
Chaco Data Model
Copyright 2005, Enthought, Inc.

Introduction

The simplest plotting system does not have a “data model” beyond a simple list of arrays to
be plotted along with some range coordinates. This is actually sufficient for a large number
of plotting applications, but Chaco requires a much richer data model because it allows the
construction of plotting applications with complex data interactions. Chaco’s data model
adds a few fundamental facets to simple static data:

1. view: The common notions of “range” are really narrow instances of a much more
general concept, namely, a bounded view into data space. Once the notion of a
“data view” is created, a lot of other concepts fall into place. Interactive plots
commonly share a view or aspects of a view, and interactions with plots commonly
involve manipulating the view.

2. dimensionality: Attaching dimensionality information to individual sequences of
data establishes a common type framework for actors in the data model to exchange
information in a dynamic way, without a priori knowledge of each others’ capabilities.

3. visualization pipeline: The data model is concerned with the manipulation of data
so that it can be appropriately displayed by a visual element. Most data
manipulation is some sort of filtering, and the elements of the data model fit into a
pipeline that sends data forwards from data space into screen space and services
requests to map screen space back into data space.

Class Overview

The core classes of the data model fall roughly into roles that are defined directly by the
aspect of interactive plotting described above. This is not a complete class hierarchy but it
outlines the major classes.

 Base classes Concrete classes

View-related DataView

DataSource

AbstractDataSeries ScalarData, PointData, ImageData

AbstractFilter ViewFilter, MaskFilter, CompoundFilter
DataSource

AbstractDataMap AffineMap, PolarMap

XYData, MultiXYData

ImageData, ImageData2D PlotData AbstractPlotData

PointData, PointData2D

Oct-05 DRAFT 1

Class Descriptions

DataSource

DataSource is an abstract interface that must be supported by all classes in the plotting
pipeline which act as providers of data. The primary subclasses of DataSource are
DataSeries and Filters. For the most part, a DataSource looks like an array of values
with an optional mask and metadata. (The mask is a binary array of equal length to the
data array, and the metadata is a dictionary keyed on string values. Some string values
are reserved and have standardized value types.)

In addition to producing an indexed array of values, a DataSource must also be able to
reverse-map a value point to an index. It can do this at one of three levels of
granularity:

1. return a reference to the object containing the value point
2. return a tuple of the lower and upper indices that contain the value point
3. return a single index representing the position of the value point in its array

A DataSource can be used directly as input to PlotData objects, which are then rendered
by PlotRenderers. In general, however, there should be a ViewFilter placed between the
DataSource and the PlotData to allow for adjustment to the range of displayed values.

Domain classes which need to be adapted to provide data to Chaco should implement
DataSource. In some cases, it might be easier to subclasses one of the concrete
DataSeries (ScalarData, PointData, etc.) and override the necessary functions. These
classes also serve as examples of how to properly implement the DataSource interface.

AbstractFilter
Filters are subclasses of DataSource that require an input in order to generate their
output data.

DataView and ViewFilter
A DataView represents a "window" into data space. It is represented by a range and has
metadata just like a DataSource. DataViews do not interact directly with DataSources;
rather, a DataView can produce a ViewFilter, which can then be inserted into a pipeline.
Any changes to the ViewFilter are proxied back up to its parent DataView.

The simplest plotting pipelines will have one DataView and one ViewFilter per
DataSource. However, by sharing DataViews, more sophisticated pipelines can easily
present a coherent multi-plot display of related data.

AbstractDataSeries (subclass of DataSource)
DataSeries implement the DataSource interface and are the primary representation of
numerical data in Chaco. The dimensionalities of DataSeries are:

1. ScalarDataSeries: An array of scalars.
Example: [-0.5, -0.3, 1.1, 2.3, 2.7]

2. PointDataSeries: An array of 2D points. Useful for representing 2D data
where there is no regular sampling or it is inconvenient to separate the
components into two 1D arrays.
Example: [(0.1, -3.2), (0.6, -1.0), (0.87, 0.3), (1.2, 0.8)]

Oct-05 DRAFT 2

3. ImageDataSeries (1D values): A 2D matrix of scalars. This is used as an
optimized representation for bitmapped, grayscale image data.
Example: [[0.8, 1.3, 10.9, 12.7],
 [2.2, 2.7, 6.5, 7.4],
 [1.7, 4.4, 3.6, 3.8]]

4. ImageDataSeries (2D values): A 2D matrix of vectors (vector map)
Example: [[(1.2, 0.3), (-2.2, 2.3), (-0.4, -0.6)],
 [(3.0, 2.5), (1.5, 1.8), (-0.6, 1.7)]]

5. ImageDataSeries (3D/4D values): A color RGB or RGBA image.
6. TextArray: A linear array of text strings.

Example: [“Trial 5”, “Trial 6”, “Trial 8”]

Note (In the example above, the value at [0][0] is 0.8, which cannot be used as an (x,y)
coordinate.) Thus, a 1D ImageDataSeries must be indexed using two ScalarDataSeries.

AbstractPlotData

PlotData compose multiple DataSeries into a single space that can then be rendered by a
PlotRenderer. By designating a certain DataSeries as an “index” and other DataSeries
as “values”, the PlotData defines the relationship between those spaces. Fundamentally,
a PlotData maps an index into the index DataSeries to a corresponding index in the
value DataSeries and passes this tuple (index_value, value_value) to the Renderer.

The table below shows the different kinds of plots defined by pairing index and value
DataSeries of different cardinalities. Although “2x Scalar” is not a DataSeries, it serves
as a compact representation of a uniform Image2D where the value at each (i,j) cell is
just the X,Y coordinates into the corresponding two scalar DataSeries.

Index type Value type Plot type
Scalar Scalar XY, line, polar, bar/column

Scalar 3D curve, contour line Point
Point vector lines
Image 1D grayscale image
Image 2D uniform vector map
Image 3D RGB picture

2x Scalar

Image 4D RGBA picture
Image 1D Non-uniform grayscale image
Image 2D Non-uniform vector map
Image 3D Warped RGB picture

Image 2D

Image 4D Warped RGBA picture

Note that it is not meaningful to plot a value type against an index type of fewer
dimensions; in general there are no useful maps from index_n to value_ij. Furthermore,
ImageDataSeries with 1D values are only used as values and not as indices because the
dimensionality of the value at each cell is less than the dimensionality of the DataSeries.
(Although there may be some use for an Image1D index, it is rare.)

Oct-05 DRAFT 3

	Chaco Data Model
	Introduction
	Class Overview
	Class Descriptions
	DataSource
	AbstractFilter
	DataView and ViewFilter
	AbstractDataSeries (subclass of DataSource)
	AbstractPlotData

