[fowitioninj ofceff/a}/enf it is more eﬁéctz’ve to &mf{}/ be
able to move aspecified set of cells to the back-most fayer.’

toBack (Object[] cells)

or to the ﬁrem ost ft{}/er:

toFront (Object[] cells)

ﬂjaje 88

JGraph User Wanual

these methods exist in both the GraphlayoutCache duss and the GraphModel
interface. Note that a number of cells may he affected and cells cannot skare the same layer.
yﬁerefore, the oferatz'ona move the goecifi'e([cells to start or end of‘tFe JeveS oftﬁde jnga/f structure
t/fey exist upon hut retain the same relative order hetween those cells.

4.4.2 EDITS

Wj/ren t}/ouJaerf‘orm an insert, edit or remove caff, an olr:]'ect called an edit is created. %t/re case of
calls te the GraphModel « GraphModelEdit cgject is created and for calls to the
GraphLayoutCache « GraphLlayoutCacheEdit s created in addition to the
GraphModelEdit. Jkese edit ofjects encapsulate the change made, holding information about
the attribute map c/ﬁnyeo‘ made um’nj the mnested attribute parameter, cﬁanjeﬁ to the group
structure made using the parent map parameter and changes to the connection states using the
connection set parameter.

Some of the simplified edit caffs in GraphLayoutCache do not coffer aff of these
parameters, but vafuea"ﬁr them are created internaffy and keld in the ed7it obc']'ect as necessary. Tke
edit object completely describes the change from the current state of the graph to the next state and
in reverse and so is used to Jaerﬁvrm unde and redo functiona‘. jnﬁct, ecﬁ'tinj methods are
performed by creating the edit ohject and executing it, exact[y the same as a redo command
function&.

4.4.2.1 Undo/Redo

ﬂmfo—suffort, that is, the storage of the changes that were executed so far, is @Jaicaff}/
im(]afementec[on the g]afﬂcation Jevel. This means, ﬁn{qﬂf z'tJeff‘ does not Jarovi([e a running
/fz’story, it cmfy provides the classes and methods to support it on the application Jevel. This is
because the /fiator] reguirea‘ memory space, dbfenﬂnj on how many steps it stores (‘W’FZ'C/; is an
application erameter). s, /leftory is not afway& tmplemented as some applications do not
require it.

Jke GraphChange ofject is sent to the UndoableEditListeners that have been
nyz’&terec[with the model. Jke obc']'ect t/tderqf‘ore z'm(]ofement& the GraphChange interj‘ace and the
UndoableEdit interface. Tke Jatter is used to implement undo- support, as it provides an undo
and a redo method. (ZT/Fe code to execute, undo and redo the c/fanje is stored within the ob:]'ect,
and travels along to the fz’&teners.)

4.4.2.1.1 Undo-support Relay

Hside from the model, the graph view alse uses the code that the model provides te notify its
undo fisteners ofan undoable chdanje. JThis can be done because eack view z‘?}/fz'caf'f}/ fas a rgﬁerence
to the model, whereas the model does not have references to its views. {Jhe GraphModel
z'nterf‘ace allows refa}/z'nj UndoableEdits é:}/ use oftﬁe féurtﬁd arqument to the edit met/fozﬁ)

Jke GraphLayoutCache class wses the model's undo- support to pass the
UndoableEdits that it creates to the UndoableEditListeners that kave been

ﬂjaje 89

ﬁtg&/f Chser azjmuaf

rqjiaterec[with the model. c;%ain, the o[i]’ecta that travel to the fisteners contain the code to execute
the c/fanje on the view, and also the code to undo and redo the jz'ven cﬁanje.

Tkis kas the ac[vantaje that the GraphUndoManager must on‘f}/ be attacked to the model,
instead oft/fe model and eack view.

4.4.2.1.2 GraphUndoManager

céstymrate jeometriea, whick are stored inzﬁsjsencfent{}/ of the model, Jead to c/tdanjea that are
pessibly enly visible in one view (view-only), not affecting the other views, or the model. Jhe other
View's are unaware oftﬁde c/fanje, ancfzfone oftﬁdem calls undo, this kas to be taken into account.

Hn extension of Swing's UndoManager in the form of GraphUndoManager #s available
to undo or redo such cﬁanjew in the context of‘muftz:]ofe views. GraphUndoManager adds the
undo end redo methods with an additional argument, which alfows ggpeczf}/inj the calling view as
acontextﬁr the undo/redo operation. JTke basic code to create anJJetuJa ajrcga” undo manager is:

undoManager = new GraphUndoManager () ;
// Register UndoManager with the Model
graph.getModel () .addUndoableEditListener (undoManager) ;

Jke parameter that is passed to the GraphUndoManager's undo and redo methed is
used to determine the Jast or next refevant transaction with respect to the caffz'nj view. ggfevant n
this context means visible, that is, all transactions that are not visible in the caffz'nj view are undone
or redone imffz'cit{y, untif the next or Just visible transaction iJﬁuntfﬁr the {peciJQet[farameter.

s an example consider the following situation: Jwo views skare the same model and hoth have
at Jeast one view-Jocal attribute. Jhis means, eack view can c/fanje incfeJaent[ent{}/, and zft/;e model
changes, both views are updated. Tke model notifies its views if cells are added or removed, or if'the
group structure or connectivity oft/fe jngo/f is moz[z'fi’ecl: meaning that either the source or target
port of one or more edges have changed.

jftﬁe view- Jocal attributes are on{}/ the points or bounds and zfceffJ are moved, resized, or 1]“
Jaoz’ntJ are at[c[ecl; mocfzﬁec[or removecfﬁr an ec{ye, then these cﬁanjew are view- on{}/ transactions.
I;%/fw'ew}f but the source view are unaware ofJucF view- on{}/ transactions, because such transactions

are on{y visible in the source view.

FPage 50
ge 9

JGraph User Wanual

unda unda undo
wigw] W e W i3

rnovel

Froves

insert

Hllustration 51 : Undos across multiple views

In the above Sigure, the state of the command /ﬁ'&tor}/ is shown after a cell insertion into the
model, move [5}/ the second view, a:m[o“ub:fequent move /1:}/ the ﬁr&t view. %ﬁer insertion of‘tﬁde celf
into the model, the ceff&fo&ition is the same in alf views, name[}/ the position that was passed to
the insert call. The arrows iflustrate the edits to be undone /1:}/ the GraphUndoManagerﬁr
the respective views. Inthe case of view 3, which on{}/ sees the insert, all edits are undone.

s mentioned above, even zf‘ there are JmJJz'[{}/ many sources whick notzf‘}/ the
GraphUndoManager, the implementation qft/?z'& undo- support exists on{}/ once, name[}/ in the
jrg]o/f& model. Jhus, the GraphUndoManager must on‘f}/ be added to one jfo/;af entry point,
whick isthe GraphModel ogject.

4.5 Drag and Drop

ﬂrty and drop refér& to the action of a user in a gﬂ%f selection a visual chject, uJuaffy b:}/
cfz'ck}'nj on the o/i;'ect and movinj the mouse while Fo/ﬂnj the mouse button down. 7/;6
“c[roJaJaz'nj ”ert is where the mouse button is refeased. In AWT and 3w‘z'nj this means &efectz'nj a
visual element in one component and’ zl}offz'nj it in ancother. c%you have not used ﬁnrﬁ Ee:f‘ore, 117
7s worth reacﬁ'nj about the standard 3w‘z'nj meckanism at
Fttp.‘//fava.&un.com/z[oc&/ﬁooEs/tutorz'af/uz'&w‘z’nq/mi&c/fnzlj/ftmf awﬁg]yf is mth{}/ comffiant
with the standard meckanisms.

ﬁrgpﬁ supports drag and drop in the same way most ?Sw‘z'nj and Wtomf@nents do,
draqging and dropping hetween ﬁrgpﬁ instances in supported in the core fz'l;rm:}/. Tke methods
setDropEnabled () and setDragEnabled () on the JGraph chject controf whethker
these functionafitz'eo" are avatlable. s with most components, [1:}/ t[efauft, drop is enabled and drag
disabled afi‘er creating a JGraph.

Information - From Java 1.4 onwards a high-level event listener called TransferHandler
was introduced to simply drag and drop. This is the only Java 1.4 specific feature in JGraph and
the feature the build system swaps out when building for Java 1.3. The Java 1.3 drag and drop
framework was somewhat more complex to use and will not be described in this manual.

Page 91
ge s

http://java.sun.com/docs/books/tutorial/uiswing/misc/dnd.html

ﬁtg&/f Chser azjmuaf

There are two important interf‘acea c[bﬁnet[n 3w‘z'nj refatz'nj to d}aj and z[roJo, Transferable
end TransferHandler. Transferable implementations describe the actual ohject(s)
b-einj traneff‘errezlj Within « Transferable imffementation G't is an interfbce) are r(?f;srencez[a
number of DAtalF1avor instances whick describe the format that « Transferable's data
might take. Fxample flavors — are stringFlavor, imageFlavor and
javaFileListFlavor.

In the case of Gz?pg]ah“ org.jgraph.graph.GraphTransferable defines «
description of a graph transfer. J¢ kolds the cells being transferred;, « ConnectionSet of
connections between the cells and a ParentMap db&crib'inj the group structure. %1 addition
there is a nested’ ALt ributeMap with the cells' attributes and the bounds of the collective cells
as a rectanjfe. This inﬁrmation 7s enouj/f to recreate the jrzga/; when tl}o(]a(]aec[@Juaff in a
JGraph comfonent).

Tke otker important element in z[raj and tfrof is the TransferHandler class. Jhis class
handles the creation of Transferables, via the createTransferable () method, and
deals with their interpretation when tl}o(]a(]aezl: When o« TransferHandler receives a
Transferable chject it uses its CANIMPOLL () method to determine whether or not it is
capable of accepting the DataFlavor being offered. Jhe importData () method deals with
the actual process of accepting the drop and, in case of a JGraph cemponent, editing the graph
zgo(]aro]oriate{y. gfyou wisk the c/fanje the dbfauft d}of bekaviour it is an overridden
importData () method where you would do this.

ﬁgpﬁ kas to subclass TransferHandler fecause of a non—cng'nj standard ﬁature it
possesses. Org.jgraph.graph.GraphTransferHandler is the default kandler for
exporting and importing a jrzgo/r. Tke reason this is necessary is that standard
TransferHandler transfers bean properties and the jl‘l{]d/ldz}‘ selection cannot be implemented
as a bean property. GraphTransferHandler understands drop from other JGraphs, fut
not from other :5w‘inj components by default. Hcommon question is kow to accept a drop in a
JGraphﬁom acomponent otker than « JGraph. There are two Joo&aib-fe ways oft[oinj this.

The Sirst is to make yourjrt{pff understand other imported data flavors. Jo do t/ﬁ'&}lou need to
create a sub class of GraphTransferHandler aend ocverride canlmport () and
importData () te confirm that the chject can he imported and then to properly kandle the
import. 1MportData () in the core GraphTransferHandler wilf give you a reasonable
idea hiow to perform ﬁ@ﬁoferﬂtions given a particular import.

Tke second method to adapt the Trans ferHandler of the exporting component,
specifically the createTransferable () method, 50 that it creates a
GraphTransferable thut _JGraph understands by defuuts. This meckanism is only wsefiul if
the on[y thing its data will be exported to isa JGraph, since ne other component understand how
to import ajrg]olz

Jo set anew TransferHandler cu agraph call:

‘graph.setTransferHandler (new MyGraphTransferHandler ())

The Clipboard i Jwa needs a small mention, when you Jae;ﬁrm cut, copy or paste

Page 92
ge s

JGraph User Wanual

o(]oeratz'onef ([;‘aj and tl}o(]a iJJQEIj‘OTmEJ via a cfz(']ab'oarc[: j;tlava there is the J}/Jtem &]yeratinj
f}wtem) cfz('jaﬁoan[and any other instances of cﬁfﬁoarfyou create within your tgaffz'cation. These
stere Transferable objects during a data tranoﬁr. jf}/ou use the skared system cfz(']a[oarz[]our
data will be tranoférret[to the native operating system cfzc'faﬁoart/: s0 you could tranaf‘er data to it
and stiff Kave it available in another We&&ion. th/ﬁa is not the befaviour you reyuire then
create « C1l1pboard instance on{yﬁryour tgofficatz’on.

Oune issue at occan’onaf{}/ causes confuﬁz’on is when tlévefo(]aero“ try to write functionafit‘}/ that
accepts L[roJaJ onto Feavywez:j/tdt cells on the jrtga/;. The Jaroﬁfem is to do with the use of‘t/fe
f(]}/w‘e{jh“t pattern ﬁr rent[ererinj ﬁ.e. there is on'f}/ one renderer component shared between alf
stmilar cefl tyJoeJ). When you zfrof onto a Feavyw‘ez;y/;t component, it doesn't reafef}/ have a
component instance éxcg]yt when etﬁ'tinj because an editor component instance is active at the
tz'me), Z.e.]ou're dropping onto Jomet/fz’nj painted on the JGraph component. c5{9!}/our tranafér
handler on the JGraph needs to Fandle this ([;‘OJ), there is no cell component there to handle it.
%u can use the getNextViewAt () method on JGraph to determine where the c[roJa fas
cccurred. F sensible next step would be to pass the drop event to the component /7:}/ caffinj
getRendererComponent () on that view to install the actual component fbr that
ﬁeavyweijﬁt and hand it the tfrof event to hande.

4.6 Zooming

Within the JGraph class the current scale of the j”{]’” is stored and may be altered tﬁroujﬁ
the setScale () method. The scale is stored as a double type and a value ofl.o is the ([efauft,
unscaled condition. Values above 1.0 refér to a Jcafz'nj up of the jrzgahd (zoominj z'n) and values
below 1.0 indicate the graph is zoomed out. c;ettinj the scale to 2.0 corresponds to x2
majnz"f‘z'cation, 4.0 to x4 majnif‘z’catz’on, 0.5 to X0.45 majnz'f‘icatz'on 6&1 rec[uction), and so on.

Jke setScale (double) smethod zooms feaw’nj the center point on the screen unc/;anjetﬁ
jf‘tﬁde point around which the Jcafz'nj is to take Joface is not the center point, use the
setScale (double, Point2D) smethod where the point is the new center of the graph
This is uaef‘uf, ﬁr examffe, when Zooming to ajmrtz’cufar mouse cfz’w€foz'nt or goec{ﬁ'ec[marquee

area.

4.7 Summary

. Z%rou(]ainj is part gf‘t/fe jrzgaﬁ model structure and is reJoreJente([t/tdrouj/td the Joarent/c/ﬁ'fc[
re/ation&/t"z(']ogf between cells.

o Jhe editing methods can use parent maps and connection sets to describe a new state of
grouping structure and connection states.

o Jke grga/izqyouttacffe can be made Jnartz'af, meaning that some or any of the cell views in it
can be made invisible. Jkis tecﬁnz’yue is uJecfﬁr em(]aancﬁ'nj and coffcgwinj cells.

ﬂjaje 93

ﬁtg&/f Chser azjmuaf

o Gelf view's may Fave view-Jocal attributes, whick override those in the correa:]aonz[z'nj jrcgaﬁd
model cell. Whick attributes are view- Jocal is cléﬁnet[in the grgpﬁfgout(cﬂcﬁe.

o Undo and redo is built into the ezﬁ'tinj methods ant[ﬁffoww the 3w‘inj standard. dome extra
functz’ona[z’t}/ s reguz’rer[when t[eafz'nj with undos /redos in muftéjafe, independent views.

o When a model or ft{yout cacke cﬁanje occurs, it i&fo&wz'[fe to have a fistener detect this c/ranje
and obtain a cﬁanje ob:]'ect to examine the details oft/ﬁtt cﬁanje.

M ﬂ:}vu&e events Jommec[into ﬂfvu&e%nffer 11:}/ cléfauft anc[ﬁom there are JanJez[onte a cgaec%']qc
kandler or /fant[fersfér context- iyaecz'f;cfroceamz'nj.

Fage 54

ﬁtg&/f mer azjmuaf
5 Events

5.1 Graph Change Events and Listeners

Jke GraphModel tﬁaﬁnes methods ﬁr the Fanszinj anz[rejz'ertratz'on oftu/o types ofﬁ'&tener&,
UndoableEditListeners and GraphModelListeners. Zvery notification of the
undo fistener is accompanied by a notification of the model fistener, since the view needs to be
updated and the display repainted. THowever, model events do not trigger undo events for ohvious
reasons.

IFyou wisk to have certain functionality triggered upon the firing on a model event, you must
tmplement the GraphModelListener z'nterf‘ace which e379861']['1'&9 one method,
graphChanged (GraphModelEvent e). Jke fistener needs to he registered with the

model in order te receive those events:

‘graph .getModel () .addGraphModellistener (graphModellListener)

Ouce a cFanje cccurs you will be able to determine the details oft/fe c/fanje @ interrogating
the event.

Dotk the jrtgaﬁ model and the jrtgo/f fz{}/out cacke support this event model. Jke jrzgo/f fayout
cacke event on{}/ contains z'n_formation gaecz'JQc to that view, i.e. cﬁanjes to view-Jocal attribute and
JocaS w'm'ﬁz’fz'ty c/fanjes. ﬁtﬁe jrzgo/f fayout cacke is not Joartia/ or no view-Jocal attributes or states
c/fanje during an edit, the jrzga/f ftg/out cacke event will be empty and onfy the jnga/f model event
contain any informatz’on. In this way jrtgaﬁ /ayout cacke events can he used to determine what
Kappened only in a view. Jke complete picture of what changed during an edit can, therefore, be
determined @ examining both the jrtgaF model event and the jrg]aﬁ /ayout cacke event. ﬁyour
graph Jayout cacke is not partial and has no view-Jocal attributes then only examining the graph
model event Wz'ff&ujﬁce.

GraphModelEvent «nd GraphLayoutCacheEvent are both found in the
org.jgraph.event package. Within these classes are defined the GraphModelChange
and GraphLayoutCacheChange respectively and these inner change chject can be ohtained
using the getChange () method on the event interf‘acea‘. These c/fanjea are cethructetfﬁr
insertion, removal or modifications of cells in the model. Note that these ofjects contain both the
description and execution oftFe cﬁanje in one Ja/ace.

The necessary getter methods to extract information out of the GraphModelChange are
getConnectionSet, getPreviousConnectionSet, getParentMap axd
getPreviousParentMap. Jke GraphLayoutCacheChange interfuce defines
getChanged, getlnserted, getRemoved, getAttributes and
getPreviousAttributes. GraphModelChange extends
GraphLayoutCacheChange and so afso defines the methods in the second fist.

From the naming of the methods you will fuirly easily be able to deduce kow to access the pre-
edit and post-edit versions of the chject that store edit state, the parent map, the connection set
and the nested attribute map. getInserted returns those cells that were inserted in the edit,

Fige 35

JGraph User Wanual

getRemoved those that were removed in the edit and getChanged returns those cells that
existed both lz_e:fore and rg%er the edit, but whose attributes c/fanyet[in that edit.

76;9«.71 in mind that zg%er you afer]porm an undo, the JoreVz’ouJ and current attribute in the ed7t
are JWoJoJoet[around. Jhis is so that the redo function works correctef}/‘

5.2 The GraphUI and handling mouse input

Jke org. jgraph .plaf . GraphUI z'nte;face Jarovz'lfea the w&quate z'nterf‘ace ﬂr
JGraphk and inkerits frem ComponentUI. The default implementation, BasicGraphUT,
Jorovz'cfeJ allthe usual methods you expect to paint, ujufate and return component sizes.

%u@ver, the most common area of&ﬁqcuft& users get into witﬁﬁgpfi& Worfinj out where
mouse event enterﬁg]oﬁanfﬁow tﬁey are]ammez[ﬁetw‘een the various mouse Fanfﬂnj functz’ons.

BasicGraphUI defines the method CreateMouselistener () whick installs a
mouse handler into the jr@fﬁ Ujff}/ou subclass BasicGraphUI and create your own mouse
kandler, remember to override CreateMouselistener () to create your mouse handler.
Tke same idea g]offiea to any other custom functz’ona[ilj}/ you add to your subclass, to call the
createXXX () metkods available in BasicGraphUT.

FHave a fook at the MOUseHandler inner cfass in BasicGraphUIL. This is where all mouse
input events come into ﬁgph‘@ default. Jt provides mousePressed, mouseDragged,
mouseMoved, mouseReleased, as you might expect.

ﬁmou&e%e&&etf the first thing that kappens is handler is set to nufl. This is the handler that is
going to deal with the mouse event. j‘zwe%nlffer goes tﬁdrouj/:d a series of ckecks to work out
what was under the mouse when it was pressed.

3@'7”1‘,'[}/ Jower down you Wz'ffﬁnc[this fine:

‘int s = graph.getTolerance() ;

5.21 MOUSE TOLERANCE

When a user tries to select a cell, ﬁnga/ffrovicﬁaa some assistance using the Lolerance
variable in JGraph. When a mouse press occurs the default mouse handJer creates a rectangle
around the Jaoz’nt where the mouse event Fzgajoened: The distance ﬁom the center oftﬂ& rectanjfe
to any side is the value returned from getTolerance (). Jtis within this rectangle that _JGraph
will process available cells. gfyou ﬁnc[that you fave overfaJoJaz'nj cells and the wrong cell is being
processed due to the tolerance value, J'imJa[}/ set it to o.

Tke fine aycter the getTolerance call reads:

Rectangle2D r = graph.fromScreen (new Rectangle2D.Double (e.getX()- s,
e.get¥() - s, 2 * s, 2 * 8));

ﬂjajeyé

JGraph User Wanual
5.2.2 ZOOMING

ﬁgpﬁ uses the GraphicsZD class to imffement ts Zoom. Tke ﬁamew’or£ z'o“ﬁature— aware,
whick means that it refies on the methods to scale aJaoz'nt or rectanjfe to screen or to model
coordinates, whick in turn are provided b:}/ the JGraph ohject. This way, the client code is
independent of the actual zoom factor.

ﬁecau&eﬁzgaﬁl& Zoorm TS z'mjafementec[on top oft/fe GraphicsZD class, the Jpainting on the
jnga/fics ohject uses non-scaled coordinates (tﬁe actuaf&cafz'nj is done b:}/ the jﬂ{falfz’cs ohject z'tseff').
i’For this reason, ﬁgpﬁafway& returns and expects non- scaled coordinates.

For emamffe, when z'mffementinj «Mouselistener ¢o re{]wnc[to mouse clicks, the event's
point will Kave to be downscaled to model coordinates using the fTromScreen method in order
toﬁnt[t/fe correct cefft/frouj/f the getFirstCellForLocation method.

@n the other Fand, the oriyinaffoint s ?}/Jﬂ'caf'f}/ used in the com(]aonent'& context, ﬁr emamffe
to pop-up a menu under the mouse pointer. :7‘2;59 sure to clone the point that will be c/fﬂnjecl:
fecause TromScreen moz[zﬁea the arqument z'n—]aface, i.e. without creating a clone oft/fe object.
JTo Jcafef}om the model to screen, ﬁr eacamjafe to ﬁnt[t/fe Jao&z’tz’on ofa vertex on the component,
the tOSCreenmethod is used.

tontinuinj furt/rer in the source code to BasicGraphUI .mousePressed there is a call
te 1sForceMarqueeEvent.

5.2.3 MARQUEEHANDLER

The marquee inﬁzya/; is the rectanjufar sefection Gometz’me called” ‘rubber- band” Jefectz'on)
you get when you cfick an empty area of the JGraph and drag. Jhe BasicMarqueeHandler
class is used to imffement this type of&efection. Trom an arc/ﬁ'tecturaf]mz’nt ofw'ew, the marquee
fhandler is a ”/133/7—/91/9/” fistener that is called by Jow- Jevel fisteners, such as the mouse fistener,
whick is installed in the CJdelegate.

With regard to its methods, the marquee kandler is more similar to the cell kandle, because the
marquee fandler deals with mouse events, and allows ac[tﬁtz'onaf(]aaintinj and overfayz'nj of the
marguee . (Thie marquee is a rectangle that constitutes the to-be selected rejz'on.)

isForceMarqueeEvent ckecks to see sz‘ﬁdatever mechanism there is in the current
marquee handler is enabled to force handfing of the mouse event to be passed onto the marquee
kandler. gf‘zt/fe case ofBasicMarqueeHandler this is cauJeJﬁyfreJJinj and Folei'nj the 'aft'
Ee}/ during the mouse operation.

5.2.4 HANDLES

We mentioned handles in tﬁgpter 3, it is within the BasicGraphUI we actuafef}/ direct
mouse events to the kandles. Jke BasicGraphUI stores the current CellHandle in the

Figo 7

ﬁtg&/f Chser azjmuaf

handle variable. This is uJac[atec[in the updateHandle () method whick creates celf
kandles depending on the current selection state of the graph.

Tor moving operations the mouse event will he (]ﬂlJ‘J‘eC[to RootHandle, whick is another
inner class ofBasicGraphUI. Tor resizing operations on vertices the mouse event will be
Jaa&a‘et[te SizeHandle, whick is an inner class ofVertexView. %nc[ﬁr ed:je moving and
restzing functz’on& the mouse event will be passed to EdgeHandle, whick is an inner class of
EdgeView.

ﬂjaje 98

JGraph “Clser Manual
6 Input and Output
6.1 XML Persistence

sz\/al.lf anffaterJaron’z[eJ the XMLENncoder axnd XMLDecoder meckanisms to serialize the

oﬁ:jectw of]our zyaf/ication in a standard manner. %n eacam]afe of what your enco([z’nj Ja/ﬁwe mzj/;t
Jook fike is shown befow:

XMLEncoder enc = new XMLEncoder (out) ;
enc.setExceptionListener (new ExceptionListener () {

public void exceptionThrown (Exception e) {

// Dealt with exception

}
bys
// Configure persistence delegates here
enc.writeObject (object) ;
enc.close ()

Java uses the mechanism of persistence delegates to identify what data from certain classes
needs to be serialized. Note that it is not necessary to persist the JGraph object using the
writeObject method, most application need only persist their GraphLayoutCache.
This contains all the graph model and view geometry information:

‘enc.writeobject(graphLayoutCache);
qu-:}/ou are not ﬁmz’fz’ar with the use of%ncmfinj and Fow to use persistence clbfe:yate&, it is

worth reat[inj the dun article on mnq mmcfer. @[ﬁfiou&{y, to write the correct Jaer&z’&tence
([efejateJ ﬁr a custom zga(]ofz'catz’on you need to understand the meckanism. Jhe basic idea is that

you create Jaer&i&tence cl}efejateJ corre{]aoncfz'nj to class constructors tﬁatjou wishk to be called when
the me; decoded fater on. Jhe classes described by the delegates must not he private, nor must
the constructors be. Jhe class itJe/JCmth not he an inner class, it needs to he static or exist in its
own ﬁ/e. Hlso, the class member variables must ﬁffow the Dean properties design where
SetXXX () and getXXX () metkods eaci&tfbr eack variable Wﬁat is to be Jaer&i&tezﬁ

l;zfajenerafjuizfe below are shown the ?}/Jaica/ z[efejateo“ that will enable you to Jaer&i&t a «n’mJofe
ﬁgpﬁﬂa&e tya(]ofz’catz’on.’

XMLEncoder encoder;
try A
encoder = new XMLEncoder (outputStream) ;

// Better debugging output, in case you need it
encoder.setExceptionListener (new ExceptionListener () {
public void exceptionThrown (Exception e) {

e.printStackTrace () ;

http://java.sun.com/products/jfc/tsc/articles/persistence4/

ﬁtg&/f Chser azjmuaf

encoder.setPersistenceDelegate (DefaultGraphModel.class,
new DefaultPersistenceDelegate (new String[] { "roots",
"attributes" }));
encoder.setPersistenceDelegate (GraphLayoutCache.class,
new DefaultPersistenceDelegate (new String[] { "model",
"factory", "cellViews", "hiddenCellViews",
"partial" 1}));
encoder.setPersistenceDelegate (DefaultGraphCell.class,
new DefaultPersistenceDelegate (
new String[] { "userObject" }));
encoder.setPersistenceDelegate (DefaultkEdge.class,
new DefaultPersistenceDelegate (
new String[] { "userObject" }));
encoder.setPersistenceDelegate (DefaultPort.class,
new DefaultPersistenceDelegate (
new String[] { "userObject" 1}));
encoder.setPersistenceDelegate (AbstractCellView.class,
new DefaultPersistenceDelegate (new String[] { "cell",
"attributes" }));
encoder.setPersistenceDelegate (
DefaultEdge.DefaultRouting.class,
new PersistenceDelegate() {
protected Expression instantiate (
Object oldInstance, Encoder out) {
return new Expression (oldInstance,
GraphConstants.class,
"getROUTING SIMPLE", null);
}
});
encoder.setPersistenceDelegate (DefaultEdge.LoopRouting.class,
new PersistenceDelegate() {
protected Expression instantiate (
Object oldInstance, Encoder out) {
return new Expression(oldInstance,
GraphConstants.class,
"getROUTING DEFAULT", null);
}
1)
encoder.setPersistenceDelegate (ArrayList.class, encoder
.getPersistenceDelegate (List.class));
encoder.writeObject (graph.getGraphLayoutCache()) ;
encoder.close () ;
} catch (Exception e) {
JOptionPane.showMessageDialog (graph, e.getMessage (), "Error",
JOptionPane.ERROR MESSAGE) ;

Je skould be noted that an output created in this way can be somewhat verbose ﬁr even a small
graph. Antecknigue to reduce the fife size is the use of the getConnectionSet method of the
De faultGraphMode 1. @um’nj this method, the reJunt[ancy between the Jaort’& etlje set and
the er{yely source and target fleld can he removed from files. Jo do this, the model's persistence
c[efejate must be c/fanjezf to ﬁtc/f the connection Jetﬁom the respective method anJJanJ it to the

tﬁlje 100

ﬁtg&/f Chser azjmuaf

constructor at construction time:

model .addPersistenceDelegate (JGraphpadGraphModel.class,
new DefaultPersistenceDelegate (new String[] { "roots",
"attributes", "connectionSet" 1}));

Jo avoid storing the respective properties of the cells, t/;ey must be made transient (w‘/;z'cﬁv 7s
done in the static initializer in the Jarecezfinj th];'):

JGraphEditorModel .makeTransient (DefaultPort.class, "edges");
JGraphEditorModel .makeTransient (DefaultEdge.class, "source");
JGraphEditorModel .makeTransient (DefaultEdge.class, "target");

Jke makeTransient method Jooks fike this:

public static void makeTransient (Class clazz, String field) {
try |
BeanInfo info = Introspector.getBeanInfo(clazz);
PropertyDescriptor[] propertyDescriptors = info
.getPropertyDescriptors () ;
for (int i = 0; 1 < propertyDescriptors.length; ++i) {
PropertyDescriptor pd = propertyDescriptors[i];
if (pd.getName () .equals(field)) {
pd.setValue ("transient", Boolean.TRUE) ;
}
}
} catch (IntrospectionException e) {
// Dealt with exception
}

Jo read the mgack— into your tgaffz'catz’on you will need code similar to that below.
&memﬁer tﬁat]ou o/{]’ect will be oft/fe type t/fatyou wrote out in the encoz[z'nj Ja/ﬁwe.

XMLDecoder dec = new XMLDecoder (in) ;
if (dec != null) {
Object obj = dec.readObject ()
dec.close () ;
return obj;
}

return null;

Wgte that the g‘rtgpﬁfﬁexamffe that comes with aff Clser %ua/tﬁ'&trtfution& demonstrates
the functz’onafity to Joad and save ajrg]aﬁ using Mncoz[inj.

6.2 Image Exporting

mnj the various z'maje JaroceJJz'nj functz’onﬂfity available in (J;rva, it is refatz'vefy Jimffe to

tﬁlje 101

ﬁtg&/f Chser azjmuaf

produce an image ofyour graph in ﬁ@ﬁz’tmaf (b_mf) or Portable Wgtu/orf grg]oﬂca (.Jonj)
Sermat. FEutifity methed, getImage () is provided in the JGraph class to make exporting a
Jz'm(]ofe task. getImage () takes two parameters, the ﬁm‘t is the ﬁac@rounf color oftﬁde output
image and the second is any inset to be use around every side of image produced.

Tke I;ac@rount[color, you may wish to Jimf{}/ be the iac@rounf color oft/fe jrtgaﬁd, ﬁutﬁr the
moutfut fbrmat there is the option ofa transparent iac@rount[. In the example helow you

need to use your own jrﬂ(]ﬂ/l‘: your own output stream and select an appropriate b-ack:yrountl: but
otherwise this code should w‘orEfBr afl cases:

JGraph graph = getGraph(); // Replace with your own graph instance
OutputStream out = getOutputStream(); // Replace with your output stream
Color bg = null; // Use this to make the background transparent

bg = graph.getBackground(); // Use this to use the graph background
color

BufferedImage img = graph.getlImage (bg, inset);

ImagelIO.write (img, ext, out);

out.flush ()

out.close ()

6.3 SVG Export

There are two methods that may be used to export a JGraph te Wrmat. The Sirst is to use
the ;zfmc/fe ﬁatz'ffz’b-rary to perform the export, the second isto natz’vefyfrm[uce the 37§nar5— up
within your application. The second method is emJafoyBJ in 37§eacamffe you can ﬁn:f in the
examples Jmck-aje of the ﬁ@/f Iayout gjrojarot[uct. W;tive/j/ writing the moulyaut provides
farje ferﬁvrmance improvements over the ﬁatz’ffz’ﬁrary. Tke ﬁatiffz’ﬁrary(proc[uce& output that
on{}/ uses very primitive jnya/fic.; efements and so post-processing of‘t/fe mutjaut is not_possible
since the graph context is not discernibfe ﬁom the output. The ﬁatz'ffz’/frary, at the time ofu/rz'tz'nj,
also is missing certain uJeyCufﬁatureJ, such as the association ofa ?f‘yjaerfink- with a cell or text

element.

Tke first method isthe one current(}/ most often used and the one that will be described here.
Tke vgatikdfib‘rare}/ may be cfownfoat[e:[ﬁom its kome page, whick a/JoJaroVitfeJ a number ofugef‘uf
tutorials regarding the use of the fiﬁrar}/. ke basic principle is to create a SVGGraphics2D
ofject and paint the graph to that, the best explanation of how to do this is the code itself, shown
below:

public static void writeSVG (JGraph graph, OutputStream out, int inset)
throws UnsupportedEncodingException, SVGGraphics2DIOException
{
Object[] cells = graph.getRoots () ;
Rectangle2D bounds = graph.toScreen (graph.getCellBounds (cells));
if (bounds !'= null) {
// Constructs the svg generator used for painting the graph to

Cﬁlje 102

http://xml.apache.org/batik

JGraph User Wanual

DOMImplementation domImpl = GenericDOMImplementation
.getDOMImplementation () ;

Document document = domImpl.createDocument (null, "svg", null);

SVGGraphics2D svgGenerator = new SVGGraphics2D (document) ;

svgGenerator.translate (-bounds.getX () + inset, -bounds.getY ()
+ inset);

// Paints the graph to the svg generator with no double
// buffering enabled to make sure we get a vector image.
RepaintManager currentManager = RepaintManager

.currentManager (graph) ;
currentManager.setDoubleBufferingEnabled (false) ;
graph.paint (svgGenerator) ;

// Writes the graph to the specified file as an SVG stream
Writer writer = new OutputStreamWriter (out, "UTF-8");

svgGenerator.stream(writer, false);

currentManager.setDoubleBufferingEnabled (true) ;

%ew’inj the output may be Jae;:formet[using the CZSquijjfe browser Jaroc[ucec[6:}/ z;?]mc/fe,
%ternet .f:xcpforer with the :;iz,cléb—e ggwfuj—in or ﬁreﬁmx 1.5 or greater. %t/tde author's experience
ﬂternet Exfforer with the c%ﬁoﬁe Jafuj—injarm[ucew the best guafz't:}/ output at the time ofu/rz'tz'nj.

6.4 Exporting in a Headless Environment

On *nix systems the architecture of‘tﬁve X Windows system means that qng'nj requires some
kind ofjn{p/ﬁ'c& [u_ﬁér to write to. When using a 1.3 version oft/fe <i‘LIVa %rtuafsz;c/ﬁ'ne Wﬂ
order toJaroc[uce e.xJaortec[images on such systems aﬁameﬁuffér 7s requz’retl: the absence ofa b—uﬁ[‘er
to write to would cause a headless exce:]ation to be ﬁredf Wgte that Wn([@ﬂ"é‘ {}/Jtem& do not have
kave this issue since t/fey do not kave the same client/server separation. Witk the Joo(}aufarz'ty of *nix
on the server-side, the common reguz'rement ofJarot[ucinj jrtgaﬁ images on a server and then
streaming those images to a client side browser could be non- trivial.

%eviou&{y, on Tnix .{}/JtemJ you WOuijeneraf@ either set-up a mwerver or run a virtual
ﬁamel;uffér z'f‘t/tdere was no XWindows server available. ?ﬁlvz'nj to c/fanje the server environment
was oﬁen not accg}ota[ffe and so ﬁom M!, the concept ofa headless mode was introduced to
work around this issue. a@/aettz’nj the —Djava.awt.headless=true option in the W
arquments it iJJaoJJib-fe to create instances offzjﬁtwezj/ft components. C(Sunjarovizfe a uJef‘uftutorz'af

explaining the use of headless mode in %zva. ﬁotﬁ the core ﬁrgp/fﬁ'ﬁrary antfﬁgpﬁ Iayout giro
are t[enc'ynec[to work correct{}/ in headless mode.

JTo cﬁ'{jafay fightweight components it is necessary to add them to a Feavyweéy/ft component
suck as «a Window er « Frame, whick cannot be used in a keadless environment. j;wteat[of‘
creating a F'Yame and calling pack () there is a workaround where you may create a JPanel
and calf addNOtlfY() te achieve the same e_ﬁéct. t;%ft/ldoujﬁd, addNOtlfY() s not Jtrict{y

ﬂjaje 103

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/

ﬁtgyﬁ User azjmuaf
meant to be caffet[b:}/ (lbvefofera, this is a w‘z'z[e‘f}/ acceJate:f workaround:

JGraph graph = getGraph(); // Replace with your graph instance

JPanel panel = new JPanel();

panel.setDoubleBuffered(false); // Always turn double buffering
off when exporting

panel.add(graph);

panel.setVisible(true);

panel.setEnabled(true);

panel.addNotify () ; // workaround to pack() on a JFrame

panel.validate () ;

Color bg = null; // Use this to make the background transparent

bg = graph.getBackground(); // Use this to use the graph
background color

BufferedImage img = graph.getImage (bg, 0);

mnj the above workareund means that Yyou can use ﬁgpﬁ the same w‘ay Yyou would in a
tfeJk%oJa 31;/1'717 g]o]afz'catz'on. Tkere is ancther method to uJeﬁrgpﬁin that does not require the
creation oft/fe ﬁ‘!]’ﬁ ng‘z'nj component, this is described in the section bhefow entitled “fl’fﬁork‘z’nj

without the cng'nj component "

6.5 Working without the Swing component

JTke creation of the 3wz'nj component is not afway& required, Jor example when an application
on{y creates ajngo/f, zga(]ofz'e& a fayout ant[ﬁnaf[y extracts the Joo&z’tz’on results t/frouj/f the %jn
JGrapk the GraphLayoutCache ohject must he created in order to obtain most of the
available functz’onafz’ty, as well as an im]afementation of the GraphModel interf‘ace. Tke
JGraph instance performs the task of adding the GraphLayoutCache as a fistener to the
GraphModel. Wihout a JGraph tnstance Eeinj created, it is recommended this is done b:}/
creating a subclass of GraphLayoutCache and smaking that subclass implement
GraphModelListener. This subclass skould add z'tJefJCaJ a fistener to the model and deal
witﬁjr@olf c/fanjew z{pfrojariate{}/.

jn the emamffeJ ﬁfdér of the ﬁﬂgpﬁ Iayout gim Jaroc[uce there is an examffe named
com.jgraph.layout.JGraphHeadlessLayoutExample whichk demonstrates a
jrtgyﬁ stmple jrt{]o/ld being Jaid out without « JGraph instance being created. Tke
GraphLayoutCache subclass described above is implemented in the
com.jgraph.layout.DataGraphLayoutCache c/ass.

6.6 Printing
gfn'ntz'nj in built into ﬁw'z'nj and witﬁdszm.lr the jJavax. p]fil’ltfacgaje provides detailed

control over the Jarintinj process. This Jaackdaje contains the PrinterJob cfass whick is the
main Jorz'ntz'nj control class. ke basic meckanism to Jorz'nt is imffementet[qu’nj the ﬁffowinj

tﬂjglje 104,

ﬁtg&/f Chser azjmuaf

code:

PrinterJob printJob = PrinterJob.getPrinterJob () ;
printJob.setPrintable (graphPane); // where graphPane is a JScrollPane
with a graph in it, for example
if (printJob.printDialog()) {

printJob.print () ;

}

%vu reguz're a 311/1'727 container that im(]ofement& the Printable interface. This container
needs to z'mffement a print () method that is called when a]arz'ntjo[is invoKed. Jhis isthe onf]
method the interf‘ace clbﬁne& and it takes three parameters: graphics - the jrt{]o/l‘ll'CJ' context to
paint the Jpage on, pageFormat - « description of the size and orientation of the page and
pageIndex - the index oft/fe(]nye to be drawn (start&ﬁom zero).

%u use the standard ﬁwinjfrintinj functz’onafit}/ to set which Printable efement iste e
Jyrintez[and to start the print:

public int print (Graphics g, PageFormat printFormat, int page) {
Dimension pSize = graph.getPreferredSize(); // graph is a JGraph

int w = (int) (printFormat.getWidth () * pageScale);

int h = (int) (printFormat.getHeight () * pageScale)

int cols = (int) Math.max (Math.ceil ((double) (pSize.width - 5)
/ (double) w), 1);

int rows = (int) Math.max (Math.ceil ((double) (pSize.height - 5)

/ (double) h), 1);
if (page < cols * rows) {

// Configures graph for printing

RepaintManager currentManager =
RepaintManager.currentManager (this) ;

currentManager.setDoubleBufferingEnabled (false) ;

double oldScale = getGraph() .getScale() ;

getGraph () .setScale (1 / pageScale);

int dx = (int) ((page % cols) * printFormat.getWidth());

int dy = (int) ((page % rows) * printFormat.getHeight()):

g.translate (-dx, -dy):

g.setClip(dx, dy, (int) (dx + printFormat.getWidth()),

(int) (dy + printFormat.getHeight())):

// Prints the graph on the graphics.
getGraph () .paint (qg) ;

// Restores graph
g.translate (dx, dy);
graph.setScale (oldScale) ;

currentManager.setDoubleBufferingEnabled (true) ;
return PAGE EXISTS;

} else {
return NO SUCH PAGE;

}

ﬂjaje 1045

JGraph Cser Mancal

E

gfaje 106

JGraph “Clser Manual
7 Layouts

7.1 Introduction

ﬁg]yﬁzayout gfro can be run on any system supporting ajva &ntz’me Fnvironment version
1.4 or Jater. dince version 1.2.1 qfﬁ?@ﬁfayout gsro this J?ﬁware kas included a ficense to ﬁrgfa/{
and a comffete ﬁrzy}ﬁ distribution with source code and documentation at the appropriate

revision. gjfezwe note tﬁatﬁg]oﬁzayout %ﬂo is not stand alone Joﬁware and that an untﬁer&tantfinj
oft/fe use ofﬁ@ﬁi& reyuz’re:f in order to uJeﬁrgpFIayout efro.

7.2 Installation and compilation

Tkis version ofﬁ@aﬁrﬂyout g);o is déch'ynlebr use with version ﬁ?@ﬁver&ion 5.8.5.2, this
version is supplied wit/{’ﬁy@/f Idyout gjro. Use with Jater versions ofﬁﬁgﬂf should afway& be
Joo&Jz’ﬁfe. jfyou would fike more z'nformﬂtz'on about comfatz'ﬁz'fz'ty ﬁr a {peciflc combination of

product versions, please emaifﬁrg]oﬁwuffort.

7.2.1 REQUIREMENTS

. Jt‘ﬂ/ll 1.4 or Jater com]aatiﬁfe virtual mackine ﬁr your operating system. @r\/a 1.4.2 s
recommentfe%){lt‘:val.g.m is known to work correctf].

. tom(]oifiny ﬁﬂgaﬁrqyout ﬂjro reyuz’re& %pacﬁe %nt, a]afatf‘orm indbfenfent build tooS that
uJeJJzVﬂfbr its command imffementatz'on.

7.2.2 INSTALLATION

ﬁ‘[g]o[Lyout g);o comes as a Jeff‘—e.xtractz'nj javaﬁfe. gft”e .J'arfl'fe association ﬁr J’arﬁfe& is

setup correctly, opentng the e tn a window manaqger shou start the tnstallation. therwise, on
p {yf'jﬁf' ind tger should ke installation. Otherwi

the command fine type:

java -Jjar Jjgraphlayout-1.3.0.9-src.jar

and the installation process Wiffﬁejz'n. %u will be reyuz’ref to agree to the ficense under whick
the Jofi‘ware z'JJyrovz'z[e([and to then select where to install the facfaje.

7.2.2.1 Project structure and build options

@ncejrvaanz[z%nt are installed Jaunch the commanffromft on windows, or shell terminal on
*nix or JZZL‘, navigate to the root ﬁft/@r where you in&taffetfﬁg]o/f Iﬂyout g);o. @finj ant
command, wkere command is one of the targets in the ant build file, will perform the function of

ﬂjaje 107

ﬁtg&/f Chser azjmuaf

that command, as described helow. \?‘Z&)‘l’nj out the command will build the clbfauft target, all.

ﬂjaje 108

ﬁtg&/f Chser azjmuaf

Jrc/ césource root
emamffe&/ f?camffes root
li—uz'f([/ oZ'}Qui/t[environment

Table 1. Project Directory Structure

ol Clean up and produce all distributions { “the default target)
apidoc Generate the %jeczﬁcation Gavadoc)

build Run all tasks to completely populate the huild directory
clean Delote all generated filos and directories

compile Compile the build tree

dist Produce fresk distributions

distclean Glean up the distribution files only

doc Generate all documentation

init Initiakize the build

Jar Lt all_Java archives (JRs)

compile-example Compile the main example

generate Generate the build tree

example Run the main example

Table 2. Ant command options

?F‘or examffe, to comfz'fe and run the examffe ﬂﬁyfe the ﬁffowinj:

‘ant example

Cﬁlje 1 Oy

JGraph User Wanual

7.3 The Design of JGraph Layout Pro
7.3.1 WHAT DOES JGRAPH LAYOUT PRO DO?

ﬁzyﬁzayout g;o tafeajrzgaﬁd structures lﬂaﬁnecf using the ﬁ@”[iﬁrary anc[(]aer:f‘orm& either
or both oftw’o gfjaecz'f;(:functz'ongf on tFatjr@rF structure:!

1. ﬁa’tion the wvertices <>J[‘tfat jrtga/; using an afjorz't/;m Cs) that attempts to fufflf certain
aesthetic requz’rement&,

2. %[t[ant[remove controf]aoz'nt& ofe({ye& in the jraJaF using an a{yorit/?m (F) that attempts to
fuﬁfcertain aesthetic reyuz’rement&.

Fxact what these aesthetic criteria are c[bfenz[upon individual zg]of/z'cation or fz{}/outJ
requirements. Z%eneraffy, these mzj/& involve spreading out vertices even{}/ without them
overfaffz'nj eack other, avoz’cfz’nj ec{ge& overfzgajoinj vertices and crossing other ecljes, cfuwterinj
connected vertex neéyﬁ[our& and ort[erinj vertices to ref‘fect overaffjraya/f direction.

Tke Jtanl[arcfﬁcac[b inﬁg]ah—'zayout %‘O requires aﬁzy”inatance in order to operate. The
ﬁcat[e inﬁgpﬁvz{}/out :fro extracts informatz’on ﬁom the gnga/;zt{}/out(cacﬁve an([jnga/; modelS
attacked to th—'z'sjrzga” instances and stores itﬁrfroces&inj lz:}/ the fa}/outJ. Tke ﬁcadb can then be

Jaao"&ec[to one or more fl{}/(‘)uté‘ and store the comJoount[result within ﬂrcinj the result to be tgyjafietf
ﬁacf to the graph.
Jrap

Trom aph Layout :ﬁ‘o 1.3 a new version of the facade,) mz:t/é/?acatfe, was introduced.
P Sy U
This ﬁcac[b does not have any dbjaenfency on aﬁrg]y” ob:]'ect, instead the constructors take a
Zi‘ra ﬁﬂzz&f as a parameter. Jhis means you are able to create a graph and apply a Jayout to it
P L J Iy Ty ey
without Faﬁnj to instantiate aﬂn{z]yﬁj z'lﬂeafﬁr server-side far}/outinj.

Some confuo‘z’on can arise as to whether afz{}/out acts upon the gryﬂ:zqyouttacfe ob:]'ect é.e.
the view of the graph as the application displays it) or upon the fiftered view produced by the
ﬂn{z]yﬁacadb. Tke fz{}/out acts the jrgfah—' as the ﬁcacﬁe describes it and this may be cﬁﬂérent to the
view provided by the cacke.

?For examffe, the Z-Z'rg]aﬁftf}/outtac/fe may be set to not c[i'{]ofay ec{ye& when their connected
vertices are not visible. %Wever, the facade, through the et[jefromotion Sag, may promote those
ec{yea to the ﬁr&t visible parent. This means the fayouto‘ will act as th—'oujhd the et[:je is there, even
though itisnot drawn.

7.4 Running a layout

There are two important classes requz’rez[ﬁr conﬁjurinj and running a fz{}/out,
JGraphLayout «»xd JGraphFacade. Glasses inkeriting from JGraphLayout perform
the mathematical operations offrofucinj the fz{}/out, whereas, JGraphFacade J987f0rmd‘
fiftering on the graph and provides various utz'fz't(}/ methods for the fayout to extract information

tﬂjglje 110

JGraph User Wanual

about the jngaﬁd. The at[vantaje xv]“tﬂJ mechanism isthat the exact data trana:férret[to the fayout s
de-coupled from the Jayout algorithm itself, providing a more stable murinj the fifetime of the
Joack‘aje as new fayout& are introduced. ﬁaf&o means that ft{}/out a{yorit/fm is able to use the output
of any other fz{}/out as its input, i.e. the facade is manzc'faufatet[b:}/ one by fayout and then passed to
another.

Tke first thing to be done when running a layout is to create the facade ohject that stores
information about the jngaﬁd to be acted upon and its conﬁjuratz’on. Tke constructors require an
instance ofJGraph so the facade knows which graph is being referenced in the ft{}/out. g]‘[‘a tree
fayout is being used, the constructor must also be passed the root nO([ECS‘) of the trees.
JGraphFacade fas a number of switches alse that enable the Jayout to act upon the correct
cells in the jrcgaﬁ m@/aettinj these switches, the ﬁcatﬁa conﬁ:jure& what it returns ﬁom certain
utz'fz't'}/ methods, again encapsulating the configuration of the ft{}/out in the facade. Tor example, by
clbfauft the getNeighbours () method on the ﬁcazlb returns nez:jﬁd/;our cells reyarffea& of‘
their visibility, whereas with the ignoresHiddenCells flag set to Lrue, only cells visible in
the current j”{]’ﬁ view will be returned. Jke fc{}/outa are db&;_'jnec[to access information t/frouj/r
such methods in the facade, performing stateful fiftering. Thke switckes on the facade are:

. ignoresHiddenCells - dtores whether or not the ft{}/out Zs to act on onfy visible cells
Ze. LXrUE means onfy act on visible celfs, false act on cells rejart[feJJ xv]“tﬁeir wmb-zfzty Tke
t[efauft value is LrUe.

« ignoresUnconnectedCells - teres whether or not the Jayout is to act on only cells
that Fave at Jeast one connected et{ye. true means onfy act on connected cells, £alse act
on cells rejartffeJJ oft/fez'r connections. Jke (lbfauft value is LrUE.

. ignoresCellsInGroups - Cé'storeo" whether or not the ft{}/out zs to on{}/ act on root cells
in the modef. LrUe means on'f}/ act on root cells, false means act upon roots and their

children. Jke t[efauft value is false.

- directed - ZStoreJ whether or not the jngo/r is to he treated as a ﬂrectefjrgpﬁ true

means ﬁffow et{ye& in target to source direction, £al1S€ means treat et[je& as directionfess.
Tke dbfauft value is LrUE.

Tke facade ofject not only steres the input to the Jayout, but alse the output. Jke result of a
fayout is not automaticaf'f}/ g]afﬂef to ajrtgo/r in case the tlbvefoJaer wishes to check the result or
perform another algorithm. Jo enable this the result of the f({}/out is stored as a nested map of the
attributes where the jrzgo/r cell is the gey to each pair, and an attribute map, tlétaz'finj the CFdnjEJ
made to that cell by the Jayout, is the value. Jhis map may be obtained by a cafl to
getNestedMap () on the ﬁcacﬁa and is suitable ﬁr Jenz[z'nj di'rect{y to the edit () method on
the GraphLayoutCache or GraphModel. JBefow is a simple example skowing the steps of
setting the ohjects up, executing the fz{}/out and ‘{]’f{}/inj the fz{}/out back to the graph:

JGraphFacade facade = new JGraphFacade (graph); // Pass the facade
the JGraph instance

%je 111

ﬁtg&/f Chser azjmuaf

JGraphLayout layout = new JGraphFastOrganicLayout(); // Create an
instance of the appropriate layout

layout.run (facade); // Run the layout on the facade. Note that
layouts do not implement the Runnable interface, to avoid confusion

Map nested = facade.createNestedMap (true, true); // Obtain a map
of the resulting attribute changes from the facade

graph.getGraphLayoutCache () .edit (nested); // Apply the results to
the actual graph

Tke method to obtain a nested map of the results of the ft{}/out, createNestedMap, takes

two Jparame ters:

. ignoreGrid—wh‘et/iar or not the map returned is Jntgafef to the currentjrit[

. flushOrigin - whether or not the bounds of the reJuftinj jrtgo/f should be moved to

(0.0

7.4.1 WRITING YOUR OWN LAYOUT

Ay new Jayout created should conform to the JGraphLayout interface. T new Jayout is
comJafeac to write, but most{}/ due to the afjorit/fm of the fayout, the Jprecess of‘z'nterf‘acinj with
ﬁgpﬁi& a’mffe.

The run()metFoJ ofanj/ fg}/out must determine the required z'nformatz'on ﬁom the fbcadb as it
current[y exists, perform the /c{}/out szﬁnaf[}l tZ]aJo{}/ the results of the fayout back to facade.
&meml;er, the ﬁcaclb is a Jtatefﬁfﬁfter of the graph. Tke reason fbr afw:zy& using the ﬁcaclb and
not the graph model or graph Jayout cache, is that many Jayouts might be applied in sequence and
the output of the Jast /ayout skould be the z'nJaut of the next. gﬂm, the flzcat[e ffzg& are taken into
account in the graph model or view.

One oft/fe ﬁr&t tﬁ?an af[fayouta do is obtain the position and size oftFe vertices to be Jaid out.
This is done using the get-Dounds() method on the fucade. Layouts normally store a copy of the
bounds values /ocaffy within the /ayout class. Hn array of vertices is passed into the jetogouncllf()
methkod, thisis obtained uéinjﬁcac[eget%rtz’cesO.toz;%rra}/().

s well as the posttioning of‘vertz'cees, the connections hetween those vertices will u&uaf{y be
refuz'retl? jet%y/{ﬁbur&() 7s oﬁen used to determine this, also jetf:t/je&\getween 0,
jetGutjoinjft{geJO anfjet%cominjfdjew()are uJe:fufin this rejartﬁ

Finally, kaving applied the Jayout alogrithm, the position of the vertices after the Jayout must be
available. Jhese are then set hack on the fizcatfe using setLocation 0 jf‘tﬁe fayout does this
correctly, calling in the manner described above will result in the Jayout being applied to the graph.

tﬁlje 112

JGraph User Wanual

7.4.2 EDGE CONTROL POINTS

SDome of the fz{}/out a{yorit/fm& are ‘ﬁ”’;?’”e‘[=yaecz’f‘icafef}/ to manz{']oufate and insert/remove ec{ye
controf points in order to provide better edge routing in the end result. Decause routing algorithms
may be c[bﬁnet[on a per ec{ye basis, the ft{}/out a{yorit/rma" on{y alters the controffoz'nt& ofeclje& s
required by that algorithm. 7/7erq]pore, if one algorithm changes an et{ye’& control points and
another fa}/out s z'mmez[iate{y applied then the control points Wz'ff(]arob'ab-{}/ Jook incorrect in the
new fa!}/out. &tﬁer than try to second- guess whether or not inserted control point were added
Jourfo&gf‘uftf}/ or accz’dbntaffy it is feﬁ to the tlévefo(]aer to deal with the state ofcontrof(]mint&(]arior
to a Jayout heing applied. JThe utifity method ~resetControlPoints() ox
JGraphFacade is avaifable to clear all controf points Jﬁdouf([you require this to be done é'ef‘ore
any ft{}/out is run.

7.4.3 EXAMPLES

In the examples package of the ﬁgpf Lyout zfroJarotfuct you will find a series of examples
that demonstrates the fayoutféature&, as well as some at[cﬁ'tz’ona[ﬁature& such as using an overview
panel, exporting to m and’ implementing rick text Jabel editiors. Note that the
ﬁﬂg]ﬁ/tfitf}/outﬁxamfﬂa reguire& the use of the external ,I}moc[common fz'b'rarvy to run. 751&
fz'l;rar] is available under the z;zjmc/fe ﬁcﬁware License. The ﬁrzga/f team have used it for several
years an([jz»unc[both the Joﬁw‘are to be of/ﬁ'j/r 7uafz't] and the Jead developer to be very responsive

to ﬁuj reyaort&.

ﬂjajeu;

http://common.l2fprod.com/

ﬁtg&/f Chser azjmuaf

7.5 Using the layouts

7.51 THE TREE LAYOUTS
Tke tree ft{}/out classes currentfy available in the ﬁ@”ﬂyout cﬁ*ofacfaje are:

« com.jgraph.layout.tree.JGraphTreelLayout
« com.jgraph.layout.tree.JGraphCompact TreeLayout

« com.jgraph.tree.JGraphRadialTreeLayout.

W;te that at Jeast one root must be {peciJQetfﬁr alf tree fa{yout& u.n'nj the rOOtSJaarameter czf‘
the ﬁcacﬁ? constructors. Wgte that these are the roots of‘tlfe tree, not the roots oft/fe jrzyaﬁ model.
Tree [t{}/outé‘ wiffﬁffow ec[je& ﬁom the root noz[eCf) to determine the structure of the treeCy),
ta@nj into account the settings of the facade.

Ia}/out ﬂjro also supports the concept offz{}/inj out sub-trees as show in the examJofe @Jafication.
Delection of any node and the execution ofa tree fc{}/out will result in on[}/ the child tree nodes
lfeinj Jaid” out as a tree with the sefected node as root. Wgte that the ﬁcacﬁe needs to be set to
directed (tﬁe c[efauft value), otherwise the algorithm determining the tree structure will process
the parents of the sub-node. %Wever, this tecﬁniyue can be used to cﬁanje the root node of an
entire tree.

%gé"re is Fow You ’"’;7/’% set up the ﬁca(l}a to process atree fayout:

Object roots = getRoots(); // replace getRoots with your own
Object array of the cell tree roots. NOTE: these are the root cell(s) of
the tree(s), not the roots of the graph model.

JGraphFacade facade = new JGraphFacade (graph, roots); // Pass the
facade the JGraph instance

JGraphLayout layout = new JGraphTreelayout(); // Create an
instance of the appropriate layout

layout.run (facade); // Run the layout on the facade.

Map nested = facade.createNestedMap (true, true); // Obtain a map
of the resulting attribute changes from the facade

graph.getGraphLayoutCache () .edit (nested); // Apply the results to
the actual graph

7.5.1.1 Tree Layout

Tke tree fayout arranges the nodes, starting ﬁom a gaeczjfz‘ec[node 65‘), into a tree-fike structure.
Tke tree may lz:y oriented in the fivur cardinal compass points options on the ft{}/out include
afz:jmment ofemme»fevefnot[ew selection, setting the minimum distance between nodes on acljacent
Jevels of the tree and setting the minimum distance between nodes on the same Jevels. Jhe
Jaerf'ormance oft/?e tree fayout s @dm)i.e.frofortz’onaf to number ofnot[e& in the fayout.

Cﬁlje 114

ﬁtg&/f Chser azjmuaf

7.5.1.1.1 Alignment

Ahignment refers to whick part of vertices will be afigned for alf vertices on a given Jovel. Using
the SetAlignment () method you can set the afz:jmment of the
SwingConstants.TOP, SwingConstants.CENTER or
SwingConstants .BOTTOM. Jke fiteral values oft/fe&e constants are 1, o and 3 re{]aectz've'f}/ at
the time of writing, but the variakle names should afway& be used.

jrg]y/r to

12 13

18 18 20

a0 32
31

Hlustration 52 : SwingConstants. TOP

..(_

20

i v g

Lllustration 53 : SwingConstants. CENTER

3

ﬂjaje 115

ﬁtg&/f Chser azjmuaf

12

18

k

29

30

13

it |

20

32

Hllustration 54 : SwingConstants. BOTTOM

7.5.1.1.2 Orientation

Orientation reﬁr& to the compass direction in whick the root node 69) oft/fe tree will be Jocated
relative to the rest of the tree. Using the setOrientation () method you can set the
SwingConstants.NORTH,
SwingConstants.SOUTH or SwingConstants.WEST. Jke fiteral values of these
constants are 1, 3, 5 and 7 at the time ofw‘ritinj, but the variable names should afw‘ay& be used.

orientation to

ﬂjaje 116

5| 0
15 16 17
27 28 29 30 1|
Hlustration 55 :
SwingConstants. NORTH

SwingConstants.EAST,

ﬁtg&/f Chser azjmuaf

27

28

N/

29

30

¥

e
o]

Hlustration 56 : SwingConstants.EAST

Hlustration 57 :
SwingConstants.SOUTH

ﬂjaje 117

27 28 20 30 it |
15 16 17
s 0

ﬁtg&/f Chser jzjmuaf

27

/

28

30

7]
Y

L]

Illustration 58 :
SwingConstants. WEST
7.5.1.1.3 levelDistance and nodeDistance

levelDistance is the distance between the Jowest Jaoz’nt ofany vertex on one level to the
ﬁlyffest point of any vertex on the next Jevel down. NodeDistance is the minimum distance
between any two vertices on the same Jevel. Wgte that Jevels closer to the root tend to he ;gaacec[a
furt/;er apart than this, assuming the t[bnefz'ty ofnoc[eef is Jower towards the start oft/;e tree.

7

30 31
‘nodeDistance

Illustration 59 : levelDistance and nodeDistance
definitions

ﬂjaje 118

ﬁtg&/f Chser azjmuaf

7.5.1.1.4 combineLevelNodes

The combineLevelNodesffag {jaecz'fi'ees whether or not to ensure that nodes on the same
tree Jevel are afzjne([across the entire tree. ‘When nodes vary in size it i&JooJJilffe to save space on
sub-trees with smaller nodes by setting this flag to false. ?ﬁvu/ever, this can make it difficutt to
determine visuaf{y which nodes occupy the same Jevel on the tree. g‘f‘t/ﬁ'&ﬂqj is set to LYUE, the
alignment variable determines eacactf}/ wﬁ?cffart ofnoc[eJ oft/;e same Jevel are afz:jnec[:

ﬂjaje 119

ﬁtg&/f Chser azjmuaf

-
N\

11

10
LT
28 29 30

25

P —
tHitE

Hllustration 60 : combineLevelNodes = false

/
AN
E

27

11

A\]

1

0 21
/ \ 22
H 32 33 3

i]

Illustration 61 : combinelevelNodes = true

Cﬁlje 120

26

T/
A A Ay

ﬁtg&/f Chser szmuaf

7.5.1.1.5 positionMultipleTrees and treeDistance

positionMultipleTrees determines whether or not to separate distinct trees so there is
no overfzga between the trees. fac/foftﬁde distinct trees to he Jg]aaratez[would kave to be gaecz']clez[

in the rOOtSJaarameter ofJGraphFacade. JTke distance between each of‘t/;e trees is (ﬁeﬁnecf
by the treeDistance variable.

Lot o
[}

R

.

7 18
el
\lref

J1

o sra
a 20 xm
19| |20
3| |32

Illustration 62 :

positionMultipleTrees =
false

tﬁlje 121

ﬁtg&/f Chser jzjmuaf

Lot)

i1 o

e

17 18
: |
/& lv F12 ¢
3 gy
28| |29 30 3 '{\

19 20
it | 32

treeDistance |

Lllustration 63 : positionMultipleTrees =
true , treeDistance = 30

7.5.1.2 Compact Tree Layout

Tke (Comjaﬂct Tree Iflyout Gf'ormer{}/ called the ﬂz:en) is another fzg/out in the tree—fhmi[}l, 7t
makes some imfrovementa“ over standard tree fayout&. y’/lde tomfact Tree takes celf JFJ{]OEJ into
account and concentrates on Jarot[ucz'nj as compact a result ﬂJJOOJJ‘l'Efe. Tke T;omfact Tree also
describes meckanisms to compute deltas oft/;e fz{}/out, so the entire computation does not kave to
be Jaeif'ormetf on every ft{yout. Tke exact meckanism ﬁr how to do this t[eJaent[J upon the
zgo(]afz'catz'on. gfyou reyuz're t/ﬁ'&(]ye;f‘ormance at[vantaje, contact gpﬁauf(]yort J%r inférmatz’on on
fow to tgaf{y it inyour tgafficatz'on. Tke (Comfact Tree manages to compact more t{y/ftfy than the
standard tree b:}/ storing sub-trees a&(]m{yjoﬂ&. Fn terms oj‘Joerf‘ormance the time to ft{}/ out using
the fayout s @aw)i.e.frofortion te the number ofvertz'ce&.

7.5.1.3 Radial Tree Layout

tﬁlje 122

ﬁtg&/f Chser azjmuaf

. Ty WU T R
=] & nu = H5"‘“I!rmI= J#EI i
= | b ,e‘; 7 .ﬁ@m
= T o . I A
] R) [H;ﬁum
CUS] - . = E}ﬁu
i

Hlustration 64 : A Radial Tree Layout
Tke &cﬁ'afy;ee quout draws the root node oftﬁe tree in the centre oft/fe fayout and fay& out

the other nodes in concentric rings around the fr:vqu node. facﬁ node fles on the ring
correo:]aon([z'nj to fts shortest network distance ﬁom the root node. jmmet[iate ne{yﬁ[vur& gf’t/zde
root node fie on the smallest inner ring, their nez;y[b-ourw fie on the second smallest ring untif the
most distance nodes ﬁrm the outermost rings. Tke anjufar position of‘a node on its ring is
determined 6:}/ the sector oft/fe ring allocated to it. facﬁnot[e is allocated a sector within the sector
assigned to its parent, with size proportional to the angular width of that noede's subtree. Jhe

Joerf‘ormance oftﬁe radiaf tree is @(}m}i.e.frofortion to the number ofvertice&.

ﬂjaje 123

JGraph User Wanual
7.5.2 ORGANIC LAYOUTS

7.5.2.1 Spring Embedded

[[g‘.'-
[-] = L= Ennu
o B n“
= CHES BE
Claymg e H' = =:: LA
= n 3
ﬂnn [
HEI"E: -: T H = Ee
= O
g [g & o B
=-l o= Elnn - = i
Bon, -, el ol ==='|' e + i)
B ltlli-F" I i l“=|m £E : : nnn
al B|E
G T O i I
2 oy FF
== o= nean
S = Eg
u-h.ﬂu [
]
ﬂErIEE En: := := =
e -H" u: g] o g : =I=:Il=I s
O 0 [=
B o h‘-nn'rlu - =‘==|
[I o
EL ; B u"': a_ n :;-'- B "':|=|:
= = "n'n =T :-nu :n B
:I: uu Bl =-= = F - :H (] Hiﬂn
=:|= L EH 'n 2 ERE
= i=ie : & 5 :.:: G
:= nﬂ Oy =: -====
o o © e
ER) :‘EH

Hllustration 65 : A tree laid out by the Spring Layout

The @n’nj Iayout s aﬁrce—ﬂrectetf ft{yout afjoritﬁm t[e&zc'jnet[to simulate a ef}lstem (?fc]oartz'cfegs

eack with some mass. Jhe vertices simulate maJJsz'ntJ rg]aeffz'nj each other and the ec{ye& stmulate

SPrings we attracitn orces. e da. ore rm moves rou a numper o tteration rYin ©
spring ‘th attracting The algorith: through b iteration trying t

minimize the energy oftﬂ&f@dcafy&tem. This means a certain number ofiterationJ are reyuz’rezf

to 5rinj the {}/Jtem cfose to equifiﬁrium, Fowever, furtﬁer iterations Wiff]aerf‘orm very small

c/fanjea an([an'mf{}/ waste tmime.

Tke Jaeif'ormance of the :@.vrz'nj fayout is @{]7‘1}, Z.e. Jorofortz'onaf te the number of vertices
Jyuarezl: This time afso needs to be muftz(']afz'esz:}/ the number ofz'teratz'on& in the fcf}/out to get the

fu/f time worst-case. generaf9, the spring is best tga(]ofz'et[to smaller jr({]oﬁ'& with a more reyufﬂr

structure.

y/fe Jfrz'an kave a natural fenjt/td, z'f‘comjaregmet[to Jess than this fenjtﬁ tﬁey re;]ouf&e the
attacked nodes, zfemtenz[er[to more than this fenjt/; tﬁey attract the attacked nodes. y/fe ﬁrce

with whick tﬁey act upon the attacked nodes z'JJaroJoortz'onaf to the Jzﬁérence between the current

tﬂjglje 124

JGraph User Wanual

spring fenjt/r and its natural spring fenjt/f. Tke ﬁrce with which eacﬁfair ofnot[ea n:]aufﬁe each
other is proportional to the inverse of the distance between the nodes squared.

Tke Eey values in the gorz'nj fa}/out are the garz’nj fenjt/td, the gyrinj ﬁrce and the rg]aufJive ﬁrce.
Tke default values of the ft{}/out are set to bekhave well for a general graph. C711(:7*eth'71j or decreasing
the rg]auf&z've jz»rce onfy tends to aj‘ﬁsct Jocal clusters J/fcgae&. ?ﬁjﬁer vafueﬁﬁr the spring ﬁrce tends
to Jead to itht;iz'fz’ty and oscillation of clusters and even the whole graph. “éS:,m'nj Jength tends to
onfy zﬁéct the clbnait'}/ oft/tde jrtg]a/f, not the actuaffzf}/outﬁrmedj

The @:rz'nj fx{}/out act&fm’r[y JfoW{}l and so many iterations are required before an equilibrium
between the nodes z'a"ﬁuntl: the number ofz'teratz'onJ tends to increase with the number ofnoz[e& in
the fz{}/out. Tke spring fa}/out constructor takes the number of dterations to he performed as a
parameter.

The speed with whick the spring fa}/out produces a pleasing result can depend upon the input
jrg]o/f. Dometimes it is Wort/f]ofacz'nj the nodes in random Jpositions ngore zgo(]afyinj the spring
fayout, or Jooso"z'ﬁ{y gjaJa[}/z’ﬂj the circle fa}/out ﬁr&t. Jhe tilt () method on JGraphFacade
provide random placements ofegaec?'ﬁ'e([nodes. Jke example that ships with Ia}/out Pro applies
snap to grid to the cells. ﬁtlfe spring fa}/out kas skort spring Jengths and kigh spring forces, this can
result in cells being overfaid. Jhe spring fzf}/out mz:j/ldt be used without snap to grid in this case.

7.5.2.2 Fast Organic Layout

The twe aesthetic aims of the Tast @Uanz'c (T@)fa'}/out are that vertices connected b:}/ ec{yea‘
skould be drawn close to one ancther and that vertices skould not bhe drawn to close to one
ancther. Jke attractive and rg]aufaz've fbrce& are n’mf{}/ variations on those used in the spring
embedded fa}/out. TFheir ﬂrmu/ae are intended to he easier to compute and better at overcoming
Jocal minima positions. Tke mfayout adds the concept of temperature, w‘/ferebj}/ the maximum
distance that nodes can move decreases over hetween each iteration. Jhis is intended to reduce
ithab'ifz'zz}/ in the fayout anJﬁrce the fa}/out to settle in its Jater stages.

Tke Jaerf‘ormance oft/;e ?F@ft{}/out s @(]7’1 +]fl&:er iteration, z'.e.JaroJaortz'onaf to the number
ofvertz'ce& Jyuare(l: Tkis time also needs to be muftz{']afz'ez[b:}/ the number ofz'teratz'onJ in the fz{}/out
to get the fuff time worst-case. E‘enera[fy, the TCO is best tgaffz'ez[to smaller jr‘({]&/ﬂf with a more
nyufar structure.

Tke ?@ft{}/out is much fike the @ﬁnj Fmbedded in that it is aﬁrce directed ft{}/out with the
same top JeveS a{yorit/fm. Fuack iteration consists of takdz'nj eack vertex in turn and cafcufatinj a
ﬁrce upon it based on connected et{ye and their distance to alf other vertices. Jhe ?@f({}/out also
introduced the idea of‘temferature, w‘ﬁderelr:}/ the maximum move of any vertex c[bcrea&z'nj with
each iteration, assisting the ft{}/out to 'settle.

Tke ﬁrce rg]ouf&z'nj vertices in the i’F@i&JoroJaortionaf te inverse of the distance between the
nodes and the attractive ﬁrce& between connected nodes are Jarojaortz'onaf& to the square of the
distance between them. Tke constant, K also used in both eyuatz'oyw is the distance at whick

connected vertices are at eyuz’fiﬁrz’um. The Jack Ofll IOJaritFmic calculation, as requz’ret[in the

ﬂjaje 125

JGraph User Wanual

e3;7;'71'7@' Embedded a{yorit/:dm, make the FO one oft/fe fiwterﬁrce directed fz{}/outJ. The number of
iterations reguz’ret[to Jarot[uce aJofean'nj result cannot be determined in advance, but the number

OanC[EJ in the jrzgaﬁd w‘z'ffa]?%ct this number.

7.5.2.3 Inverted Self Organising Map

;@tﬁoujlr not Jtrict[y aﬁrce— directed fz{}/out, the Mayout uses the idea ofﬁffinj the space
even{}/ with wvertices and of causing connected vertices to attract eack other. @gﬂfer actuaff}/
cafcufatz'nj ﬁrce& to be g]afﬂef to vertices, the quout uses an heuristic to ackieve its aim.
Tke afjorz'tlfm involves Jefectz'nj a random point in the jrzgaﬁ area zmr[fz'cfz'nj the vertex closest to
tﬁdtfoz'nt. This vertex is moved towards tﬁatfointﬁ as well as alf vertices connected to that initial
vertex b:}/ up to a set number ofet{ge steps. Tke amount 17:}/ whick the vertices are moved decreases
the greater the number of‘et{yeo‘ in the skortest Jaat/r between the current and initial vertex. Jke
initial number ofet[je steps is decreased’ t[urz'nj the fa}/out so that the Jater Jterﬂrm Jocal clusters
ofconnectetf vertices.

Tke comfutﬂtionaf eﬁ%rt(}aer iteration is finear, @(] Wr)y/;w comes ﬁom the eﬁbrt of‘ﬁnt[inj
the closest node to the random point. When ﬁrtgo/rimffementa a f]oatiafinc[bx structure this will
improve to @(f(y] Wr) @nf}/ a selection ofnot[eJ are movet[Jaer iteration and so a greater number
of iterations are reguz’rec[ﬁr fa(jer jngo/l}. §eneraf'f}/, the number of iterations reyuz’re([7s
Jarojaortz'onaf to the number ofvertz'ces and so the comfutatz'onaf e]ﬁport, z'ncfut[z'nj the number of
iterations, w‘z'ffafw‘ay& be @ﬂ%}yﬁe paper describes oo iterations as ﬁeinj enouj/rﬁr 25 nodes,
thus maxﬁeration&ﬂ;ft{pfe, whick zfeﬁnes the vertices to number of iterations fllctor, tﬁafau[t& to
20. Jke m the ﬁﬁte&t oft/fe jz»rce— tﬁ'rectec[ﬂmify offa]outa" n t/fi&facfaje.

Tke twe important data to setup in an mzfyout are the radius and the bounds of graph.
Tke bounds determines within whkick area the random Jpositions will be Jocated and so the area
within whick the nodes will be distributed. ﬁyou(}arefér to just {peczf}/ an average clénsz'te}/ of nodes,
use densityFactor to do this. Jke mOVGRadiUSﬁedebtermineJ the number ofneéy/;[our
nodes, in addition to the closest node te the random position, that are moved towards that point.
jtclbﬁne& the actual number ofezljeef fimit that will be traversed to ﬁnc[node to move. tﬁanjinj
this value t{ﬁ%cts the cfuo"terinj bekaviour oftﬁe fa:}/out.

ﬂjaje 126

JGraph User Wanual

7.5.2.4 Otrganic Layout

Thiis fayout is an im(]ofementatz’on ofa simulated anneafinj fz{}/out, whick describes the ﬁffowinj
criteria as being ﬁvouraﬁfe in ﬂjrtgo/f fx{}/out: (1) distributing nodes even[y, (1) mafz'nj edge-
fenjtﬂf un%'f;vrm, é) minimizing cross-crossings, and @) k‘egjainj nodes ﬁom coming too close to
ez{ye&. Tkese criteria are translated into energy cost functiono" in the f({}/out. WZC[GJ or edges
b-reakdinj these criteria create a fa(jer cost functz’on, the total cost t/fey contribute is refated to the
extent that tﬁe] break it. Jhe idea oft/;e afjoritﬁm is to minimise the total system energy. Factors
are aijneJ to each of the criteria db&crié'z'nj fow important that criteria is. %jﬁer ﬁctor& mean
that those criteria are deemed to be refatz'vefy Joreféral;fe in the ﬁnaf ft{}/out. ﬂfb of the criteria
conffict with eack other to some extent, the tlbfauft values selected are a broad balance between the
criteria, tﬁoujﬁ note that the fkctor& are not normalized and so their values vary somewhat.

c%z addition to the ﬁur aesthetic criteria the concept of‘a border fine whick induces an energy
cost to nodes in proximity to the graph bounds is introduced to attempt to restrain the graph. bz 7/4
oft/fe 5ﬁctor¢9 can be switcked on or oﬁw‘z’t/ﬁ'w the fcf}/out.

Simulated z;%nneafz'nj is the most expensive ftf}/out in this Jmcfﬂje comfutationaffy (wﬁen alf
criteria switched on), but it can Jarot[uce jooc[results over a range ijrtzjﬂ/l‘;f. Iayouto‘ fike the f]arz'nj
fayout cmfy Jactor in edge Jength and inter-node distance heing the factors that provide the most
aesthetic gain refative to their comfutationaf inten&z’tfy. Tke azﬁﬁ'tiona[ﬁctor& are refative‘f}/ more
e.xJaenJive but can kave very attractive results. Jhe Jaer:formance oftﬁe c5z'mufate¢[%}meafz’nj fa:}/out
7s @(}7’1 }f]&aer iteration in the worst case.

3;1 the conﬁyuration details tfatﬁffow, there are emamffe& oft/;e tﬁﬁérent reJuftJJoroz[ucec[b:}/
the anneafinj fzf}/out using the cﬁfférent settings. Wgte that the same z'njautjrzgo/r was uJez[fbr each
emamffe and tkat the 1sDeterministic ﬁ(g was set to LIYUE, fe. there were ne random
elements in the fqyout(]yroce&n

Dince the anneafz'nj ft{}/out is the most cthfy comfutatz'onaffy, ajoot[t{]afroacﬂ where imfrovet[
Joerf‘ormance 75 re?uz'recl: Zs to Jaerform an Wz{}/outﬂffowed- b:}/ the anneafz'nj J’u&t in the ﬁne
tuning stage.

ﬂjaje 127

JGraph User Wanual

7.5.2.4.1 isOptimizeNodeDistribution and nodeDistributionCostFactor

isOptimizeNodeDistribution determines whether or not te attempt to distribute
nodes evenfy around the available space. CfffiSOptimizeNodeDistribution zs set to
true shen nodeDistributionCostFactor isthe factor by whick the cost of aparticular
node distribution is muftl:f)fl'e([b:}/ to make an energy cost contribution to the total energy ofa
particular graph fayout. j]‘wreth'nj this value tends to result in a better distribution of nodes across
the available space, at the Jaartz'afcost ofot/fer jngaﬁd aesthetics, z':nfartz'cufar ezl:je /e:ytﬁjf.

Hllustration 66 : nodeDistributionCost = 10,000

Hllustration 67 : The same graph with nodeDistributionCost = 500,000

gjaje 128

JGraph User Wanual

7.5.2.4.2 isOptimizeEdgeLength and edgeLengthCostFactor

isOptimizeEdgelLength determines whether or not to attempt to minimise edge
Jengths. JFisOptimizeEdgeLength i set to true then edgeLengthCostFactor s
the factor by whick the cost of a particular set of edge Jengths is multiplied by to make an energy
cost contribution to the total energy of aJaartz'cufar jrgp/f fz{}/out. jncreaaz’nj this value tends to
result in skorter overaffe(/je fenjt/c}, at the Jaartiafco&t ofot/?er jrcga/; aesthetics, infartz'cufar node

distribution.

Hllustration 68 : edgeLengthCostFactor = 0.01

gjaje 129

JGraph User Wanual

Hllustration 69 : The same graph with
EdgeLengthCostFactor = 0.1
7.5.2.4.3 isOptimizeEdgeCrossing and edgeCrossingCostFactor

isOptimizeEdgeCrossing determines whether or not to attempt to minimise the
number (?fet[yeuf crossing that appear in the faz'foutjrtga/;. insOptimizeEdgeCrossing s
set to TLrue then edgeCrossingCostFactor Zs tﬁeﬁctor [7:}/ whick the cost oj‘z'neftance of
an et{ye cro&&inj is muftz(']afiet[5:}/ to make an energy cost contribution to the total energy ofa
Jyarticufarjrtgaﬁ fayout. g;tcreaen'nj this value tends to result in féw ec{ye CTOJJZ'nj, at the Joartz'af cost
ofotﬁer j”{]i'/; aesthetics, uJuaf[}l edje ffenjtﬁ %numﬁer (?féyfes ofjrtga/f do not Wor/Q well with
yyre&&ive{y /fzc'g/f vafue&fér edgeCrossingCostFactor. This is because tryz’nj to avoid edje
C)‘OJ‘Jile results in nodes ﬁeinj ugareat[out to avoid et{ye overfaf and this results in fonjer et[je&. jf
the jrg]yﬁ cannot be Jaid out in a way that avoid a number ofoverfayw, the fonjer ec{gea can result in

an increase in the number ofet{ye cro&&z’nj, as shown in the exﬂmffe below.

ﬂjaje 130

JGraph User Wanual

Hllustration 70 : edgeCrossingCostFactor = 500

gjaje 151

JGraph User Wanual

Hlustration 71 : The same graph with edgeCrossingCostFactor = 500,000

gjaje 132

JGraph User Wanual

7.5.2.4.4 isOptimizeEdgeDistance, edgeDistanceCostFactor, isFineTuning and fineTuningRadius

isOptimizeEdgeDistance determines whether or not to attempt to move nodes away
ﬁom ec{yes that pass close /7:}/ to them. CfffisOptimizeEdgeDistance is set to TrUe then
edgeDistanceCostFactor is the ﬂctor ﬁ:}/ whick the cost of a]aarticufar set of‘ec{ye to
nodes distances is muftz(']afz'ecf /73/ to make an energy cost contribution to the total energy ofa
particular graph fz{}/out. C%wream'nj this value tends to result in nodes being moved aWayﬁom edges,
at the Jaartz’afco&t ofothder jrtgo/f aesthetics, uJuaffJ node distribution and ec[je /énjtﬁ

@Jotz'mz’zz'nj edge to node distance to computational expensive and pointless untif the end of an
anneafinj fz{}/out. For this reason, it is deemed aﬁne tuning mechanism to /fefe;f‘ormef in the ﬁnaf
stages oftFe fa}lout. isFineTuning determines whether or not an}/ﬁne tuning will take Jaface.
jf‘z’t is set to false then the isOptimizeEdgeDistance value is g’jnorecﬁ g‘f‘z’t is set to
true, then ﬁne tuning will start when the current MOvVeRadius (Jee the section on
moveRadius Jreackes the value held by fineTuningRadius.

ﬂ;t summary, et[je to node distance will onrf}/ be taken inte account gfisFineTuning and
isOptimizeEdgeDistance are hoth set to Lrue, whick are their c[éfau/t values. Jke
radius within whick new test positions for cells that are candidates for moving decreases through
each fz{}/out iteration. When it reackes fineTuningRadius, the ezl:je to node distance cost

ﬁctor will start to be used and continue untif the ft{}/out terminates.

Hlustration 72 : No fine tuning - no edge to node distance
cost factor used

ﬂjaje 133

ﬁtg&/f Chser azjmuaf

ﬂjaje 134

JGraph User Wanual

Hllustration 73 : The same graph with edgeDistanceCostFactor = 4000

gjaje 136

JGraph User Wanual

7.5.2.4.5 isOptimizeBorderLine, borderLineCostFactor and averageNodeArea

isOptimizeBorderLine determines whether or not to attempt to restrain the nodes
within a set /fou:nz[ary. ff‘ isOptimizeBorderLine 4 set to LTrue then
borderLineCostFactor is the factor by whick the cost of a particular set of node to
[z'ounc[ar}/ distances is multiplied /7:}/ to make an energy cost contribution to the total energy ofa
particular graph fz{}/out. ﬁcreasz’nj this value tends to result in nodes staying within the boundary,
at tﬁefartz'afco&t ofotﬁder jrzga” aesthetics, uJuaf{y node distribution z'f‘tﬁde j"{]’hd s an&e{}/(]yacfezﬁ
Jt is not impossible that a node might escape this boundary, though this hecomes Jess fiEe[y the
ﬁdz;y/tver the value given to t/ﬁ'&ﬂctor.

Jhere are three ways of setting the boundary within whick nodes are attempted to he
constrained. Jke ﬁr&t method isto set averageNodeArea /fgfore caffz':nj the YUN () method.
Tkis variable defines the average area that eack node will be given and using this and the tota
number ofnot[eJ the total area oftﬁe b'oun([ar}/ is calculated. Wgte that the lz'ounlfary will be square
shaped. Tkis is a good way to keep the node density rea&onal;{}/ constant without having to worry
about the size of the jrt{]aﬁ 3ettinj this variable to a non- zero positive value overrides any other
method of setting the boundary for this Jayout.

The second meckanism is to use the constructor oft”e anneafinj fz{}/out that accepts arectanjfe.
Tke sets up the boundary Jor the fifetime of the fayout ohject instance, unless overridden by setting
averageNodeArea.

Tke third method is used automatically if neither of the first two are. Jhis just sets the
[z'ounc[ar}/ to the bounds oftﬁe j”{]’” /fef‘ore the fz{}/out is applied.

Hllustration 74 : Bounds set using constructor
and borderLineCostFactor = 500

ﬂjaje 136

JGraph User Wanual

[]

Hllustration 75 : The same graph with isOptimizeBorderLine = false

gjaje 137

JGraph User Wanual

7.5.2.4.6 minMoveRadius, initialMoveRadius and radiusScaleFactor

Fteack iteration eack cell Fas a number of positions around it selected as candidate positions to
move to, in an attempt to decrease the total system energy. Those candidates positions are atﬁmez[
anjfeJ around the perimeter ofﬁ circle that kas the node as its centre. Jhe radius oftﬁat circle starts
at initialMoveRadius and decreases with eack iteration [5}/ being muftz(']afz'ec[b:}/
radiusScaleFactor. Jke value of initialMoveRadius is determined by the Jayout,
there is no need to override it unfeJJﬁr agmcif;c reason. radiusScaleFactoriéis«double
between o.0 and 1.0, Jower values improve Jaerf'ormance but raising it towards 1.0 can improve the
reJuftinj jrg]oﬁ aesthetics. When the radius Fkits the minimum move radius tﬁaﬁnez{:
minMoveRadius, tke fayout terminates, unless the maximum number of {terations is reacked

ﬁr&t. The minimum move radius should be set a value where the move distance istoo minor to be

o f interest.

32

.

.. 3
20 [34 =128 =] 14

i i

Illustration 76 : radiusScaleFactor = 0.5

gjaje 138

ﬁtg&/f Chser azjmuaf

ﬂjaje 139

JGraph User Wanual

Hllustration 77 : The same graph with radiusScaleFactor = 0.9

7.5.2.4.7 maxlIterations

mamﬁeration& is the maximum mnumber of fz{}/out {terations that can take Jaface. It{}/outa can
terminate b'ef‘ore this value is reacked because the minimum radius value has been reacked, or the

fﬂ(}/out Fﬂef l;een unc/ranjecffér a certain numﬁer ofrount[&.

7.5.2.4.8 unchangedEnergyRoundTermination

qu-,‘at the end ofan iteration it is determined whether any changes were made. ﬁnot, the count
of number of rounds where mno c/fanje fias taken Ja/ace is incremented. gft/ﬁ'& count reaches
unchangedEnergyRoundTermination she Jayout terminates. IFnothing is being moved
t{ﬁer a number ofrount[& it is assumed ajooc[fzfyout fas been fbunt[ﬂat[}[ition to this zfno nedes
are moved during an iteration the move radius is Kalved, presuming that aﬁner jranufarz'ty is

reguz’recﬂ

7.5.2.4.9 isDeterministic

Jke isDeterministic flay defines whether or not the annealing Jayout skould produce
the same reJuftﬁr a_given z'n(]autjnga/; and settings. Tke anneafz'nj /ayout uses random values in a
few places to attempt to improve the cutput. detting 1sDeterministic te true degrades
the output onfj/ marjz’naf/y, if at af), and is uJeJ[‘u[l'prou would fike to experiment with the fayout

Jettz’njs (nowinj that constant Jettian vafue&cfarofuce a constant output.

tﬂjglje Itro

ﬁtg&/f Chser azjmuaf

7.5.2.5 Hierarchical Layout

Cﬁlje 141

11
o
59 16 il

25

3o

e

/|

i) UEJ 55

18 33 10
45 49 17
W
37 14
48 <] 53 32
47
26 54 1 a1

e

e

53 H 16 i 20
1/

23 J6 29 19

27

Illustration 78 : A Hierarchical layout applied to a random graph

ﬁtg&/f Chser azjmuaf

Tke kierarchical ft{yout s c[baiynetf to work on ([z'rectec[jrzgo/td& that Fave an overaffﬂow’, that is,
some Jtartfoint(s), some enr[foint(f) and some overaffﬁow between those points. @ﬁen j)‘l{jaﬁ&
that FKave become too comffex ﬁr a tree fzf}/out requz’re the use ofa fierarchical fz{}/out. y/feae
fayout& are common[}/ aJaJafz'ec[to W(?rkjf‘[OWJ,JarOCGJJ moc[effz'nj ﬂl{jrﬂm&, Joﬁu/are enjineerinj
cﬁ'ajramJ anJJaroceJJeJ, databased visualization and other directed models.

Tke jngaff should Fave some distinct start and end not[e(f), that is at Jeast one node with no
z'ncomz'nj ezljeef and at Jeast one node with no ouzyoz'nj nodes, reo:]oectz've{}/. The roots oftﬁde ft{}/out
may be set exffz'citfy, afternatz’veef}/, b:}/fassz'nj them in t/frouj/f the constructor:

Object roots = getRoots(); // replace getRoots with your own
Object array of the hierarchical roots. NOTE: these are the root cell (s)
of the tree(s), not the roots of the graph model.

JGraphFacade facade = new JGraphFacade (graph, roots); // Pass the
facade the JGraph instance

JGraphLayout layout = new JGraphHierarchicallLayout(); // Create an
instance of the hierarchical layout

layout.run (facade); // Run the layout on the facade.

Map nested = facade.createNestedMap (true, true); // Obtain a map
of the resulting attribute changes from the facade

graph.getGraphLayoutCache () .edit (nested); // Apply the results to
the actual graph

Jt should be noted that the hierarchical fa!}/out might insert control points in certain edges to
route them correct{}/. Thkis skhould he taken into account when Joe;f‘orminj additional ezﬁ'tz’nj
without applying the Jayout again. Jke JGraphFacade prevides a method
resetControlPoints te assist with removing controf points. taffz'nj this method will
remove alf additional control points from the edges passed into the next fz{}/out applied.

7.5.2.5.1 Orientation

Orientation reﬁr& to the compass direction in whick the root not[eCf) of the fa}/out will be
Jocated relative to the rest oftﬁe tree. mz'nj the setOrientation () method you can set the
orientation to SwingConstants.NORTH, SwingConstants.EAST,
SwingConstants.SOUTH or SwingConstants.WEST. Jke fitera/ values of these
constants are 1, 3, & and 7 at the time of writing, but the variable names should always be used.

7.5.2.5.2 Intra Node Distance and Inter Rank Cell Spacing

interRankCellSpacing is the distance hetween the Jowest point of any vertex on one

fayer of the fz{yout to the sz/t@&t point of any vertex on the next Jevel down.
intraCellSpacingistke minimum distance between any two vertices on the same Jevel.

7.5.2.5.3 isDeterministic

The isDeterministicfﬁg t[eﬁneJ whether or not the /ﬁ'erarcﬂcaf/t{}lout Jﬁou/t[]arot[uce

tﬁlje 142

ﬁtg&/f Chser azjmuaf

the same rea"uftfbr ajz'ven z'nJout jrg]o/f and Jettz’njw. The kierarchical fayout does not assure that
fayer will be ordered in the order as provided b:}/ the jraya/f model unless this fftg is set. c&;tﬁnj
isDeterministic ¢t true may zlbjraclb the output somewhat ﬁr fa(jer jnga/ﬁf, stnce it

introduces acomfonent Wit/fferf%rmance somewhere between finear ant[o"quare.

ﬂjaje 143

JGraph User Wanual
7.5.3 EDGE ROUTING
7.5.3.1 Orthogonal Edge Routing

@rt/focyona[:zink:gguter Zs ajfob'af ezlje router clé&zc'gnec[to avoid the overfcgo of edjea with
vertices [7:}/ constructinj the et{ye& in vertical and Korizontal segments. Tke router is run fike any
Jtanc[ar([fcf}/out, it&fe;:formance means it is not ajooc[candidate ﬁ»r cﬁ'{]ofar}/inj c[urz'nj a preview.

Ceill 1
Cell 7
|
|
: Cell 0 Al
Cell 8 L
Celi 10
. Cell 6
cell 5
Cell 2
Cell 0 Cell 4

Hllustration 79: The Orthogonal Edge Router

gjaje 144

ﬁtg&/f User azjmuaf
7.5.4 SIMPLE LAYOUTS
7.5.4.1 Circle Layout

Tke circle fcf}/out arranges alf the node into a circle, with constant spacing between eack
ne{y[ﬁour node. Jhe Jaerf‘ormance of this fl{}/out zlfJaroJaortionaf to the number ofverticeo“ in the
circle. c%/foujﬁd, circle ft{youta are not common{}/ used’ /7:}/ themselves, it has been noted that some
non- deterministic fayout& (ﬁrce— directed maz'nfy)Jaroc[uce a better result z'f‘a"e:]aaratet[out b:}/ a
circle fc{}/out ﬁr&t. gfa better result is not produce, oﬁen the same 7uﬂfi€}/ ofrea"uft can be obtained
quick—er (tFroqu Jess iterations ofaﬂrce— directed ft{}/out)tﬁen without the initial circle tga]ofz'et/:
There Z'J‘:n't a separate cfmwﬁr this ft{}/out as it is a trivial imffementation. éﬁwteaz[: the method,
circle(List vertices), is part of the ﬁcat/é. ﬁefow is an emamffe of using the circle
fayout.‘

JGraphFacade facade = new JGraphFacade (graph); // Pass the facade
the JGraph instance

JGraphLayout layout = new
JGraphSimpleLayout (JGraphSimpleLayout.TYPE CIRCLE); // Create an
instance of the circle layout

layout.run (facade); // Run the layout on the facade.

Map nested = facade.createNestedMap (true, true); // Obtain a map
of the resulting attribute changes from the facade

graph.getGraphLayoutCache () .edit (nested); // Apply the results to
the actual graph

ﬂjaje 145

JGraph User Wanual

7.6 Using the Example Source Code
7.6.1 THE PROGRESS METER

Some of the /a}/outa are more (CMintenJive than others and so require some jn{]a/ﬁ'tdf
indication than the application is stilf performing processing and has not crasked. Thke standard
way to do this is using a progress meter. %custom Jprogress meter class is Jarovz't[ed:
JGraphLayoutProgress, that may be used on Jayouts that implement the Stoppable
z'nterf‘ace dbﬂnez[in JGraphLayout that enables the user to stop the ft{}/out running and return
to the previous jrzgaf z'f‘t/;e fa!}/out takes too f«mj. Iayout& supporting the Jprogress meter ﬁre a
property c/fanje event to set the maximum value of the Jrogress meter fkas well eack time a
a{'gnzﬁ”cant c/fanje to the value oft/fe Jprogress occurs.

The maximum value oftﬁe Jregress meter is set either as a constructor parameter, orfasaec[nto
the reset () method. Iayout& call the sSeLProgress () method during the running of the
fayout to update the progress.

To z'mffement a progress meter in an afficatz'on, base it on the emamffe in
JGraphExampleLayoutCache.layout (). Here, « PropertyChangeListener
is created that processes the Joos&z’lffe event types. These event types are, agaecz'f‘icaff!}/,
JGraphLayoutProgress.PROGRESS PROPERTY for a new value of the progress meter
and JGraphLayoutProgress.MAXIMUM PROPERTY tc set the maximum progress
value. %&tanlfarcf ProgressMonitor can be used anc[z'mjyfement cancellation functz’ona[iz:‘}/ as

skown in the examffe code.

ﬂjaje 146

JGraph “Clser Manual
Appendix A — Definitions

. self—loop- an edjre with hoth ent{poz’nt& attacked to the same vertex, also known as a nfffe.xz've

edge.

Hlustration 80: A
self-loop edge

. paralleledges~ more than one et{ye connectz'nj aJaaz'r ofvertice&.

™

Hllustration 81: A number of parallel edges

« directed edge- is an edge with a gaecz'fi'c direction, fike a vector. ﬁz’rectec[edges Fave source
cells and target cells at their ent{]aoz'ntw to indicate the direction. Wgte that affet{ye& inﬁgpﬁ
Fave a direction internaf{}/. It is up to an zgaJafz'cation whether to take edge direction into

account or to draw ecl;je arrows.

. hyperedge- an etfje that has more than two ent{]aoint& and so cannot be reJoreJentet[b}/J’th a

fine.
- incident- Jfun edge connects to a vertex it is described as incident of that vertex.
« degree- Jke degree of avertex isthe number of edges incident upon it.
- simple graph - %rafﬁ that has no Joops and no parallef edges

. directed graph - aff ecljrew of the jnga/; are directed. .z:xc/fanjinj all the directed ezlje& _for
undirected ec{ye&fro\a’t[e& the unc[er[}/z'nj jrtga/?.

. orientedgraph~ atﬂrectezf{yrg]gﬁv whose unfer/jinjjrg]aﬁ zs Jz'mJafe.

gfaje 147

JGraph User Wanual

+ hypergraph- « graph with fyperedges

ﬂjaje 148

	1 Introduction
	1.1 What does JGraph do?
	1.2 What is a Graph?
	1.2.1 Graph Visualization
	1.2.2 Graph Interaction
	1.2.3 Graph Layouts
	1.2.4 Graph Analysis

	1.3 About this Manual
	1.3.1 Pre-requisites for this Manual
	1.3.2 Getting Additional help

	1.4 About JGraph
	1.4.1 JGraph Swing Compatibility
	1.4.2 The JGraph Packages
	1.4.2.1 JGraphpad Pro

	1.4.3 MxGraph
	1.4.4 JGraph licensing

	1.5 Getting Started
	1.5.1 The JGraph Web Site
	1.5.2 Downloading JGraph
	1.5.3 Installing JGraph
	1.5.4 Project structure and build options

	1.6 The Design of JGraph
	1.6.1 The Use of Object Types

	2 JGraph and the Graph Model
	2.1 Understanding the HelloWorld application
	2.1.1 Creating the JGraph
	2.1.2 Inserting Cells
	2.1.2.1 Configuring Cells' Attributes before Insertion

	2.1.3 Editing Graph Cells
	2.1.3.1 Removing Cell Attributes

	2.1.4 Removing Cells
	2.1.5 Attribute Maps
	2.1.5.1 Attribute Map changes after edit calls

	2.1.6 Summary

	2.2 Creating and Configuring the JGraph class
	2.2.1 	Configuring JGraph

	2.3 The Graph Model
	2.3.1.1 Introduction
	2.3.1.2 The 3 editing methods
	2.3.1.3 Accessing the Graph Model Data
	2.3.1.4 Cloning the Graph Model
	2.3.1.5 Navigating Connections Using the GraphModel interface
	2.3.1.5.1 Obtaining a collection of edges connected to a vertex
	2.3.1.5.2 Obtaining the Source and Target Vertices of an Edges

	3 Cells
	3.1 Types of Cells
	3.2 Cell Interfaces and Default Implementations
	3.2.1 GraphCell Interface
	3.2.2 The Edge and Port Interfaces
	3.2.3 The DefaultGraphCell
	3.2.3.1 The Default Graph Cells Constructors and Methods

	3.2.4 Cloning Cells

	3.3 User Objects
	3.3.1 Obtaining and Changing the User Object

	3.4 Cell Views
	3.4.1 Cell Handles
	3.4.2 The Cell View hierarchy
	3.4.2.1 getPerimeterPoint
	3.4.2.2 getRenderer
	3.4.2.2.1 How to Create your Own Cell View and Renderer

	3.4.3 Creating Cell Views and Associating them with Cells
	3.4.4 default cell view and Renderer implementations
	3.4.4.1 The Cell Views
	3.4.4.2 The Cell Renderers
	3.4.4.2.1 PortRenderer
	3.4.4.2.2 VertexRenderer
	3.4.4.2.3 EdgeRenderer

	3.5 Using Cells
	3.5.1 Using Vertices
	3.5.1.1 Bounds
	3.5.1.2 Constraining Vertex Bounds
	3.5.1.3 Resizing and Autosizing
	3.5.1.4 Icon
	3.5.1.5 Label Text
	3.5.1.6 Borders
	3.5.1.7 Colors
	3.5.1.8 Inset

	3.5.2 Using Edges
	3.5.2.1 Bounds
	3.5.2.2 Control Points and Routing
	3.5.2.3 Positioning edge labels
	3.5.2.4 Edge Styles
	3.5.2.5 Edge end decorations
	3.5.2.6 Connections restraining

	3.5.3 Attributes for Both Vertices and Edges
	3.5.3.1 Constraining Basic Editing Functions
	3.5.3.2 Opaqueness
	3.5.3.3 Selection

	3.5.4 Using Ports
	3.5.4.1 Port Positioning

	3.6 Summary

	4 Advanced Editing
	4.1 Grouping
	4.1.1 Graph Model Representation of Grouping
	4.1.2 ParentMap
	4.1.3 Group Insets
	4.1.4 Move into/out of groups
	4.1.5 Removing Child Cells

	4.2 ConnectionSet
	4.3 The GraphLayoutCache
	4.3.1 View-Local independence
	4.3.2 Visibility
	4.3.2.1 Configuring Visibility after Editing Operations

	4.3.3 View-local attributes
	4.3.4 Expanding and Collapsing Groups
	4.3.5 Other GraphLayoutCache options

	4.4 Advanced Model Functions
	4.4.1 Model ordering
	4.4.2 Edits
	4.4.2.1 Undo/Redo
	4.4.2.1.1 Undo-support Relay
	4.4.2.1.2 GraphUndoManager

	4.5 Drag and Drop
	4.6 Zooming
	4.7 Summary

	5 Events
	5.1 Graph Change Events and Listeners
	5.2 The GraphUI and handling mouse input
	5.2.1 Mouse Tolerance
	5.2.2 Zooming
	5.2.3 MarqueeHandler
	5.2.4 Handles

	6 Input and Output
	6.1 XML Persistence
	6.2 Image Exporting
	6.3 SVG Export
	6.4 Exporting in a Headless Environment
	6.5 Working without the Swing component
	6.6 Printing

	7 Layouts
	7.1 Introduction
	7.2 Installation and compilation
	7.2.1 Requirements
	7.2.2 Installation
	7.2.2.1 Project structure and build options

	7.3 The Design of JGraph Layout Pro
	7.3.1 What does JGraph Layout Pro do?

	7.4 Running a layout
	7.4.1 Writing Your Own Layout
	7.4.2 Edge Control Points
	7.4.3 Examples

	7.5 Using the layouts
	7.5.1 The Tree Layouts
	7.5.1.1 Tree Layout
	7.5.1.1.1 Alignment
	7.5.1.1.2 Orientation
	7.5.1.1.3 levelDistance and nodeDistance
	7.5.1.1.4 combineLevelNodes
	7.5.1.1.5 positionMultipleTrees and treeDistance

	7.5.1.2 Compact Tree Layout
	7.5.1.3 Radial Tree Layout

	7.5.2 Organic Layouts
	7.5.2.1 Spring Embedded
	7.5.2.2 Fast Organic Layout
	7.5.2.3 Inverted Self Organising Map
	7.5.2.4 Organic Layout
	7.5.2.4.1 isOptimizeNodeDistribution and nodeDistributionCostFactor
	7.5.2.4.2 isOptimizeEdgeLength and edgeLengthCostFactor
	7.5.2.4.3 isOptimizeEdgeCrossing and edgeCrossingCostFactor
	7.5.2.4.4 isOptimizeEdgeDistance, edgeDistanceCostFactor, isFineTuning and fineTuningRadius
	7.5.2.4.5 isOptimizeBorderLine, borderLineCostFactor and averageNodeArea
	7.5.2.4.6 minMoveRadius, initialMoveRadius and radiusScaleFactor
	7.5.2.4.7 maxIterations
	7.5.2.4.8 unchangedEnergyRoundTermination
	7.5.2.4.9 isDeterministic

	7.5.2.5 Hierarchical Layout
	7.5.2.5.1 Orientation
	7.5.2.5.2 Intra Node Distance and Inter Rank Cell Spacing
	7.5.2.5.3 isDeterministic

	7.5.3 Edge Routing
	7.5.3.1 Orthogonal Edge Routing

	7.5.4 Simple Layouts
	7.5.4.1 Circle Layout

	7.6 Using the Example Source Code
	7.6.1 The progress meter

	Appendix A – Definitions

