

Note: This document is not an implementation
plan nor does it necessarily reflect the exact
design of Chaco 2. It is still a work in
progress and lays out the initial ideas we had.

Chaco 2 Design
Authors: David Morrill, Peter Wang, and Brandon DuRette
Date: 12-Aug-05

1 Introduction... 2
2 Overview of the New Design.. 3
3 The Data Model .. 4

3.1 Data Series ... 4
3.2 Data Channel .. 5
3.3 Data Filter... 7
3.4 Data Source .. 8
3.5 Range.. 9
3.6 SelectionRange... 9

4 Plotting Primitives .. 9
4.1 Fundamentals ... 9

4.1.1 Transform... 9
4.1.2 Style and StyleSheet... 10
4.1.3 Layout .. 10

4.2 Visual Elements.. 12
4.2.1 Axis.. 12
4.2.2 Grid .. 12
4.2.3 Annotation.. 13
4.2.4 Renderer... 13
4.2.5 Frame ... 14
4.2.5.1 SimplePlotFrame ...14
4.2.5.2 PolarPlotFrame ..15
4.2.5.3 MapViewFrame ...15
4.2.5.4 ImageProfileFrame..15

5 Tools and Interactivity .. 15
5.1 Gestures.. 16
5.2 Object Model.. 17

5.2.1 GestureCompiler .. 17
5.2.2 EventManager .. 17
5.2.3 InteractionGroup .. 18
5.2.4 Shadow Tools... 18
5.2.5 Examples.. 18
5.2.5.1 Selection..18
5.2.5.2 Text and pan...18

12-Aug-05 1

6 Plots... 19
6.1 Anatomy of a simple plot ... 19
6.2 More complex plots.. 19

7 Who Writes What ... 19
8 Extensions and Future Direction... 19

8.1 Floating Annotations .. 19
8.2 2D Meshes.. 20
8.3 3-D Plots... 20
8.4 Interactive Plot Layout ... 20

9 Appendix A: Mathematical basis.. 21
10 Appendix B: Layout Implementation ... 22

10.1 Overview .. 22
10.2 Solver Wrapper Classes.. 22
10.3 Box Model Classes... 23

10.3.1 LayoutObject... 23
10.3.2 Anchor... 24
10.3.3 Box .. 24
10.3.4 LayoutContext and Frame... 25

10.4 Layout Procedure ... 26

1 Introduction
There are a number of existing Python-compatible plotting packages, and they each offer a large
variety of (mostly overlapping) standard plot types. Although almost all plot packages allow
customization of the appearance of labels, axes, grids, and legends, none of them combine
flexible visualization with interactive data manipulation; they are simply not designed with
active data manipulation in mind. Also, since none of these packages were built for the purpose
of embedding inside other applications, they lack a clean internal component model that
demarcates conceptual layers where application writers may extend the toolkit. Without this sort
of internal structure, any attempt at extension requires the programmer to understand and
interface with all the low-level objects in the system.

The Chaco plotting package has been designed to address these shortcomings. It has two
primary requirements: it must be powerful enough to express the myriad kinds of interactive data
views needed for the scientific applications we develop, while being simple enough that a
scientist can use it from the Python interpreter and visualize data directly with matlab or
gnuplot-like commands.

There is simply no reasonable way to build a monolithic system that meets both of these
requirements. Our approach to the problem separates it into two distinct systems: a flexible
plotting toolkit with support for rich data and user interaction built into its primitives, and an
interactive plotting tool constructed from this toolkit. The toolkit itself consists of separable
components with well-defined interfaces to ease the task of extending it for unforeseen plotting

12-Aug-05 2

Overview of the New Design

requirements. By adhering to these interfaces, extension writers can develop new plotting
primitives that interact well with the rest of the existing components. The interactive tool will
assemble specific pieces of the toolkit to expose the most useful set of functionality and plot
types to a non-programmer end user.

2 Overview of the New Design
Chaco’s primary requirement is to be flexible enough that it can meet the plotting demands of
unforeseen scientific applications. This forces the data model to have a mathematical basis, and
the presentation layer to be highly customizable and extensible. A treatment of the mathematical
rationale for the data model is given in Appendix A.

Chaco solves the problem of visual flexibility by treating all visual components as independent
elements on a canvas in any number of configurations. No assumptions are made about the
number or location of axes, grids, plot lines, legends, annotations, or any other plotting
primitives. Furthermore, user interaction with these elements is treated in an object-oriented
way.

All of the objects in Chaco can be broadly divided into three primary categories:

1. The Data Model consists of objects representing, transforming, and filtering input data.
These objects are generally based on numarray objects with thin wrappers to add
plotting-related attributes.

2. Plotting primitives are the visual components of a plot. Examples are different types of
axes, grids, legends, annotations (such as drop lines and pointer arrows), and plot
renderers. All plotting primitives are driven by data objects in the Data Model.

3. Tools are user interaction objects that can maintain state and can be visualized on the
plotting canvas. Though not all tools will need to maintain state or have a visual
representation, a tool is fundamentally driven by user-generated events.

Having these objects allows a great deal of flexibility in plot appearance, but it comes at the cost
of increased complexity. To mitigate this, Chaco also provides pre-assembled “plot widgets”
representing the most common types of plots a scientist or scientific application developer is
likely to encounter. These widgets are built entirely from objects in the categories above, and
can be customized and extended easily.

The interactive plotting tool is composed of interpreter-prompt-friendly commands that can
interact with these plot widgets in a live fashion, and it provides a rich palette of plot editing,
annotation, and inspection tools.

12-Aug-05 3

The Data Model

3 The Data Model
The Chaco data model consists of arrays and matrices of some basic data types, containers for
those arrays, and a pipeline model to combine and filter the containers. A connected pipeline of
raw data, intermediate containers, and filters is wrapped up in a DataSource for the end user.
The following sections describe each of these elements in more detail.

3.1 Data Series
Chaco has three fundamental data types: scalar, vector (a pair of scalars), and text. DataSeries
are arrays or matrices of one of these types (along with optional Nulls):

1. ScalarArray: An array of scalars.
Example: [-0.5, -0.3, 1.1, 2.3, 2.7]

2. VectorArray: An array of vectors. Useful for representing 2D data where there is no
regular sampling or it is inconvenient to separate the components into two 1D arrays.
Example: [(0.1, -3.2), (0.6, -1.0), (0.87, 0.3), (1.2, 0.8)]

3. ScalarGrid: A 2D matrix of scalars. This is used as an optimized representation for
bitmapped, grayscale image data.
Example: [[0.8, 1.3, 10.9, 12.7],
 [2.2, 2.7, 6.5, 7.4],
 [1.7, 4.4, 3.6, 3.8]]

4. VectorGrid: A 2D matrix of vectors. Used for vector maps.
Example: [[(1.2, 0.3), (-2.2, 2.3), (-0.4, -0.6)],
 [(3.0, 2.5), (1.5, 1.8), (-0.6, 1.7)]]

5. TextArray: A linear array of text strings.
Example: [“Trial 5”, “Trial 6”, “Trial 8”]

In all cases, values may be None. TextSeries are used in rare cases when large numbers of text
annotations are needed, such as in some bar or histogram plots. Renderers can generally accept
them as a batch of labels for the index data series.

The base class for the concrete DataSeries above is AbstractDataSeries:

class AbstractDataSeries (HasStrictTraits):
 name = Str
 data_modified = Event
 index_type = None
 annotations = List(Tuple(index_type, Annotation))

12-Aug-05 4

The Data Model

 def get_data(self, mask1 = None):
 # Return data (possibly filtered using optional mask)

 def get_annotations(self, mask = None):
 # Return list of annotated points and their annotations with
 # optional mask

Mathematically, all DataSeries types can be indexed in some fashion, since they are either arrays
or matrices. This natural indexing may not always make conceptual sense2, but it is a
mechanism for addressing specific elements in the DataSeries. There are two major uses for the
indices: associating annotations with a particular element, and using bitmasks to select a subset
of elements. These are both described in more detail in sections below (see “Annotations” and
“Selections”).

Scalar data arrays are very common, and there are many optimizations and special algorithms
that can operate on them if their elements are in numerical order. Consequently, there is a
special flag on scalar arrays to indicate this. (Other data series types cannot be meaningfully
ordered.)

3.2 Data Channel
A DataChannel is any object that can provide an index DataSeries and zero or more value
DataSeries. The dimensionalities of the index and value data series don’t have to be the same,
but the index series must be the same lengths as its value series.

DataChannels are passed as input to plot renderers, and renderers will only work with
DataChannels that supply index and value data series of correct dimensionality. If a user wants
to visualize slices of data through a multi-dimensional volume, he has to either manually extract
slices of appropriate dimensionality to pass into pre-supplied DataChannels, or he can subclass
an existing DataChannel type and override the index and value traits with functions that
extract data on request.

The possible combinations of index and value series types are tabulated below.

1 The mask parameter is used for filtering and is explained in more depth in the DataFilter section below.
2 E.g. a collection of points in a 2D plane has no meaningful concept of “the first point” or “the Nth point”.

12-Aug-05 5

The Data Model

Index type Value type Plot type Notes

None line graph
ScalarArray ScalarArray XY, Scatter, Polar,

bar/column,

None curves, contours also same as Scalar-Scalar plots

ScalarArray 3D curves gradient contours, relief meshes VectorArray

VectorArray Vectored lines

ScalarGrid Image Planes have intrinsic indices.

VectorGrid Vector field Planes have intrinsic indices.

The DataChannel base class is relatively generic, and illustrates that a DataChannel is really just
a container for DataSeries. The filters trait is used to attach DataFilters to the channel, and
the data_modified event allows other objects to listen for data changes on this data channel.

class AbstractDataChannel(HasStrictTraits):
 _index = Instance(AbstractDataSeries)
 _values = List(AbstractDataSeries)
 _index_range = Instance(AbstractDataRange)
 _value_ranges = List(AbstractDataRange)
 filters = List(AbstractDataFilter)
 data_modified = Event

 def get_index(self):
 # Returns the data elements in the index range
 def get_value(self, series = 0):
 # Returns _values[series], filtered by the value range
 def get_values(self):
 # Returns a list of value DataSeries, all filtered by the
 # value range

Concrete subclasses of AbstractDataChannel exist only to explicitly enforce dimensionality,
type, and multiplicity constraints on DataSeries. This makes it easy for a third-party object to
treat DataChannels in a generic fashion without having to know a priori what sorts of DataSeries
they may have.

12-Aug-05 6

The Data Model

class ScalarDataChannel(AbstractDataChannel):
 _index = Instance(ScalarSeries)
 _values = List(ScalarSeries)
 filters = List(ScalarDataFilter)

class PlanarDataChannel(AbstractDataChannel):
 _index = None
 _u_range = Tuple(Float, Float)
 _v_range = Tuple(Float, Float)
 def get_index(self):
 # Returns

3.3 Data Filter
There are a number of different needs for filtering or selecting sub-regions of a data series. The
most obvious is the notion of representing a range in data space; other uses include
downsampling and generating secondary data such as contour lines or trend lines. There isn’t a
single abstract interface for filters, since they can take so many forms. However, data filters can
be broken down into three major categories:

1. ArrayFilters operate on linearly-indexed data series and generally maintain little to no
state. They produce a bitmask as opposed to returning or extracting actual data from their
input DataSeries. This allows for easy composition of ArrayFilters and also allows the
result of a filter on an index series to easily be applied to multiple value data series.

2. MatrixFilters are like ArrayFilters, but for planar DataSeries3. They also return a
masking matrix, for the same reasons as ArrayFilter.

3. DataChannelFilters can take an entire channel as input and generate new dataseries as
output. Alternatively, they can masquerade as DataChannels, with their own internal
dataseries. These can frequently be viewed as “adapters” that allow DataChannels to
interact with otherwise incompatible Renderers.

class ArrayFilter(HasStrictTraits):
 inputData = Trait(None, ScalarSeries, PointSeries)

 def get_data(self):
 # Returns the actual values that the filter accepted
 def get_mask(self):
 # Returns a bitmask where 1 indicates a passing data point

3 Because filtering can be an expensive process, it’s important to make the distinctions and
parameterize filter types based on DataSeries type.

12-Aug-05 7

The Data Model

class ChannelFilter(HasStrictTraits):
 inputChannel = Trait(None, AbstractDataChannel)
 index = Property(_get_index, _set_index)
 values = Property(_get_values, _set_values)

Some examples of data filters are:

• RangeFilter – The most commonly used and simplest subclass of ArrayFilter. It has an
internal setting for minimum and maximum value, and it is created by a Range object and
attached to the appropriate DataSeries.

• ChannelSplittingFilter – This ChannelFilter takes a DataChannel with one index and N
multiple values and creates N new data channels that each have a single index and a
single value.

• ContourFilter – This filter accepts a ScalarPlane as input and returns a bunch of
PointSeries representing the contours on the ScalarPlane.

3.4 Data Source
DataSources are higher-level Chaco objects that wrap DataChannels and DataFilters into larger
bundles of functionality for the end-user. They can be directly interfaced with Renderers of
appropriate type, and they are somewhat specialized for the user’s problem domain.

One of the key functions of the DataSource is to hide as much of the pipeline machinery from the
user as possible. Another feature of DataSources is that they can accept filters that apply to all of
their internal data channels. This is used by Tools to apply selection ranges across multiple
renderers and DataChannels.

Some example DataSources are:

• XYDataSource – accepts X versus Y input series in several formats: [index, val1…valN],
[index, [val1…valN]], [None, val1…valN]. In the last case, autogenerates an integer
index series corresponding to the length of the longest value series. Produces
DataChannels compatible with any ScalarSeries – ScalarSeries renderer (including
Polar).

• HistogramDataSource – Can be configured with uniform number of bins or a custom list
of bin widths. Takes an input list and creates the necessary internal DataSeries to
represent a histogram of that list on the provided bin space. If multiple input lists are
provided, then produces multiple overlapping histograms. Produces DataChannels
compatible with any ScalarSeries – ScalarSeries renderer (including Polar).

• ImageDataSouce – Accepts a matrix or list of lists and creates a single image
DataChannel. Can accept a colormap optional argument.

12-Aug-05 8

Plotting Primitives

3.5 Range
Range objects are fundamental to the notion of plotting. Each DataSeries inside a DataChannel
has a Range attached to it. A single Range object might be shared among several different
DataSeries (in the same DataChannel or in different DataChannels). Fundamentally the Range
produces a RangeFilter that DataChannels use implicitly to filter their DataSeries. However,
each Range can be configured to have a set max/min or to be “autoscaling”, in which case they
set one or both limits according to the maximal values of the DataSeries to which they are linked.

Note that this does imply that a Range knows about its user DataSeries. To manage this
effectively, they attach trait event handlers to receive notification of data changes, and they cache
values for large DataSeries. They are also optimized to handle sorted DataSeries in a much more
efficient manner.

Ranges can also be annotated, and in fact may possess a different annotation for each type of
DataSeries (represented as an internal map of {DataSeriesType: Annotation}).

3.6 SelectionRange
Selections are not a fundamental data type, but are instead a collection of Ranges. They are
created by Tools (or programmatically) and are attached to DataChannels in the same way
Ranges are. Renderers using those DataChannels can explicitly query for any attached
SelectionRanges and render that data in a different manner. Alternatively, SelectionRanges can
be attached to a DataSource or series within a DataSource, and the DataSource will alias it to
each of its DataChannels.

Although SelectionRanges are primarily used to indicate user-selected data to a Renderer to
highlight differently, they can be used as a general way of highlighting sub-ranges of a main data
series, both disjoint and continuous. Since each constituent Range object in the SelectionRange
can have an annotation,

4 Plotting Primitives

4.1 Fundamentals

4.1.1 Transform
Although a Transform is not a visual element, it plays a crucial (albeit simple) role in the
determining the final appearance of any visual element. It is merely an planar geometric
transform consisting of scale, translation, and rotation. This transform takes place at the lowest
levels of the drawing code; in the case of Chaco, transforms are set up through Kiva and affect
all drawing functions called by the visual element.

12-Aug-05 9

Plotting Primitives

class Transform(HasStrictTraits):
 scale = Float(1.0)
 translation = Tuple(Float, Float)
 rotation = Float(0.0)

4.1.2 Style and StyleSheet
All visual elements have aspects of their appearance that can be modified by the user. Renderers
have a selection of symbols and line formats; axes have a variety of tickmark mechanisms and
options; grids can be rendered with different line styles in each dimension. Almost all visual
elements have meaningful border, color, and background appearance options.

To most generally represent this, objects have a list of different “appearance classes” to which
they belong; this information is inferred from their class or type and can be explicitly overridden
on a per-object basis. Examples of appearance classes are “LineOverlay”, “DataPoint”,
“DataLine”, “DataArea”, “Box”, “Text”, etc. Each appearance class has variety of visual options
that can apply meaningfully to any object in it, and a specific set of visual options is referred to
as a Style.

For example, the LineOverlayDrawer family includes all Axis, Grid, and TrendLine objects.
The visual options applicable to it are line width, line style, and line foreground and background
colors. BasicLine is then a Style on the LineOverlayDrawer class that specifies a line width of 2
pixels, a stippled line style, and a color of black on white. Styles may choose not to specify a
preference for some options; this allows them to be “stacked” or to “mask” one another.

The goal of a Stylesheet is to standardize the appearance of objects of similar type across a plot.
In its simplest form, a Stylesheet is just a mapping of appearance class to Style. This would
allow for a plot to make all Text labels have the same appearance. The stylesheet can also use
more specific keys than just the appearance class; it may contain mappings from specific types to
Styles as well. An object’s value for a given option is determined by the most specific style
mapping that explicitly sets that option. If no Style explicitly sets the option, it defers to the
default, background Stylesheet.

Consider a simple plot with two axes and a grid. The underlying plot-wide Stylesheet specifies a
linestyle of “black, solid, 2-pixel” for the LineOverlay class. The PlotWidget has, in response to
user preferences, created a new entry in the Stylesheet that maps Axis objects to a new LineStyle
specifying gray foreground color and 4 pixel width. When each of the axes renders itself, it
checks to see if it has any explicit visual preferences set on it. If not, it then consults its
Stylesheet and checks for entries for LinearAxis, Axis, and LineOverlay classes (in that order).

4.1.3 Layout
The problem of visual object layout applies to most graphical applications, and Chaco is no
exception. However, the layout demands of a plotting system are somewhat more complicated
than those of a typical GUI application. Whereas normal application widgets and sub-panels are
regularly aligned either with their containers or with adjacent items, Chaco objects may form a

12-Aug-05 10

Plotting Primitives

complex set of alignments with objects outside their parent or be subject to a series of “soft”
preferences while being laid out on an open space. An example of the former is aligning data
labels and annotations between multiple plots, and an example of the latter is positioning contour
and data labels on a plot in an aesthetically pleasing manner.

The core layout system is built on two fundamental concepts: anchors and constraints. An
anchor represents an (X, Y) position in screen space, and a constraint is a linear algebraic
equation or inequality involving the X and Y positions of anchor points. A constraint
equation/inequality may be given weights, so that “required” constraints must be satisfied (or the
system returns an error) and “non-required” constraints are satisfied in a priority-sorted order.

Although this small set of concepts is sufficiently powerful to express all the layout conditions
necessary for Chaco's plotting, they can be cumbersome to use directly. Thus, Chaco
additionally offers a higher-level, box-based layout system. By using this system, not only is the
programmer saved the trouble of writing myriad constraint relations by hand, but he is also
entirely shielded from dealing with constraint weights.

Each visual element in Chaco defines at least one layout box and optional anchors. Users create
the visual layout with more intuitive directives specifying positional and size alignment relative
to other boxes or anchors within those boxes. Users can also modify box attributes such as
margins and aspect ratio. These attributes and inter-box relationships are automatically
translated into a set of constraint equations between anchors, which are then passed into the core
constraint solver.

Some visual elements will define two layout boxes, one representing the entire rendering area of
the element and one representing just the area into which data-related graphics will be rendered.
In this way, objects such as axes and renderers can ensure their data representations are faithfully
aligned in screen space while being free to add decorators like arrowheads or fancy borders that
extend beyond the data region.

Some visual elements (such as the renderer, axis, and grid) may provide auxiliary functions to
create anchor points colocated with features of significance. For all data-related visual elements,
the origin sometimes holds particular significance; thus, they might implement a
GetOriginAnchor() function (which may return None if the origin is not within the visible data
range). Visual elements that have a notion of selection may also present functions representing
the bounds of the selection region. Renderers may choose to provide anchors corresponding to
suitable locations for data legends or other annotation points. There is no generic mechanism for
registering or discovering what special anchors are available on a given visual element; using
such anchors is purely the responsibility of the programmer assembling the elements within the
Frame.

In order for the layout system to assign sensible values to free constraint variables, visual
elements must be able to provide size hints about themselves: minimum height/width, maximum
height/width, and whether to try to preserve aspect ratio when scaling. The layout system uses
these hints to set free variables and create new constraints to express how to divide up free space.

For information on the implementation details of the layout system, see Section 9.

12-Aug-05 11

Plotting Primitives

4.2 Visual Elements
This is the abstract base class for all graphical elements in the Chaco system.

class AbstractVisualElement(HasStrictTraits):
 parent = Trait(AbstractVisualElement)
 style = Trait(Style)
 stylesheet = Delegate(parent, “stylesheet”)
 styleclasses = List(Trait(StyleClass))
 transform = Trait(Transform)

4.2.1 Axis
In general, an axis is a line or curve representing the span of a data series. In most cases, the axis
is aligned with the orientation of the index or value data in a renderer. This is not always the
case, however, as skew axes may sometimes be embedded in 2D image plots to indicate contour
scales or other dimensions of data. In all conceivable cases, an Axis represents some range of
values in a single dimension. To reflect this, the Axis base class requires a single Range as its
sole input. Any additional commonalities between axis types must be factored into more
specialized base classes parameterized on the shape of the axis.

AbstractAxis
 AbstractLinearAxis
 LinearAxis
 LogAxis
 BinningAxis
 AbstractCircularAxis
 CircularAxis
 CircularLogAxis
 CircularBinningAxis
 AbstractSplineAxis
 SplineAxis
 SplineLogAxis

class AbstractAxis(AbstractVisualElement):
 range = Trait(DataRange)
 def ToScreenCoords(list_of_values)

4.2.2 Grid
There are too many grid types to be able to meaningfully generalize them all into a few core
concepts. However, every grid has a direct relationship with the axes lined up along its sides: in
almost all cases, each axis defines the intercepts between itself and transverse grid lines. The
shape of those transverse grid lines is contingent on the type of the transverse axis, but the Grid
can determine how many lines to draw and ask the axis to calculate where to root them. This
interaction between grids and axes allows a few simple, general-case grids to be built, and makes

12-Aug-05 12

Plotting Primitives

writing custom “strange” grids easier by allowing them to leverage the algorithms already
developed for the corresponding axes.

class RectGrid(AbstractVisualElement):
 x_axis = Trait(AbstractLinearAxis)
 y_axis = Trait(AbstractLinearAxis)

class PolarGrid(AbstractVisualElement):
 r_axis = Trait(AbstractLinearAxis)
 theta_axis = Trait(AbstractCircularAxis)

A generalized spline grid is possible if the Axis object can generate both a position and
a transform in screen space for any given data point. (This may be expensive in some cases,
but it works well for others.) Each axis’s transform is used to draw simplified renditions of the
other axis, and the net effect is a spline grid.
class SplineGrid(AbstractVisualElement):
 x_axis = Trait(AbstractSplineAxis)
 y_axis = Trait(AbstractSplineAxis)

4.2.3 Annotation
An Annotation is one of a large number of different text or symbolic graphics meaningfully
attached to a data point or data range. It can be as simple as a text label on a single data point, or
as complicated as a trend line approximating a series of selected data points. Drop lines,
indicator arrows, data labels, and text boxes are all examples of annotations.

The Frame is responsible for hooking up the Annotation pipeline. To do so, it will pass a
DataChannel and a Renderer to an AnnotationRenderer. The AnnotationRenderer can extract the
indices of annotated points from the DataChannel, and it can use the Renderer to map those
points from data space into world space. It then performs the task of rendering visual primitives
such as polygons, symbols, or lines onto the canvas.

4.2.4 Renderer
This class of visual elements is responsible for the actual drawing of data into screen space. It is
also responsible for performing translations from screen coordinates back into data space, either
as a location in the U and V ranges, or as an index into the data channels.

AbstractRenderer
 RectRenderer
 PointRenderer
 LineRenderer
 BarRenderer
 ColumnRenderer
 AreaRenderer
 FilledCurveRenderer

12-Aug-05 13

Plotting Primitives

 ErrorBarRenderer
 CandlestickRenderer
 DistributionRenderer
 ImageRenderer
 MapRenderer
 VectorMapRenderer
 PolarRenderer
 (polar equivalents of above)

Most renderers support multiple value data series for a single index data series, e.g. multiple plot
lines in a PlotRenderer or stacked bars in a BarRenderer. Also, some of these renderers are thin
wrappers for other renderers. For instance, the Bar renderer just wraps the Column renderer with
a rotation transformation. (However, the same is not possible in Polar coordinates.)

4.2.5 Frame
The Frame is the object that ties together a group of VisualElements (including other
Frames) into a single logical “plot”. The Frame’s responsibilities are limited primarily to layout
and basic event dispatch for its visual elements. In general, it is not responsible for connecting
any of the VisualElements to their respective data sources. However, in some cases where
plots are dynamically generated, the Frame may take on some data management roles. A
Frame is essentially a visual template or skeleton for how an actual plot or multi-plot layout will
look. Any dynamic behavior that affects this underlying visual skeleton will need to have some
portion of its logic in the Frame.

Chaco provides some basic frames for the most common types of plots, but more complex multi-
plot layouts whose interactions are more sophisticated than what can be expressed at the
PlotWidget level will require custom Frames.

The following examples of real subclasses will help illustrate the role of the Frame.

4.2.5.1 SimplePlotFrame
This frame represents the classic simple, rectilinear plot with two axes, a grid, a rendering area
(which may host multiple renderers), and a label across the top. This type of frame does not care
what type of renderers it may contain - it can be a LineRenderer or an ImageRenderer, as
long as having two axes makes sense. The axes can be linear or log scale, and the grid can be
turned off. These are all revealed as styles of the Frame, but internally they map to styles on
underlying objects. (Note that while changing an axis from one scale to another appears as a
style change to the user, it actually triggers a method on the PlotWidget containing this
Frame that swaps axis instances.)

Multiple overlapping renderers can be used to either overlay data or to present the illusion of a
single, more complicated plot. For instance, an ErrorBarRenderer might be overlayed with
two LineRenderers to create the appearance of a single Bounded Error Bar plot. (In such a
case, it is the parent PlotWidget’s responsibility to connect data objects to the auxiliary
LineRenderers.)

12-Aug-05 14

Tools and Interactivity

Examples of plots that can utilize SimplePlotFrame: XY Scatter, XY Line, Column, Bar,
Area, Stacked Area, Histogram, Candlestick/HLOC Stock, Error Bar/Distribution, 2D Image,
Vector, 2D Vector

4.2.5.2 PolarPlotFrame
This frame is a standard polar view with a radial axis and an angular axis. It may also contain
standard decorators like a title, legend, and grid. Although the default view shows the entire
circle, the Frame can also show just a quadrant.

Examples of plot types that can utilize PolarPlotFrame: Polar Scatter, Polar Line, Polar
Column/Sector graph, Polar Bar, Polar/Circular Area, Polar Vector, Star/Radar graph, Polar
Image

4.2.5.3 MapViewFrame
This Frame is specially tailored for maps or GIS renderers. It has no axes but has an instance of
CartographicGrid (or one of its subclasses that represent different projection types) to
draw latitude and longitude curves across the rendering area. The only renderer that can be used
with this frame is the MapRenderer, and there is a set of special actions for this renderer that
take into account the degrees-minutes-seconds coordinate system underlying the map data.

Unlike scientific plots where there is typically a single legend that floats inside the plot area, map
views frequently have many legends (scale, location, projection parameters, etc) and even
embedded sub-plots. MapViewFrame supports any number of these legends and sub-frames to
be arranged along the inside border of the plot area (in traditional cartographic style).

4.2.5.4 ImageProfileFrame
Although a contour renderer can be placed inside a SimplePlotFrame, the ImageProfileFrame is a
multi-renderer layout that consists of a main plot area, two axes, one thin horizontal plot located
beneath the X-axis and spanning the width of the main plot, and one narrow vertical plot located
to the left of the Y-axis and spanning the height of the main plot.

This frame enables the creation of an ImageProfilePlot that presents a 2D image plot and
automatically draws the profile along slices in X and Y centered at whatever point the user clicks
in the main plot area.

5 Tools and Interactivity
In Chaco, plotting is not merely a means of visualizing data, but is also a means of interacting
with and editing data. This section describes the Chaco event model, the interaction framework,
and the default interaction tools that Chaco will provide.

The key design drivers were:

• Interactions (such as selection) should be visible on all views of the same data.

12-Aug-05 15

Tools and Interactivity

• Each application is unique, so the framework must be extensible enough to allow
application developers to create their own interaction paradigms.

• Many applications make use of the same interaction paradigms. To facilitate rapid
development of new applications, the common interaction paradigms should be
provided by the framework in a way that is not dependent on the data source.

To satisfy these requirements, Chaco provides some basic event dispatch and methods, and
provides a model that gives the tool writer maximal flexibility. This does mean, however, that
writing an interactive tool will be more challenging than writing a new Renderer type, since the
range of possible tools is open ended, and the event-handling system cannot provide as rich of an
API.

5.1 Gestures
To simplify the event handling, raw mouse events are hidden from the programmer and wrapped
into events called “gestures”. Instead of handling left-down and left-up separately, the
programmer sees those two mouse events as a single “left-click” gesture. If left-down and left-
up are combined with intermediary mouse-moves, they become “left-drag-start”, “left-drag”, and
“left-drag-complete” gestures. Gestures can be qualified by the state of the modifier keys Shift,
Control, and Alt. When the user performs a gesture, each visual element below the gesture will
be notified. Visual elements pass these gestures along to their gesture event listeners, called
“tools”.

A tool may operate in one of three modes: observer, consumer, or dynamic. An observer tool
does not get exclusive gesture notification. A consumer tool gets a chance to handle the event
and terminate its propagation to other consumer tools (but not observers). Dynamic tools are a
hybrid and may choose to consume or merely observe each event as it comes in.

For instance, a "locator" tool that observes mouse move events and updates a status bar is an
observer – it expects to receive all mouse move events regardless of what other tools are attached
to the plot. An example of a consumer is a “draw” tool that creates new data points on a plot.
Once it receives the left-click event, it creates a new point and disallows any other tools from
being able to handle the gesture.

To support the three modes of tool behavior, each gesture will generate up to three events per
visual element:

• an “observe” event (e.g. “observe_right_click”) that is passed to all the visual elements and
on to to their observer tools

• a “pre” event that propagates from the outermost container (and farthest from the user in Z-
order) to the innermost

• the actual event that propagates from the innermost object back down to the parent container

These last two events follow the Enable event propagation model and allow for a parent
container to block or modify events passing to its children. If at any time a pre-event or event is

12-Aug-05 16

Tools and Interactivity

marked as handled, event propagation for the gesture is terminated, and no other tools or visual
elements have the opportunity to act on the event.

5.2 Object Model
A Chaco Tool is a high-level object that can be as simple as a “mouse_move” event handler that
reports data coordinates to something as complex as a polyline drawer on a 2D contour that
simultaneously generates profile views into the volume. In an MVC view of Chaco, all Tools are
fundamentally Controllers; they originate events that change model state. At a more concrete
level, however, Tools themselves sometimes have model that needs to be rendered onto the
screen. In the MVC analysis of Tools, they can frequently be modeled by DataSources, and their
views are most appropriately generated by plot renderers. A Tool owns all of the incidental data
pipeline objects and visual primitives that it creates, and they are destroyed when the tool ceases
to be active.

Chaco plots follow the Photoshop model of having a single active tool at any point in time. This
tool may have state, such as the line path with the Line drawing tool. Sometimes the tool may
have state that persists across tool changes; consider the behavior of the Select tool when the user
switches to the Magnify tool to zoom in and then switches back. The user might not necessarily
have an explicit tool palette (as in Photoshop); however, the higher-level plot widget may
intercept raw mouse or keyboard events and use those to set the active tool for the plot. (For
instance, if the user holds down the Shift key, a Zoom tool is instantiated and activated, and if
the user holds down the right mouse button and initiates a drag, a LineDraw tool is instantiated.)
To support tool persistence across tool changes, the “active tool” is treated as a stack, and tools
that should be persistent just get pushed down the stack instead of getting popped off altogether.

5.2.1 GestureCompiler
Subclasses of GestureCompiler turn low-level Enable events into gestures. Usually a high-
level Plot will instantiate a default GestureCompiler and either use it for all event
handling or use it as the default handler and override certain Enable event handlers to customize
functionality. There will be several different GestureCompilers provided with Chaco, each
representing varying degrees of user interactivity.

5.2.2 EventManager
The EventManager is the central coordinator for plot interactions. It has several
responsibilities: making existing plot items available to tools when the tools are created;
notifying interested tools when new plot items become available; and composing mouse events
into gestures and managing the gesture notification process.

The EventManager has a list of its InteractionGroups and (as a possible optimization)
their bounding boxes on the screen. Since it is the top-level event handling object, the Plot
should contain it.

12-Aug-05 17

Tools and Interactivity

5.2.3 InteractionGroup
Whereas typical UI applications have an event handling hierarchy that is implicitly identical to
the visual layout hierarchy, Chaco breaks this down into two distinct entities and
InteractionGroups represent the event handling one. Plotting primitives are aggregated
into InteractionGroups which represent conceptual zones of interaction with a Tool.
Although each primitive can be part of their own InteractionGroup, they usually delegate
membership to their parent.

An InteractionGroup’s behavioral coherence is defined by its Tool stack. If a user has
selected a region in one primitive and performs a “deselect” on another primitive in the same
InteractionGroup, then the selection in the former disappears. Another important feature
of InteractionGroups is that objects wishing to ignore interactions from their parents or
that wish to behave in “strange” ways can do so simply by setting their InteractionGroup
to None or delegating to that of a peer or unrelated object.

In general, however, objects representing views of the same data or drawn near one another
should belong to the same InteractionGroup; an interactive application that does not
adhere to this will probably be disorienting for the user.

5.2.4 Shadow Tools
Although not an explicit class, Shadow tools are Tools driven by events forwarded from other
Tools and not explicitly by the user. This allows a single Tool to act as a composite of multiple
tools. In general, this is useful for integrating the behavior of Tools on multi-plot layouts, where
different renderers of different types require differing visual representations of the same concept.

5.2.5 Examples

5.2.5.1 Selection
Consider a rectangular Selection tool on a scatter plot that has an accompanying histogram
located below the X axis. Both plots share the same DataSource and InteractionGroup. When
the select tool operates on the scatter plot, it adds a SelectionRange to the DataSource of the
scatter plot, which causes both the scatter and the histogram plots to highlight the appropriate
data ranges. The Tool also has a visual appearance of “crawling ants” overlaid on top of the
Scatter renderer. When the user selects the Data Modification tool to change a point in the
dataset, the Selection tool is pushed lower in the tool stack and its visual representation is
switched into the “backgrounded” state. When the user finishes data modification, that tool is
popped off the stack and the Selection tool is once more in the foreground. This restores its
visual representation, and allows it to consume input gestures.

5.2.5.2 Text and pan
The user is using the Text Annotation tool to type a description into a certain region in the plot.
He wants to move the text over a bit, and doing so requires panning the plot to the side. The plot

12-Aug-05 18

Plots

has been configured such that a right-click-drag performs a Pan. As soon as he begins this
gesture, the EventManager instantiates a new Pan tool and pushes it onto the renderer’s
InteractionGroup. The Text Annotation tool receives event notification that it’s been
backgrounded and it switches off its cursor (leaving the partially filled text box on the screen).
The Pan tool then intercepts all the drag gestures as the user pans through the plot. As soon as he
releases the right mouse button, the drag_complete gesture is fired and the EventManager pops
the Pan tool off the stack. The Text Annotation tool receives another event notification that it’s
the foreground tool, and draws a cursor to indicate to the user that it’s ready to accept more text.

6 Plots
A Chaco Plot is a high-level object that encapsulates many of the objects in the data model, the
visual layer, and the event handling system. While there are some built-in Plots representing
the common plot types, application writers should be able to easily assemble their own custom
Plots, or customize the built-in ones.

6.1 Anatomy of a simple plot

6.2 More complex plots

7 Who Writes What
There are three primary layers of Chaco:

1. Core Functionality: Data primitives, layout primitives, event handling facilities

2. Low-level primitives: Layout primitives,

8 Extensions and Future Direction
Although most of the objects in Chaco can be subclassed to add new types of plotting
functionality, this section deals with extending the conceptual space of Chaco’s underlying
visualization model.

8.1 Floating Annotations
Attaching annotations to arbitrary points in data space is not a difficult problem; however, the
question of which approach best fits the rest of the Chaco data model is somewhat tricky. After
more design work, Chaco should be able to seamlessly support labeled ranges and regions that

12-Aug-05 19

Extensions and Future Direction

“float” in the data space. (As a temporary hack, a Null point can be inserted in the DataSeries
and an Annotation can be attached to that.) Most of the issues that makes this a non-obvious
problem occur in the context of filtering and downsampling.

8.2 2D Meshes
Chaco’s support for image data is strictly limited to regular, evenly-spaced matrices of data (with
support for NULL values). The data pipeline makes an assumption that all DataSeries can be
parametrized either with an index or pair of indices. However, in some cases the most natural
representation of 2D data is as a vertex mesh with scalar or vector values at each vertex. Such
meshes do not lend themselves to parameterization by either a single or a pair of indices. The
existing data model would not have to be significantly refactored (if at all) to support such vertex
meshes, but a lot of classes would have to be built to support notions such as Range and
bitmasking on a mesh (if those notions are even valid).

8.3 3-D Plots
Many of the concepts in Chaco are simplifications or two-dimensional realizations of general
visualization concepts. One of the most implicit assumptions in the current design is that index
data series can be at most two-dimensional. Extending Chaco to support 3D plots requires
additional complexity across the board, and raises the question of where Chaco ends and VTK
begins. There is a great deal of interesting functionality that resides in the gray middle space
between the two packages, however. Just by supporting simple orthographic projects and basic
surface and mesh rendering, Chaco would be able to render 3D bar charts and other presentation
graphics, as well as gnuplot’s splot()-style graphs. There are many interesting 3D plots that do
not require the full-blown horsepower of VTK, and extending Chaco to support these seamlessly
with 2D plots is an obvious extension.

8.4 Interactive Plot Layout
Chaco’s plot layout mechanism is hopefully simple enough to be used by novice programmers or
scientist hackers, but powerful enough to express multi-plot layouts. This system can still be
improved, however. The Interactive Plot Tool can be extended with features to write any given
plot to disk as a stand-alone Chaco plot application. These plot applications can have some pre-
defined style of accepting input data channels, either from the command line, standard input, or
files on disk. Users can then distribute them to other users to plot their data, or integrate the
source code of the main Plot widget into their own application.

This tool is only a layout tool, and has no implicit notion of data pipeline or tool configuration.
Setting those up will have to be done outside the layout tool.

12-Aug-05 20

Appendix A: Mathematical basis

9 Appendix A: Mathematical basis
This section covers the mathematical basis for the data model presented in section 2, and is
presented as a reference for the developers and extension writers.

Fundamentally, the task of plotting is one of transformation. Typically this transformation also
includes data extraction and reduction. In its most distilled form, 2D plotting is the process of
mapping some indexed data into shapes, colors, or colored shapes on a two-dimensional canvas.
The data used for the index can either be structured or unstructured; that is, it can be
characterized as having some underlying regular structure, or it cannot. It can also be one
dimensional (like an array) or two dimensional (like a matrix). Lastly, the value at each position
can be of 1 or 2 dimensions. At first glance, this breakdown suggests 8 different fundamental
data series.

Shape Structure Dimension Name
1 regular sequence

[1,3,5,7,9,11] regular
2 regular point sequence

[(1,3), (3,4), (5,6), (7,7)]

1 sequence
[0.3, 1.1, 4.0, -3.1]

array

unstructured
2 point sequence

[(-2,1), (3,5), (1,1)]
1 grayscale image regular 2 vector map
1 non-uniform image matrix

unstructured 2 non-uniform vector map

Some of these data series are useless, inefficient, or redundant:

• Regular array data can be represented in the same way as unstructured array data. For
optimization purposes, a flag can be placed to indicate that the array is ordered. (This is
only meaningful for the 1-dimensional case.)

• Unstructured matrix data isn’t really very meaningful or common in data analysis. In
case someone needs to represent such, they can always resort to either using 2-
dimensional arrays (if the data is sparse) or using a regular matrix coupled with some
transformation function to map back into unstructured space.

The remaining data series types are what Chaco uses.

12-Aug-05 21

Appendix B: Layout Implementation

10 Appendix B: Layout Implementation

10.1 Overview
The constraint solver uses an algorithm called Cassowary from a group at the University of
Washington. This algorithm is an adaptation of the simplex method for solving linear
programming problems to the domain of solving UI layout systems. The authors of Cassowary
have a C++ implementation with an accompanying Python wrapper, and we have obtained
permission from them to use and re-distribute this implementation under the BSD license.

The layout system consists of constraint solver classes, which are just Python wrappers for the
C++ classes in the Cassowary implementation, and box model classes that use or wrap the
constraint solver classes.

10.2 Solver Wrapper Classes
- Variable: A variable in the constraint optimization problem

- Constraint: Abstract base class representing a constraint for the solver

- LinearExpression: Represents a mathematical expression involving linear
combinations of variables and scalars

- LinearEquality: A subclass of Constraint and LinearExpression that is
interpreted as having a value equal to zero.

- LinearInequality: A subclass of Constraint and LinearExpression that is
interpreted as having a value greater than or equal to zero.

- LayoutSolver: An instance of the actual solver. Constraints are added by
passing LinearEquality or LinearInequality instances to the
AddConstraint() method.

The Variable and LinearExpression classes overload the arithmetic operators to allow
the user to write algebraic expressions involving them. For example, if x and y are instances of
Variable, the following produces a LinearExpression:

3*(x + (y-2))

If a LinearExpression or Variable instance encounters any equality or inequality
operator (<, >, =, <=, >=), it produces a LinearEquality or LinearInequality
instance, which can then be handed to the LayoutSolver as a constraint:

3*x <= ((5+y) – x) / 2

12-Aug-05 22

Appendix B: Layout Implementation

Note that LinearEquality and LinearInequality automatically adjust themselves to
be expressed in one of the normalized forms:

LinearEquality: expr = 0
LinearInequality: expr >= 0

Users wishing for more fine-grained control over layout than what the box model offers (see
below) can write their own Constraint equations using member Variables of Box and
Anchor instances. Note that Constraint equations are linear equalities or inequalities
involving Variable and scalar reals; that is, Variable instances cannot multiply one another
or appear in the denominator of a fraction.

myFrame.AddConstraint(2*boxA.width <= boxB.width)
myFrame.AddConstraint(boxA.width <= 0.6 * boxA.height)
myFrame.AddConstraint(boxA.center = boxB.right + 50)

With such flexibility comes the burden of making sure the constraints are sensible. The solver
will be unable to solve a self-inconsistent set of required constraints and will produce an error.

10.3 Box Model Classes

10.3.1 LayoutObject
LayoutObject is a base class for anything which can interact with the box model layout system.
It has a concept of position in X-Y space, relative location to other objects, and spacing between
itself and other objects. It also has fields for specifying how the layout system should treat it
upon resizes.

AlignTrait = Enum(‘top’, ‘bottom’, ‘left’, ‘right’, ‘center’)
RelativePositionTrait = Enum(‘above’, ‘below’, ‘leftOf’, ‘rightOf’)

class LayoutObject(HasStrictTraits):
 hCenter = Trait(Variable, LinearExpression)
 vCenter = Trait(Variable, LinearExpression)
 autoScaleH = Bool(True)
 autoScaleV = Bool(True)
 maintainAspectRatio = Bool(False)

 If both autoScale fields are False, then maintainAspectRatio is disregarded.

 def SetSpacing(self, target, space)

 Sets the minimum spacing between this anchor and the target object

 def SetAdjacent(self, relPosition, target, offset=0)

 relPosition is an instance of RelativePositionTrait. Positions this object next to the
 target in the relative position indicated, plus a (possibly negative) offset

12-Aug-05 23

Appendix B: Layout Implementation

 def HAlign(self, target, offset=0):

 Horizontally aligns this anchor to another anchor or the center of a box, plus a
 (possibly negative) offset

 def VAlign(self, target, offset=0):

 Vertically aligns this anchor to another anchor or a box

 def Align(self, target):

 Centers this anchor on another LayoutObject’s center

10.3.2 Anchor
An Anchor represents an (x,y) position4 in screen space that is subject to various constraints. An
anchor can optionally be flagged as being X-only or Y-only, leaving its other coordinate a free
variable.

EdgeTrait = Enum(‘top’, ‘bottom’, ‘left’, ‘right’)
RelativePositionTrait = Enum(‘above’, ‘below’, ‘leftOf’, ‘rightOf’)

class Anchor(LayoutObject):
 def __init__(self, **traits):
 self.x = self.hCenter
 self.y = self.vCenter

10.3.3 Box
A layout Box represents a logical box on the screen that can be positioned and constrained using
high-level functions. It consists of a set of Anchors with some pre-defined constraints relating
them; some of these anchors are actual instances of Anchor objects and others are
LinearExpressions involving anchors.

class Box(LayoutObject):
 upperLeft = Trait(Anchor)
 bottomRight = Trait(Anchor)
 fixedWidth = Bool(False)
 fixedHeight = Bool(False)
 fixedAspectRatio = Bool(False)
 def __init__(self, **traits):
 # Aliases:

4 Since the layout constraint engine has no notion of screen space and is merely a symbolic optimization solver, a
second instance of the solver can be used to define constraints in other dimensions or spaces. An example use of
this is for laying out subplots or annotations in polar (r,theta) space and manually using this to drive the dimensions
of rectilinear layout boxes in screen space. (Unfortunately, due to the linear nature of the constraint solver, it is not
possible to connect anchor points with non-linear relationships such as sine and cosine functions.)

12-Aug-05 24

Appendix B: Layout Implementation

 self.left = self.upperLeft.x
 self.right = self.bottomRight.x
 self.top = self.upperLeft.y
 self.bottom = self.bottomRight.y
 # Linear expressions:
 self.width = self.right – self.left
 self.height = self.top – self.bottom
 self.hCenter = 0.5 * (self.left + self.right)
 self.vCenter = 0.5 * (self.bottom + self.top)

 def HSizeAlign(self, targetBox, offset=0):

 Contrains this box’s horizontal size to be equal to target box’s horizontal size, plus
 a (possibly negative) offset.

 def VSizeAlign(self, targetBox, offset=0):

 Like HSizeAlign, but in the vertical dimension

10.3.4 LayoutContext and Frame
The LayoutContext manages a set of Anchors, Boxes, and their constraints. It contains
an instance of LayoutSolver which performs the actual layout calculations. The Chaco
Frame object, though a VisualElement, subclasses this class and interacts with it to
properly sequence Draw() calls generated by the event system.

One of LayoutContext’s core features, besides passing constraint equations down to the
solver, is the creation of weak (non-required) constraints reflecting the preferred distribution of
excess screen space beyond the minimum screen space required to render all the objects in the
plot. Each LayoutObject can specify how it wishes to be scaled or treated upon resizes via
its autoScale fields, but information about free space distribution resides solely in the
LayoutContext. This information is represented as a dictionary of entries
(boxReference : percentage), where percentage defines the amount of the free
space allocated to that box. If the percentages do not total 100, then they are re-calculated to
reflect the percentage of the new sum. If no percentage is assigned, then the current area (or
minimum area) of the box is used.

The LayoutContext actually defines three allocation dictionaries: one for total area, one for
height, and one for width. The user is encouraged to use either the area dictionary or the height
and width dictionaries, but if all three are used, the height and width dictionaries will be
mathematically converted and merged into the area dictionary as an implicit step in the free
space allocation process.

When specifying space allocation, it is not necessary to specify all the objects that must be
resized. Since free space allocation creates a set of weak constraints, if object A and object B are
constrained (via the layout functions) to have the same vertical size, specifying a height
allocation on A will cause B’s height to change as well.

12-Aug-05 25

Appendix B: Layout Implementation

class LayoutContext:
 solver = Trait(LayoutSolver)
 width_distribution = TraitDict(LayoutObject, Float)
 height_distribution = TraitDict(LayoutObject, Float)
 area_distribution = TraitDict(LayoutObject, Float)

 def AddConstraint(self, Constraint):

 Adds a constraint to the solver. This function separates users of the LayoutContext
 from the implementation details of how it interacts with its solver.

10.4 Layout Procedure
Although the constraints specify the relative locations and positions of objects, finalizing the
actual positions in screen space requires actual sizes of objects to be known. This is done via the
following procedure:

1. The Frame containing all the visual elements queries them for their minimum sizes. It
converts these minimum sizes into a set of constraints and does a first-pass solve to
generate a trial set of positions for the visual elements. It also calculates the minimum
size for the Frame as a whole.

2. If the available canvas size is less than the minimum size needed, then the Frame must
render onto a scrolled canvas, and the layout process is complete.

3. If the available canvas size is greater than the minimum size needed to render all the
components, the Frame’s LayoutContext must create a new set of weak constraints to
allocate free space amount the various components. It first generates constraints
according to the distribution mappings, and then uses some simple heuristics to create
constraints for the remaining free variables.

In most common cases, the Frame is responsible for tying together the anchors for its visual
elements. Since visual elements subclass Box or Anchor, and since the Frame subclasses
LayoutContext, their interactions will flow naturally in the code.

As an example, consider: most XY plots can be described using a generic SimplePlotFrame
whose layout consists of two axes, a grid, a title, and a renderer (or multiple overlapping
renderers). Such a frame will align the layout boxes of the grid, the axes, and the renderer(s),
and then center the title above all the components:

class SimplePlotFrame(PlotFrame):
 <...>
 def Layout(self):
 # align the two axes at the lower left
 x_axis = self.x_axis.dataLayoutBox
 y_axis = self.y_axis.dataLayoutBox
 x_axis.left.HAlign(y_axis.right)

12-Aug-05 26

Appendix B: Layout Implementation

 y_axis.bottom.VAlign(x_axis.top)

 Create a single layout box to represent the layout area of available to the
 renderer(s), and then set all the renderers to reference it. This significantly reduces
 the number of constraints that have to be solved.
 rendererBox = LayoutBox()
 rendererBox.HAlign(self.x_axis, ‘center’)
 rendererBox.HSizeAlign(self.x_axis)
 rendererBox.SetAdjacent(‘top’)
 rendererBox.VAlign(self.y_axis, ‘center’)
 rendererBox.VSizeAlign(self.y_axis)
 rendererBox.SetAdjacent(‘right’)
 for renderer in self.renderers:
 renderer.dataLayoutBox = rendererBox

 self.grid.dataLayoutBox = rendererBox
 self.title.SetAdjacent(‘above’, rendererBox)

 To horizontally center the title above the entire width of the frame, we have to
 specify a manual constraint:
 self.AddConstraint(self.title.hCenter =
 (y_axis.left + rendererBox.right) / 2)

 Distribute all excess width beyond the minimum size to the renderer layout box, but
 split up the exceess height between the renderer layout box and the title, in
 proportion to their minimum size ratios.
 self.width_distribution = { rendererBox: 100 }
 self.height_distribution = { rendererBox: None,
 self.title: None }

More sophisticated Frames representing more advanced plot layouts may choose to create new
sub-plots and place them below or vertically to the side of the existing plot. Such alignments are
possible and readily expressed using a mix of high-level and low-level layout functions.

12-Aug-05 27

	1 Introduction
	2 Overview of the New Design
	3 The Data Model
	3.1 Data Series
	3.2 Data Channel
	3.3 Data Filter
	3.4 Data Source
	3.5 Range
	3.6 SelectionRange

	4 Plotting Primitives
	4.1 Fundamentals
	4.1.1 Transform
	4.1.2 Style and StyleSheet
	4.1.3 Layout

	4.2 Visual Elements
	4.2.1 Axis
	4.2.2 Grid
	4.2.3 Annotation
	4.2.4 Renderer
	4.2.5 Frame
	4.2.5.1 SimplePlotFrame
	4.2.5.2 PolarPlotFrame
	4.2.5.3 MapViewFrame
	4.2.5.4 ImageProfileFrame

	5 Tools and Interactivity
	5.1 Gestures
	5.2 Object Model
	5.2.1 GestureCompiler
	5.2.2 EventManager
	5.2.3 InteractionGroup
	5.2.4 Shadow Tools
	5.2.5 Examples
	5.2.5.1 Selection
	5.2.5.2 Text and pan

	6 Plots
	6.1 Anatomy of a simple plot
	6.2 More complex plots

	7 Who Writes What
	8 Extensions and Future Direction
	8.1 Floating Annotations
	8.2 2D Meshes
	8.3 3-D Plots
	8.4 Interactive Plot Layout

	9 Appendix A: Mathematical basis
	10 Appendix B: Layout Implementation
	10.1 Overview
	10.2 Solver Wrapper Classes
	10.3 Box Model Classes
	10.3.1 LayoutObject
	10.3.2 Anchor
	10.3.3 Box
	10.3.4 LayoutContext and Frame

	10.4 Layout Procedure

