~ubuntu-branches/ubuntu/utopic/tcm/utopic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.1p1 release (March 2nd, 1998)
originally by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>9. Mini-tutorial on Notation Techniques</TITLE>
<META NAME="description" CONTENT="9. Mini-tutorial on Notation Techniques">
<META NAME="keywords" CONTENT="User">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="User.css">
<LINK REL="next" HREF="usersguidenode12.html">
<LINK REL="previous" HREF="usersguidenode10.html">
<LINK REL="up" HREF="User.html">
<LINK REL="next" HREF="usersguidenode12.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html1041"
 HREF="usersguidenode12.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> 
<A NAME="tex2html1037"
 HREF="User.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> 
<A NAME="tex2html1031"
 HREF="usersguidenode10.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> 
<A NAME="tex2html1039"
 HREF="usersguidenode1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents_motif.gif"></A> 
<A NAME="tex2html1040"
 HREF="usersguidenode15.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index_motif.gif"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html1042"
 HREF="usersguidenode12.html">10. Frequently Asked Questions</A>
<B> Up:</B> <A NAME="tex2html1038"
 HREF="User.html">Toolkit for Conceptual Modeling</A>
<B> Previous:</B> <A NAME="tex2html1032"
 HREF="usersguidenode10.html">8. Tree Editing</A>
<BR>
<BR>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"><strong>Subsections</strong></A>
<UL>
<LI><A NAME="tex2html1043"
 HREF="usersguidenode11.html#SECTION001110000000000000000">9.1 Structured Analysis Notations</A>
<UL>
<LI><A NAME="tex2html1044"
 HREF="usersguidenode11.html#SECTION001111000000000000000">9.1.1 Entity-Relationship Diagrams (TESD)</A>
<UL>
<LI><A NAME="tex2html1045"
 HREF="usersguidenode11.html#SECTION001111100000000000000">9.1.1.1 Entity types</A>
<LI><A NAME="tex2html1046"
 HREF="usersguidenode11.html#SECTION001111200000000000000">9.1.1.2 Binary relationships</A>
<LI><A NAME="tex2html1047"
 HREF="usersguidenode11.html#SECTION001111300000000000000">9.1.1.3 Cardinality properties</A>
<LI><A NAME="tex2html1048"
 HREF="usersguidenode11.html#SECTION001111400000000000000">9.1.1.4 Relationships of higher arity</A>
<LI><A NAME="tex2html1049"
 HREF="usersguidenode11.html#SECTION001111500000000000000">9.1.1.5 Attributes</A>
<LI><A NAME="tex2html1050"
 HREF="usersguidenode11.html#SECTION001111600000000000000">9.1.1.6 Associative entities</A>
<LI><A NAME="tex2html1051"
 HREF="usersguidenode11.html#SECTION001111700000000000000">9.1.1.7 Is-a relationships</A>
</UL>
<LI><A NAME="tex2html1052"
 HREF="usersguidenode11.html#SECTION001112000000000000000">9.1.2 Data and Event Flow Diagrams (TEFD)</A>
<UL>
<LI><A NAME="tex2html1053"
 HREF="usersguidenode11.html#SECTION001112100000000000000">9.1.2.1 The components of a DFD</A>
<LI><A NAME="tex2html1054"
 HREF="usersguidenode11.html#SECTION001112200000000000000">9.1.2.2 Hierarchical DFDs</A>
<LI><A NAME="tex2html1055"
 HREF="usersguidenode11.html#SECTION001112300000000000000">9.1.2.3 Control processes</A>
<LI><A NAME="tex2html1056"
 HREF="usersguidenode11.html#SECTION001112400000000000000">9.1.2.4 Event flows</A>
<LI><A NAME="tex2html1057"
 HREF="usersguidenode11.html#SECTION001112500000000000000">9.1.2.5 Time-Discrete and time-continuous flows</A>
</UL>
<LI><A NAME="tex2html1058"
 HREF="usersguidenode11.html#SECTION001113000000000000000">9.1.3 State Transition Diagrams (TSTD)</A>
<LI><A NAME="tex2html1059"
 HREF="usersguidenode11.html#SECTION001114000000000000000">9.1.4 Transaction-Use Tables (TTUT)</A>
<LI><A NAME="tex2html1060"
 HREF="usersguidenode11.html#SECTION001115000000000000000">9.1.5 Function-Entity Type Tables (TFET)</A>
<LI><A NAME="tex2html1061"
 HREF="usersguidenode11.html#SECTION001116000000000000000">9.1.6 Function Refinement Trees (TFRT)</A>
</UL>
<LI><A NAME="tex2html1062"
 HREF="usersguidenode11.html#SECTION001120000000000000000">9.2 UML Notations</A>
<UL>
<LI><A NAME="tex2html1063"
 HREF="usersguidenode11.html#SECTION001121000000000000000">9.2.1 Use case diagrams (TUCD)</A>
<UL>
<LI><A NAME="tex2html1064"
 HREF="usersguidenode11.html#SECTION001121100000000000000">9.2.1.1 Actors</A>
<LI><A NAME="tex2html1065"
 HREF="usersguidenode11.html#SECTION001121200000000000000">9.2.1.2 Use cases</A>
</UL>
<LI><A NAME="tex2html1066"
 HREF="usersguidenode11.html#SECTION001122000000000000000">9.2.2 Static structure diagrams (TSSD)</A>
<UL>
<LI><A NAME="tex2html1067"
 HREF="usersguidenode11.html#SECTION001122100000000000000">9.2.2.1 Stereotypes and properties</A>
<LI><A NAME="tex2html1068"
 HREF="usersguidenode11.html#SECTION001122200000000000000">9.2.2.2 Behavior</A>
<LI><A NAME="tex2html1069"
 HREF="usersguidenode11.html#SECTION001122300000000000000">9.2.2.3 Objects</A>
</UL>
<LI><A NAME="tex2html1070"
 HREF="usersguidenode11.html#SECTION001123000000000000000">9.2.3 Activity diagrams (TATD)</A>
<UL>
<LI><A NAME="tex2html1071"
 HREF="usersguidenode11.html#SECTION001123100000000000000">9.2.3.1 Activity</A>
<LI><A NAME="tex2html1072"
 HREF="usersguidenode11.html#SECTION001123200000000000000">9.2.3.2 Transition</A>
<LI><A NAME="tex2html1073"
 HREF="usersguidenode11.html#SECTION001123300000000000000">9.2.3.3 Choice nodes</A>
<LI><A NAME="tex2html1074"
 HREF="usersguidenode11.html#SECTION001123400000000000000">9.2.3.4 Fork and join nodes</A>
<LI><A NAME="tex2html1075"
 HREF="usersguidenode11.html#SECTION001123500000000000000">9.2.3.5 Initial and final state</A>
</UL>
<LI><A NAME="tex2html1076"
 HREF="usersguidenode11.html#SECTION001124000000000000000">9.2.4 Statechart diagrams (TSCD)</A>
<LI><A NAME="tex2html1077"
 HREF="usersguidenode11.html#SECTION001125000000000000000">9.2.5 Collaboration diagrams (TCBD)</A>
<UL>
<LI><A NAME="tex2html1078"
 HREF="usersguidenode11.html#SECTION001125100000000000000">9.2.5.1 Messages</A>
</UL>
<LI><A NAME="tex2html1079"
 HREF="usersguidenode11.html#SECTION001126000000000000000">9.2.6 Component diagrams (TCPD)</A>
<LI><A NAME="tex2html1080"
 HREF="usersguidenode11.html#SECTION001127000000000000000">9.2.7 Deployment diagrams (TDPD)</A>
</UL>
<LI><A NAME="tex2html1081"
 HREF="usersguidenode11.html#SECTION001130000000000000000">9.3 Miscellaneous Notations</A>
<UL>
<LI><A NAME="tex2html1082"
 HREF="usersguidenode11.html#SECTION001131000000000000000">9.3.1 Classic Entity-Relationship Diagrams (TERD)</A>
<UL>
<LI><A NAME="tex2html1083"
 HREF="usersguidenode11.html#SECTION001131100000000000000">9.3.1.1 Entity types</A>
<LI><A NAME="tex2html1084"
 HREF="usersguidenode11.html#SECTION001131200000000000000">9.3.1.2 Binary relationships</A>
<LI><A NAME="tex2html1085"
 HREF="usersguidenode11.html#SECTION001131300000000000000">9.3.1.3 Cardinality constraints</A>
<LI><A NAME="tex2html1086"
 HREF="usersguidenode11.html#SECTION001131400000000000000">9.3.1.4 Relationships of higher arity</A>
<LI><A NAME="tex2html1087"
 HREF="usersguidenode11.html#SECTION001131500000000000000">9.3.1.5 Value types</A>
<LI><A NAME="tex2html1088"
 HREF="usersguidenode11.html#SECTION001131600000000000000">9.3.1.6 Attributes</A>
<LI><A NAME="tex2html1089"
 HREF="usersguidenode11.html#SECTION001131700000000000000">9.3.1.7 Is-a relationships</A>
</UL>
<LI><A NAME="tex2html1090"
 HREF="usersguidenode11.html#SECTION001132000000000000000">9.3.2 Class-Relationship Diagrams (TCRD)</A>
<UL>
<LI><A NAME="tex2html1091"
 HREF="usersguidenode11.html#SECTION001132100000000000000">9.3.2.1 Classes</A>
<LI><A NAME="tex2html1092"
 HREF="usersguidenode11.html#SECTION001132200000000000000">9.3.2.2 Relationships</A>
<LI><A NAME="tex2html1093"
 HREF="usersguidenode11.html#SECTION001132300000000000000">9.3.2.3 Is-a relationships</A>
</UL>
<LI><A NAME="tex2html1094"
 HREF="usersguidenode11.html#SECTION001133000000000000000">9.3.3 Data Flow Diagrams (TDFD)</A>
<LI><A NAME="tex2html1095"
 HREF="usersguidenode11.html#SECTION001134000000000000000">9.3.4 Process Structure Diagrams (TPSD)</A>
<LI><A NAME="tex2html1096"
 HREF="usersguidenode11.html#SECTION001135000000000000000">9.3.5 System Network Diagrams (TSND)</A>
<LI><A NAME="tex2html1097"
 HREF="usersguidenode11.html#SECTION001136000000000000000">9.3.6 Recursive Process Graphs (TRPG)</A>
<LI><A NAME="tex2html1098"
 HREF="usersguidenode11.html#SECTION001137000000000000000">9.3.7 Transaction Decomposition Tables (TTDT)</A>
</UL></UL>
<!--End of Table of Child-Links-->
<HR>

<H1><A NAME="SECTION001100000000000000000">&#160;</A>
<A NAME="MiniTut">&#160;</A><A NAME="8283">&#160;</A><A NAME="8284">&#160;</A>
<BR>
9. Mini-tutorial on Notation Techniques
</H1>

<P>
This appendix contains a short tutorial on the use of
the notation techniques that are supported by TCM.
Detailed information on the notations of structured analysis and 
the UML is given in R.J. Wieringa, <EM>Design
Methods for reactive Systems: Yourdon, Statemate and the UML</EM>,
Department of Computer Science, University of Twente,
1999.
The miscellaneous notations are documented in&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa96-01">22</A>].

<P>

<H1><A NAME="SECTION001110000000000000000">
9.1 Structured Analysis Notations</A>
</H1>

<P>

<H2><A NAME="SECTION001111000000000000000">&#160;</A><A NAME="TUT-ESD">&#160;</A><A NAME="8290">&#160;</A>
<BR>
9.1.1 Entity-Relationship Diagrams (TESD)
</H2>

<P>
The TCM convention for TESD is described in detail
in&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa99-01">23</A>].

<P>

<H3><A NAME="SECTION001111100000000000000">&#160;</A><A NAME="8293">&#160;</A>
<BR>
9.1.1.1 Entity types
</H3>

<P>
As usual, a named rectangle represents a named entity type.

<P>

<H3><A NAME="SECTION001111200000000000000">&#160;</A><A NAME="8295">&#160;</A>
<BR>
9.1.1.2 Binary relationships
</H3>

<P>
Binary relationships are presented by lines.

<P>

<H3><A NAME="SECTION001111300000000000000">&#160;</A><A NAME="8297">&#160;</A>
<BR>
9.1.1.3 Cardinality properties
</H3>

<P>
Cardinality properties are represented by
annotations placed at the end points of these lines.
(Cardinality properties are also called ``cardinality constraints''
by many authors.)
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDcard">&#160;</A><A NAME="8900">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.1:</STRONG>
The placement of Cardinality constraints.</CAPTION>
<TR><TD><IMG
 WIDTH="424" HEIGHT="42"
 SRC="usersguideimg176.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDcard.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
For example, in figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDcard">A.1</A>, each business has an employment
relationship to more than zero persons and each person has 0 or 1
employment relationships to a business.
The end points of the line can also be annotated with the role that the
entity at that end of the line plays in the relationship.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDroles">A.2</A> gives an example.<A NAME="8304">&#160;</A>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDroles">&#160;</A><A NAME="8902">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.2:</STRONG>
The placement of role names.</CAPTION>
<TR><TD><IMG
 WIDTH="435" HEIGHT="39"
 SRC="usersguideimg177.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDroles.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDcon">&#160;</A><A NAME="8904">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.3:</STRONG>
The meaning of cardinality properties.</CAPTION>
<TR><TD><IMG
 WIDTH="308" HEIGHT="39"
 SRC="usersguideimg178.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDcon.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
In general, a cardinality property is represented by a set of natural
numbers (see figure&nbsp;<A HREF="usersguidenode6.html#ESDCardSyntax">4.9</A> for the syntax).
For example, if <I>c</I> is a set of natural numbers, the property
in figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDcon">A.3</A> is that each instance of <I>E1</I> is related
to <I>n</I> instances of <I>E2</I>, where <IMG
 WIDTH="29" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg179.gif"
 ALT="$n \in$">
<I>c</I>. 
(More precisely,
each <EM>existing</EM> instance of <I>E1</I> is related
to <I>n</I> <EM>existing</EM> instances of <I>E2</I>.)
If no cardinality property is shown, the convention is that <I>c</I> is
the entire set of natural numbers.
For example, in figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDcon">A.25</A>, each instance of <I>E2</I> is
related 
to any number instances of <I>E1</I>.
This includes the case that it is related to 0 instances of <I>E1</I>.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDreverse">&#160;</A><A NAME="8906">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.4:</STRONG>
The line representation of binary relationships is direction-independent.</CAPTION>
<TR><TD><IMG
 WIDTH="378" HEIGHT="39"
 SRC="usersguideimg180.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDreverse.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Note that there is no natural reading direction for a
relationship name.
For example, figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDreverse">A.4</A> conveys the same information as
figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDcard">A.1</A>. 
If there is a reading direction, one can adorn the relationship name
with a small arrow that indicates this.
See figure&nbsp;<A HREF="usersguidenode11.html#fig.direction">A.5</A>.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.direction">&#160;</A><A NAME="8908">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.5:</STRONG>
Reading direction of a
relationship name.</CAPTION>
<TR><TD><IMG
 WIDTH="332" HEIGHT="51"
 SRC="usersguideimg181.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/direction.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Often, a directed relationship name is really a role name of one of
the participating entity types.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDmanyone">&#160;</A><A NAME="8910">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.6:</STRONG>
Different conventions for representing the same constraints.
TESD supports the convention used in the top diagram.</CAPTION>
<TR><TD><IMG
 WIDTH="319" HEIGHT="599"
 SRC="usersguideimg182.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDmanyone.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDmay">&#160;</A><A NAME="8912">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.7:</STRONG>
Different conventions for representing the same constraints.
TESD supports the convention used in the top diagram.</CAPTION>
<TR><TD><IMG
 WIDTH="319" HEIGHT="507"
 SRC="usersguideimg183.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDmay.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
There are many other conventions to represent binary relationships.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDmanyone">A.6</A> shows different ways of representing the following
constraints: 
<UL>
<LI>
Each existing <I>E1</I> is related to at least one existing <I>E2</I> and
<LI>
Each existing <I>E2</I> is related to exactly one existing <I>E1</I>.
</UL>Figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDmay">A.7</A> shows different ways of representing the following
constraints: 
<UL>
<LI>
Each existing <I>E1</I> is related to at any number (including 0)
existing <I>E2</I> and
<LI>
Each existing <I>E2</I> is related to exactly one existing <I>E1</I>.
</UL>
<P>

<H3><A NAME="SECTION001111400000000000000">&#160;</A><A NAME="8361">&#160;</A>
<BR>
9.1.1.4 Relationships of higher arity
</H3>

<P>
<A NAME="8362">&#160;</A>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDdiam">&#160;</A><A NAME="8914">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.8:</STRONG>
The diamond representation for relationships.</CAPTION>
<TR><TD><IMG
 WIDTH="435" HEIGHT="56"
 SRC="usersguideimg184.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDdiam.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
A relationship is a Cartesian product of two or more entity
types, called its <EM>components</EM>.
(To be more precise, it is a <EM>labeled</EM> Cartesian
product.)<A NAME="8369">&#160;</A><A NAME="8370">&#160;</A>
Relationships can always be represented by a
diamond, connected by lines to the boxes that represent its
components.
These lines actually
represent the projection functions of a Cartesian product on
its components.
For example, 
figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDdiam">A.8</A> contains exactly the same information as
figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDcard">A.1</A>. 

<P>
Relationships with arity higher than 2 cannot be represented by a
line.
They can only be represented by a diamond.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDternary">A.9</A> gives an example.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDternary">&#160;</A><A NAME="8916">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.9:</STRONG>
A ternary relationship with a
cardinality property.</CAPTION>
<TR><TD><IMG
 WIDTH="435" HEIGHT="153"
 SRC="usersguideimg185.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDternary.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
The figure also illustrates the notation for a cardinality property
of a relationship with arity higher than 2.
A cardinality property is expressed by an expression <I>c</I> written at
the end of a line, close to an entity type box.
It represents the number of instances of that entity that 
participate in the relationship simultaneously.
The property in figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDternary">A.9</A> says that each transport
company participates in at least one delivery.
(This is not very realistic but is does illustrate the convention.)

<P>

<H3><A NAME="SECTION001111500000000000000">&#160;</A><A NAME="8380">&#160;</A>
<BR>
9.1.1.5 Attributes
</H3>

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.attr">&#160;</A><A NAME="8918">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.10:</STRONG>
Representation of attributes.</CAPTION>
<TR><TD><IMG
 WIDTH="89" HEIGHT="76"
 SRC="usersguideimg186.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/attr.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Entity attributes are represented by listing them in a separate
compartment below the entity type name.
Representation of entity attributes is optional.

<P>

<H3><A NAME="SECTION001111600000000000000">
9.1.1.6 Associative entities</A>
</H3>

<P>
If a relationship itself has attributes, it is represented by an
entity box that contains the relationship name and the attribute
declarations, connected to the relationship line or relationship
diamond with a dashed line.
See figures&nbsp;<A HREF="usersguidenode11.html#fig.assoc1">A.11</A> and &nbsp;<A HREF="usersguidenode11.html#fig.assoc2">A.12</A> for illustrations.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.assoc1">&#160;</A><A NAME="8920">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.11:</STRONG>
Representation of associative
entities (line representation).</CAPTION>
<TR><TD><IMG
 WIDTH="366" HEIGHT="160"
 SRC="usersguideimg187.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/assoc1.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.assoc2">&#160;</A><A NAME="8922">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.12:</STRONG>
Representation of associative
entities (diamond representation).</CAPTION>
<TR><TD><IMG
 WIDTH="401" HEIGHT="172"
 SRC="usersguideimg188.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/assoc2.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>

<P>

<H3><A NAME="SECTION001111700000000000000">&#160;</A><A NAME="8397">&#160;</A>
<BR>
9.1.1.7 Is-a relationships
</H3>

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ESDisa">&#160;</A><A NAME="8924">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.13:</STRONG>
The representation of is-a relationships.</CAPTION>
<TR><TD><IMG
 WIDTH="319" HEIGHT="39"
 SRC="usersguideimg189.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ESDisa.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
An is-a relationship is a binary relationship that is an inclusion
function. 
For example, figure&nbsp;<A HREF="usersguidenode11.html#fig.ESDisa">A.13</A> shows that each <I>CAR</I> instance
is also a <I>VEHICLE</I> instance.
Extensionally, the set of all possible cars is a subset of the set of all
possible vehicles.
Intensionally, the set of properties shared by all cars includes the set of
properties shared by all vehicles.
<I>CAR</I> is called a <EM>specialization</EM> of <I>VEHICLE</I> and <I>VEHICLE</I> is called a <EM>generalization</EM> of
<I>CAR</I>.<A NAME="8411">&#160;</A><A NAME="8412">&#160;</A>

<P>
If there is more than one specialization of an entity type, then these must
be grouped into <EM>specialization groups</EM>.<A NAME="8414">&#160;</A>
This is represented by connecting the rectangles representing the
specializations 
to a small circle<A NAME="8415">&#160;</A>
called the <EM>taxonomy junction</EM> or <EM>generalization node</EM> and 
connecting this with an <I>is-a</I> arrow to the rectangle representing the 
generalization. The generalization node must be annotated as follows:
<UL>
<LI>
A ``<I>d</I>'' means that the
specializations are mutually disjoint.<A NAME="8421">&#160;</A>
<LI>
An ``<I>c</I>'' means that the specializations
jointly covers the generalization.<A NAME="8423">&#160;</A>
<LI>
A ``<I>dc</I>'' means the conjunction of ``<I>d</I>'' and
``<I>c</I>'', i.e. the specializations partitions the generalization.
</UL><A NAME="8428">&#160;</A>
A generalization can be specialized by any number of specialization groups.
For example, figure&nbsp;<A HREF="usersguidenode6.html#ESDTaxonomyExample">4.10</A> means the following:
<UL>
<LI>Cars are vehicles and trucks are vehicles.
<LI>
The union of the set of all cars and all trucks equals the set of all
vehicles. 
So vehicles are trucks or cars (or both).
<LI>Diesel vehicles are vehicles and gas vehicles are vehicles.
<LI>
There is no vehicle both a diesel and a gas vehicle.
<LI>There may be vehicles that are neither diesel nor gas vehicles.
</UL>
<P>

<H2><A NAME="SECTION001112000000000000000">&#160;</A><A NAME="TUT-EFD">&#160;</A><A NAME="subsec.control">&#160;</A><A NAME="8435">&#160;</A>
<BR>
9.1.2 Data and Event Flow Diagrams (TEFD)
</H2>

<P>
Data flow diagrams (DFDs)
are are available in two TCM editors, called TDFD
(one of the miscellaneous editors)
and TEFD (one of the structured analysis editors).
TEFD allows you to do everything that TDFD can, and it additionally
allows you to draw control processes, event flows and to distinguish
time-discrete from time-continuous flows.
This section explains both editors.
DFDs are described in detail in [<A
 HREF="usersguidenode14.html#Wieringa99-01">23</A>].

<P>

<H3><A NAME="SECTION001112100000000000000">
9.1.2.1 The components of a DFD</A>
</H3>

<P>
A DFD is a directed graph with three kinds of nodes:
<UL>
<LI>Circles represent processes, also called data transformations or<A NAME="8439">&#160;</A>
functions. A process is some computation by a software system.
There are two kinds of processes: Data processes and control processes 
(the latter are not supported in TDFD). TEFD supports both processes.
<LI>Squares represent external entities, these are entities with<A NAME="8440">&#160;</A>
which the software system must interact.
<LI>Two parallel lines represent a data store, which is a piece of<A NAME="8441">&#160;</A>
software memory (e.g. a file or a variable).
</UL>The directed edges represent data flows between these nodes.<A NAME="8443">&#160;</A>

<P>
In figure&nbsp;<A HREF="usersguidenode8.html#DFDExample1">6.3</A>, there are three processes, <I>Confirm
Registration</I>, <I>Check Request</I> and <I>Register
students</I>.
When the external entity <I>STUDENT</I> sends a message
<I>test_request</I>, which is a request to participate in a
test, then the process 
 <I>Check Request</I> retrieves the identifier of the test from
the data store <I>TESTS</I>
 and the student identifier from the <I>STUDENTS</I>
data store  (the data stores are most likely implemented as files or
in a database).
If the test and student exist, and the student is allowed to
participate in the test, then process
<I>Register
students</I> stores this fact in the <I>TEST_REGISTRATIONS</I> data
store and 
 <I>Confirm
Registration</I> confirms this to the external entity.
To make the DFD in figure&nbsp;<A HREF="usersguidenode8.html#DFDExample1">6.3</A> more precise, this model must be
supplemented with precise process
specifications, and a specification of the structure of the data
stores and data flows.

<P>

<H3><A NAME="SECTION001112200000000000000">&#160;</A><A NAME="8458">&#160;</A><A NAME="8459">&#160;</A>
<BR>
9.1.2.2 Hierarchical DFDs
</H3>

<P>
DFDs can be hierarchical.
This means that a process can be specified by means of another DFD,
which has the same external interface as the process being specified.
Such a process is called a <EM>compound</EM> process.<A NAME="8461">&#160;</A><A NAME="8462">&#160;</A>
A process specified in another way (e.g. by means of a piece of text)
is called <EM>primitive</EM>.<A NAME="8464">&#160;</A>
This can be indicated by the letter <I>P</I> in the node that
represents the process.

<P>
Compound processes give rise to a tree of DFDs.
Processes in this tree are labeled by means of a Dewey numbering<A NAME="8466">&#160;</A>
system that indicates the location of the process in the tree.
For example, process 1.2 is the process with label 2 in the DFD that
specifies the compound process with label 1.
The current version of TCM does not support hierarchical DFD editing.

<P>

<H3><A NAME="SECTION001112300000000000000">&#160;</A><A NAME="8468">&#160;</A>
<BR>
9.1.2.3 Control processes
</H3>

<P>
DEFDs extend DFDs with a new kind of node, the control process, and 
new kinds of edges: event flows and time-continuous flows.
See subsection&nbsp;<A HREF="usersguidenode11.html#TUT-DFD">A.3.3</A> for DFDs.
A control process is represented by a dashed circle and represents an
aspect of behavior.
It must be specified by means of a STD that has the same interface as
the control process.
This means that the event flows entering the control process must
occur as events in the Mealy STD, and vice versa, and that the event
flows leaving the 
control process must occur as actions in the STD, and vice versa.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.robot">A.14</A> contains a DEFD of which the control process is
specified in figure&nbsp;<A HREF="usersguidenode11.html#fig.robotctr">A.15</A>.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.robot">&#160;</A><A NAME="8926">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.14:</STRONG>
A DEFD for a robot control process.</CAPTION>
<TR><TD><IMG
 WIDTH="562" HEIGHT="374"
 SRC="usersguideimg190.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/robot.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.robotctr">&#160;</A><A NAME="8928">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.15:</STRONG>
STD for the robot control process of figure&nbsp;<A HREF="usersguidenode11.html#fig.robot">A.14</A>.</CAPTION>
<TR><TD><IMG
 WIDTH="304" HEIGHT="533"
 SRC="usersguideimg191.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/robotctr.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>

<P>

<H3><A NAME="SECTION001112400000000000000">&#160;</A><A NAME="8482">&#160;</A>
<BR>
9.1.2.4 Event flows
</H3>

<P>
Event flows are represented by dashed arrows.
An event flow can carry a signal without any data contents.
The precise meaning depends upon the method that uses this technique.
See for example the YSM manual&nbsp;[<A
 HREF="usersguidenode14.html#YSM93">31</A>].

<P>

<H3><A NAME="SECTION001112500000000000000">&#160;</A><A NAME="8485">&#160;</A><A NAME="8486">&#160;</A>
<BR>
9.1.2.5 Time-Discrete and time-continuous flows
</H3>

<P>
A time-discrete flow carries a value that changes in discrete steps, a
time-continuous flow carries a value that changes in a continuous  way.
Time-discrete flows are represented by arrows with a single arrowhead,
time-continuous flows are represented by arrows with a double arrowhead.
Again, the precise meaning depends upon the method used.

<P>

<H2><A NAME="SECTION001113000000000000000">&#160;</A><A NAME="TUT-STD">&#160;</A><A NAME="8489">&#160;</A>
<BR>
9.1.3 State Transition Diagrams (TSTD)
</H2>

<P>
State transition diagrams (Mealy, Moore and statechart)
are described in [<A
 HREF="usersguidenode14.html#Wieringa99-01">23</A>]

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.std">&#160;</A><A NAME="8930">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.16:</STRONG>
The Mealy representation of state transition diagrams.</CAPTION>
<TR><TD><IMG
 WIDTH="110" HEIGHT="214"
 SRC="usersguideimg192.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/std.eps}} %\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
TCM supports the Mealy notation for finite state transition diagrams
(figure&nbsp;<A HREF="usersguidenode11.html#fig.std">A.16</A>). 
States are named, and are represented by rectangles.<A NAME="8496">&#160;</A>
State transitions are represented by arrows and are labeled by
<I>event [guard] / action</I>
pairs.<A NAME="8498">&#160;</A><A NAME="8499">&#160;</A><A NAME="8500">&#160;</A> 
The event is the <EM>trigger</EM><A NAME="8502">&#160;</A><A NAME="8503">&#160;</A>
of the transition and can be viewed as the occurrence of an input.
The guard is a condition.<A NAME="8504">&#160;</A>
The precise meaning of the guard depends upon the method in which the
notation is used.
A minimalistic interpretation is that if the guard is false, an
occurrence of the event will not trigger the transition.
A more closed interpretation is that additionally, if the guard is
true, an occurrence of the event will trigger the transition.

<P>
The action part of the transition label is the output action generated
by the transition.

<P>
Each Mealy STD must have an initial state, pointed at by an arrow that<A NAME="8505">&#160;</A>
leaves from no node, and that can be labeled by an initialization
action.<A NAME="8506">&#160;</A><A NAME="8507">&#160;</A>

<P>
TCM also has <EM>decision points</EM><A NAME="8509">&#160;</A>
which are intermediary states
that the machine may have between system transactions. Decision
points are represented by a hexagon.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.transit">&#160;</A><A NAME="8932">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.17:</STRONG>
State transition diagrams.</CAPTION>
<TR><TD><IMG
 WIDTH="501" HEIGHT="583"
 SRC="usersguideimg193.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/transit.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Figure&nbsp;<A HREF="usersguidenode11.html#fig.transit">A.17</A> shows the a Mealy diagram for a simple coffee
machine in which at two points, an external process is triggered  (the
actions that start with <I>T:</I>) that must send the Mealy
machine an answer.
While waiting for an answer, the machine is in the decision point.

<P>
Mealy machines are used in Yourdon-style structured analysis, where
they are used to specify control processes&nbsp;[<A
 HREF="usersguidenode14.html#YSM93">31</A>].
The interface of the control process must equal the interface of the
Mealy machine.
See section&nbsp;<A HREF="usersguidenode11.html#subsec.control">A.1.2</A> for control processes.

<P>

<H2><A NAME="SECTION001114000000000000000">&#160;</A><A NAME="TUT-TUT">&#160;</A><A NAME="8520">&#160;</A>
<BR>
9.1.4 Transaction-Use Tables (TTUT)
</H2>

<P>
A transaction-use table is a simple way to discover entity types from
required system transactions.
The leftmost column lists external system functions and the top row
lists the basic Create, Read, Update and Delete actions.
The entries list the entity types or relationships that are created,
read, updated or deleted during the function.
See figure&nbsp;<A HREF="usersguidenode9.html#TUTExample">7.8</A>.
Elaborate examples are given elsewhere&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa96-01">22</A>].

<P>

<H2><A NAME="SECTION001115000000000000000">&#160;</A><A NAME="TUT-FET">&#160;</A><A NAME="8525">&#160;</A>
<BR>
9.1.5 Function-Entity Type Tables (TFET)
</H2>

<P>
The top row of a function-entity
table lists system functions and the leftmost
column represents, for example, entity types.
The entries contain C, R, U or D,
to indicate that this function Creates, Reads, Updates or Deletes
entities of this type.
Instead of entity types, the leftmost column may list relationships,
or subject areas, or data stores in a DFD, with corresponding changes
in the meaning of the CRUD entries.

<P>
A function-entity type table is a kind of traceability table
 (see&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa99-01">23</A>]). 
It is almost the same as a transaction
decomposition table (see section&nbsp;<A HREF="usersguidenode11.html#TUT-TDT">A.3.7</A>).
Function-entity types are used in Information Engineering to find
subsystems. 
These are identified
by clustering subject areas and functions in such a way to minimize
data flows between the clusters.
See&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa96-01">22</A>] for details and examples of their use in
 Information Engineering.

<P>

<H2><A NAME="SECTION001116000000000000000">&#160;</A><A NAME="TUT-FRT">&#160;</A><A NAME="8531">&#160;</A>
<BR>
9.1.6 Function Refinement Trees (TFRT)
</H2>

<P>
A function refinement tree is a tree in which the root represents the
entire system mission and the leaves represent system functions.
The hierarchy of nodes represents the refinement of functions into
subfunctions.
All nodes in the tree represent <EM>external</EM> functions.<A NAME="8533">&#160;</A>

<P>
A FRT can be used in combination with a hierarchical DFD to represent
the hierarchy of DFDs.
It is used in information engineering to represent external functions
of an information system&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa96-01">22</A>].
Of course, a tree can be used to represent any hierarchical
decomposition and TCM imposes no constraints on the syntax of the tree.

<P>

<H1><A NAME="SECTION001120000000000000000">
9.2 UML Notations</A>
</H1>

<P>
This section lists the UML notations available in TCM, as they are
treated in [<A
 HREF="usersguidenode14.html#Wieringa99-01">23</A>].
This is a subset of the full UML notation.

<P>

<H2><A NAME="SECTION001121000000000000000">&#160;</A><A NAME="TUT-UCD">&#160;</A><A NAME="8539">&#160;</A>
<BR>
9.2.1 Use case diagrams (TUCD)
</H2>

<P>
A use case is a functionality of a system, and actor is a user (person
or device) of the system.
A use case diagram is a graph in which the nodes represent actors and
use cases, and the lines represent connections between use cases and
actors.
The meaning of a line is that the actor is involved in a use case.

<P>
A use case diagram is actually a special case of a class diagram with
two special kinds of nodes.
Nodes of the same kind can be connected by a generalization arrow.

<P>

<H3><A NAME="SECTION001121100000000000000">
9.2.1.1 Actors</A>
</H3>

<P>
An actor is represented by a match stick figure or by a rectangle
labeled <IMG
 WIDTH="20" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg194.gif"
 ALT="$\ll$"><I>actor</I><IMG
 WIDTH="20" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg195.gif"
 ALT="$\gg$">.
Both shapes can be labeled by an actor name.
Two actors can be connected by a generalization arrow.
Actor names must be unique.
Use ``duplicate node'' if you want to represent one actor several
times in the diagram.

<P>

<H3><A NAME="SECTION001121200000000000000">
9.2.1.2 Use cases</A>
</H3>

<P>
A use case is represented  by an ellipse.
It can be labeled.
Two use cases can be connected by a generalization arrow.

<P>

<H2><A NAME="SECTION001122000000000000000">&#160;</A><A NAME="TUT-SSD">&#160;</A><A NAME="8545">&#160;</A>
<BR>
9.2.2 Static structure diagrams (TSSD)
</H2>

<P>
A static structure diagram is an extension of an ER diagram.
What is an entity in an ESD is an object in a SSD.
The extensions of TSSD with respect to TESD are the
possibility to declare the behavior of an object and to represent
instances.
There is a change in terminology when we change from ESDs to SSDs:
<DIV ALIGN="CENTER">
<TABLE CELLPADDING=3 BORDER="1">
<TR><TD ALIGN="LEFT">Entity-relationship diagram</TD>
<TD ALIGN="LEFT">UML static structure diagram</TD>
</TR>
<TR><TD ALIGN="LEFT">entity type</TD>
<TD ALIGN="LEFT">class</TD>
</TR>
<TR><TD ALIGN="LEFT">entity</TD>
<TD ALIGN="LEFT">object</TD>
</TR>
<TR><TD ALIGN="LEFT">relationship</TD>
<TD ALIGN="LEFT">association</TD>
</TR>
<TR><TD ALIGN="LEFT">tuple</TD>
<TD ALIGN="LEFT">link</TD>
</TR>
<TR><TD ALIGN="LEFT">associative entity</TD>
<TD ALIGN="LEFT">associative object</TD>
</TR>
<TR><TD ALIGN="LEFT">cardinality property</TD>
<TD ALIGN="LEFT">multiplicity property</TD>
</TR>
</TABLE></DIV>
<P>

<H3><A NAME="SECTION001122100000000000000">
9.2.2.1 Stereotypes and properties</A>
</H3>
 
We can give a diagram element a special meaning by labeling it with a
special name between 
<!-- MATH: $\langle\hspace{-0.15em}\langle$ -->
<IMG
 WIDTH="14" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg196.gif"
 ALT="$\langle\hspace{-0.15em}\langle$">guillemets
<!-- MATH: $\rangle\hspace{-0.15em}\rangle$ -->
<IMG
 WIDTH="14" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg197.gif"
 ALT="$\rangle\hspace{-0.15em}\rangle$">.
Such a diagram element is called a <B>stereotype</B>.
For example, in a static structure diagram, we can specialize classes
into stereotypes with a special meaning, by writing the stereotype
name in guillemets above the class name.
See figure&nbsp;<A HREF="usersguidenode11.html#fig.stereo">A.18</A>.
 <BR>
<DIV ALIGN="CENTER"><A NAME="fig.stereo">&#160;</A><A NAME="8934">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.18:</STRONG>
Stereotypes and properties.</CAPTION>
<TR><TD><IMG
 WIDTH="233" HEIGHT="109"
 SRC="usersguideimg198.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/stereo.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>

<P>
Figure&nbsp;<A HREF="usersguidenode11.html#fig.stereo">A.18</A> also shows that we can annotate the name
compartment of a class box with properties.
A property is represented by a user-defined property name and a
property value.
This is included in the name compartment as a comment between curly
braces, and it has no UML-defined semantics.
You are free to include any text between curly braces.

<P>

<H3><A NAME="SECTION001122200000000000000">
9.2.2.2 Behavior</A>
</H3>

<P>
The behavior of an object is declared in a third compartment below the
attribute compartment of a class box.
The UML allows the declaration of the operations that the instances of
the class can perform and of the signals that the instances can
receive.
See [<A
 HREF="usersguidenode14.html#Wieringa99-01">23</A>] for details.

<P>

<H3><A NAME="SECTION001122300000000000000">
9.2.2.3 Objects</A>
</H3>

<P>
An object is represented by a named rectangle with an attribute
compartment.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.objects">&#160;</A><A NAME="8936">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.19:</STRONG>
Representation of objects.</CAPTION>
<TR><TD><IMG
 WIDTH="582" HEIGHT="161"
 SRC="usersguideimg199.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/objects.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
The name of an instance is underlined.
The attribute compartment contains the attribute values of the
instance.
See figure&nbsp;<A HREF="usersguidenode11.html#fig.objects">A.19</A>.
Notice the association from John to the class <I>City</I>.
This tells us that John has exactly one birthplace but it does not
tell us which one this is, because <I>City</I> is a class.

<P>

<H2><A NAME="SECTION001123000000000000000">&#160;</A><A NAME="TUT-ATD">&#160;</A><A NAME="8571">&#160;</A>
<BR>
9.2.3 Activity diagrams (TATD)
</H2>

<P>
An activity diagram is a graph in which the nodes represent activities
and the arrows represent transitions between activities.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.coffee">A.20</A> gives an example.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.coffee">&#160;</A><A NAME="8938">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.20:</STRONG>
An activity diagram.</CAPTION>
<TR><TD><IMG
 WIDTH="457" HEIGHT="663"
 SRC="usersguideimg200.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/coffee.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>

<P>

<H3><A NAME="SECTION001123100000000000000">
9.2.3.1 Activity</A>
</H3>

<P>
Activities are represented by two parallel lines connected by
semicircles.
The name of the activity can be entered in the shape.

<P>

<H3><A NAME="SECTION001123200000000000000">
9.2.3.2 Transition</A>
</H3>

<P>
Transitions are represented by unlabeled arrows.
A transition represents the completion of the activity from which it
departs.

<P>

<H3><A NAME="SECTION001123300000000000000">
9.2.3.3 Choice nodes</A>
</H3>

<P>
A choice node is represented by a diamond.
A transition that emanates from a diamond can be labeled by a
<I>[condition]</I> that tells us when this branch is taken.
A choice point is not a state of the system.

<P>

<H3><A NAME="SECTION001123400000000000000">
9.2.3.4 Fork and join nodes</A>
</H3>

<P>
Fork and join nodes are represented by fat horizontal or vertical
lines.
If more than one arrow leaves the node, it is a fork node and there
must be exactly one arrow entering it.
A join node represents the start of two or more parallel processes.

<P>
If more than one arrow terminates at the node, it is a join node and
there must be exactly one arrow that departs from it.
A join node represents the merging of two or more parallel process
into one process.

<P>

<H3><A NAME="SECTION001123500000000000000">
9.2.3.5 Initial and final state</A>
</H3>

<P>
The start of an activity diagram is represented by a bullet.
There must be exactly one bullet in a completed  diagram.

<P>
A final state of an activity is represented by a bull's eye.
There must be at least one final state in an activity completed diagram.

<P>

<H2><A NAME="SECTION001124000000000000000">&#160;</A><A NAME="TUT-SCD">&#160;</A><A NAME="8585">&#160;</A>
<BR>
9.2.4 Statechart diagrams (TSCD)
</H2>

<P>
TSCD is used to draw <EM>statecharts.</EM>
Statecharts are based on state-transition diagrams known from TSTD.

<P>
A statechart describes the behaviour of a system,
i.e., the possible orders of events and states.
A state in a statechart may consist of one or several <EM>state nodes.</EM>
A state node can be refined in two ways:
<DL>
<DD><P>
<DT><STRONG>An <I>or</I> node</STRONG>
<DD>serves to describe substates.
	If the state of the system contains the <I>or</I> node,
	it contains exactly one of the subnodes.

<P>
The subnodes of an <I>or</I> node are simply drawn inside the 
<I>or</I> node.
	The initial subnode has an arrow starting at a black dot.

<P>
<DT><STRONG>An <I>and</I> node</STRONG>
<DD>serves to describe parallel behaviour.
	If the state of the system contains the <I>and</I> node,
	it contains all of the subnodes.
	These subnodes are typically refined further,
	to describe in which state the single parallel components can stay.

<P>
The subnodes of an <I>and</I> node are drawn as compartments which 
partition the <I>and</I> node.
	As there is no space left for the <I>and</I> node's name, it is 
attached to a small box on the outside.

<P>
</DL>Possible state changes are indicated by <EM>transitions.</EM>
They are drawn as arrows with a label 
<!-- MATH: $\mathsf{e} [\mathsf{g}] / \mathsf{a}$ -->
<IMG
 WIDTH="44" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg201.gif"
 ALT="$\mathsf{e} [\mathsf{g}] / \mathsf{a}$">,
where 
<!-- MATH: $\mathsf{e}$ -->
<IMG
 WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 SRC="usersguideimg202.gif"
 ALT="$\mathsf{e}$">
denotes the event which triggers the transition,

<!-- MATH: $\mathsf{g}$ -->
<IMG
 WIDTH="13" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg203.gif"
 ALT="$\mathsf{g}$">
is a guard (the transition can only be taken if the guard holds),
and 
<!-- MATH: $\mathsf{a}$ -->
<IMG
 WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 SRC="usersguideimg204.gif"
 ALT="$\mathsf{a}$">
denotes the action executed when the transition is taken
(for example, send an event to another statechart).

<P>
In addition to these basic elements,
one can indicate the initial state with an arrow from a black dot
and the final state with a bull's eye.

<P>
For an example of a statechart, see figure&nbsp;<A HREF="usersguidenode11.html#fig.statechart">A.21</A>.
The statechart describes a fan's behaviour.
This kind of fan can produce a cold or hot, and a slow or fast air stream.
Its initial state is <I>Off</I>.
When switched on,
it enters the <I>and</I> node <I>On</I> and its subnodes.
Here, it again selects the initial nodes <I>Slow</I> and <I>Cold</I>.
If the user sends event <I>f</I> to the system,
it switches to <I>Fast</I>.
When the user switches the fan off (by sending an <I>off</I> event),
the fan leaves the <I>On</I> node and all its subnodes
(forgetting the slow/fast and cold/hot settings),
and enters the <I>Off</I> node again.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.statechart">&#160;</A><A NAME="8940">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.21:</STRONG>
Example of a statechart.</CAPTION>
<TR><TD><IMG
 WIDTH="519" HEIGHT="278"
 SRC="usersguideimg205.gif"
 ALT="\begin{figure}
\center{\epsfig{file=p/statechart.eps} }
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
<P>

<H2><A NAME="SECTION001125000000000000000">&#160;</A><A NAME="TUT-CBD">&#160;</A><A NAME="8623">&#160;</A>
<BR>
9.2.5 Collaboration diagrams (TCBD)
</H2>

<P>
A collaboration diagram is an object diagram that shows the objects 
and links involved in a scenario, and also shows the messages passed
in the scenario.

<P>

<H3><A NAME="SECTION001125100000000000000">
9.2.5.1 Messages</A>
</H3>

<P>
In addition to other UML diagrams a collaboration diagram has 
message flows representing messages being sent between objects via 
links. See
figure&nbsp;<A HREF="usersguidenode11.html#fig.messages">A.22</A> for an example of the initial dialog 
between a client and a ATM.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.messages">&#160;</A><A NAME="8942">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.22:</STRONG>
Collaboration diagram messages.</CAPTION>
<TR><TD><IMG
 WIDTH="317" HEIGHT="94"
 SRC="usersguideimg206.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/tut_messages.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>

<P>

<H2><A NAME="SECTION001126000000000000000">&#160;</A><A NAME="TUT-CPD">&#160;</A><A NAME="8632">&#160;</A>
<BR>
9.2.6 Component diagrams (TCPD)
</H2>

<P>
A UML component diagram is a directed graph in which the nodes
represent  components and the edges, which are directed, represent
dependencies.
A component is, roughly, any software-like resource delivered during
software development or needed by the delivered software.
This includes the executables and sources of the software system,
utilities needed by the software system,   shared libraries, etc.
A dependency may be a compilation dependency, and import dependency,
etc.
The exact meaning of the nodes and edges must be described in the
diagram documentation.

<P>
The interface of an executable component is represented by small
rectangles protruding from the component box.

<P>
Each class in the class model must be allocated to an executable
component.
This can be represented in a component diagram by enclosing a class icon
inside a component icon.
Alternatively, it can be represented by drawing a dependency arrow from
the class to the component(s)  it is allocated to.

<P>

<H2><A NAME="SECTION001127000000000000000">&#160;</A><A NAME="TUT-DPD">&#160;</A><A NAME="8635">&#160;</A>
<BR>
9.2.7 Deployment diagrams (TDPD)
</H2>

<P>
A UML deployment diagram is a graph in which the nodes represent
resources and the edges represent communication channels.
A resource is a hardware/software combination that offers computing
power.
This includes mainframes,  servers, workstations, PC's,  laptops,
handheld  computers, organizers, mobile telephones, faxes, printers,
etc.
A channel is any hardware/software combination that offers communication
possibility to resources.
This includes local and  wide area networks, wireless communications,
cables, etc.

<P>
Each executable component can be allocated to one or more resources.
This can be represented in a UML deployment diagram by drawing a
component icon inside a resource icon.
Alternatively, it can be represented by drawing a dependency arrow from
the component to the resource(s) it is allocated to.

<P>

<H1><A NAME="SECTION001130000000000000000">
9.3 Miscellaneous Notations</A>
</H1>

<P>

<H2><A NAME="SECTION001131000000000000000">&#160;</A><A NAME="TUT-ERD">&#160;</A><A NAME="8639">&#160;</A>
<BR>
9.3.1 Classic Entity-Relationship Diagrams (TERD)
</H2>

<P>
The TCM convention for ERDs is described in detail
in&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa96-01">22</A>].

<P>

<H3><A NAME="SECTION001131100000000000000">&#160;</A><A NAME="8642">&#160;</A>
<BR>
9.3.1.1 Entity types
</H3>

<P>
As usual, a named rectangle represents a named entity type.

<P>

<H3><A NAME="SECTION001131200000000000000">&#160;</A><A NAME="8644">&#160;</A>
<BR>
9.3.1.2 Binary relationships
</H3>

<P>
Binary relationships are presented by lines.

<P>

<H3><A NAME="SECTION001131300000000000000">&#160;</A><A NAME="8646">&#160;</A>
<BR>
9.3.1.3 Cardinality constraints
</H3>

<P>
Cardinality constraints are represented by
annotations placed at the end points of these lines.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDcard">&#160;</A><A NAME="8944">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.23:</STRONG>
The placement of cardinality constraints.</CAPTION>
<TR><TD><IMG
 WIDTH="354" HEIGHT="45"
 SRC="usersguideimg207.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDcard.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
For example, in figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDcard">A.23</A>, each business has an employment
relationship to more than zero persons and each person has 0 or 1
employment relationships to a business.
The end points of the line can also be annotated with the role that the
entity at that end of the line plays in the relationship.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDroles">A.24</A> gives an example.<A NAME="8653">&#160;</A>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDroles">&#160;</A><A NAME="8946">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.24:</STRONG>
The placement of role names.</CAPTION>
<TR><TD><IMG
 WIDTH="458" HEIGHT="45"
 SRC="usersguideimg208.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDroles.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDcon">&#160;</A><A NAME="8948">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.25:</STRONG>
The meaning of cardinality constraints.</CAPTION>
<TR><TD><IMG
 WIDTH="343" HEIGHT="45"
 SRC="usersguideimg209.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDcon.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
In general, a cardinality constraint is represented by a set of natural
numbers (see figure&nbsp;<A HREF="usersguidenode6.html#CardSyntax">4.4</A> for the syntax).
For example, if <I>c</I> is a set of natural numbers, the constraint
in figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDcon">A.25</A> is that each instance of <I>E1</I> is related
to <I>n</I> instances of <I>E2</I>, where <IMG
 WIDTH="29" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg179.gif"
 ALT="$n \in$">
<I>c</I>&nbsp;<A NAME="tex2html176"
 HREF="#foot8949"><SUP>9.1</SUP></A>.
If no constraint label is shown, the convention is that the constraint is
the entire set of natural numbers, i.e. it is no constraint.
For example, in figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDcon">A.25</A>, each instance of <I>E2</I> is
related 
to any number instances of <I>E1</I>.
This includes the case that it is related to 0 instances of <I>E1</I>.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDarrow">&#160;</A><A NAME="8951">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.26:</STRONG>
The arrow representation of many-one constraints.</CAPTION>
<TR><TD><IMG
 WIDTH="319" HEIGHT="126"
 SRC="usersguideimg210.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDarrow.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
There are various conventions for the placement of the cardinality
constraints, all of which are a source of confusion.
The choice made in TCM is motivated as follows.
We use the convention that a cardinality constraint of 1 can be abbreviated
by an arrowhead.
So the two diagrams in figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDarrow">A.26</A> are equivalent as far as
their cardinality constraints are concerned.
They both mean that each person is related to exactly 1 business and that
each business is related to at least one person.
This means that the relationship is a mathematical function from persons to
businesses, which explains the arrow convention.
To facilitate a smooth transformation between these two representations,
the cardinality constraint labels must be placed where they now are.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDreverse">&#160;</A><A NAME="8953">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.27:</STRONG>
The line representation of binary relationships is direction-independent.</CAPTION>
<TR><TD><IMG
 WIDTH="297" HEIGHT="45"
 SRC="usersguideimg211.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDreverse.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Note that the naming of the relationship usually must change when we switch
to the arrow notation.
In the line notation, there is no natural reading direction for the
relationship name.
For example, figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDreverse">A.27</A> conveys the same information as
figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDcard">A.23</A>. 
In the arrow representation, by contrast, there is a natural reading
direction and we adapt the relationship name accordingly.
Often, the role name of the entity type at the arrowhead becomes the
relationship name.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDmanyone">&#160;</A><A NAME="8955">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.28:</STRONG>
Different conventions supported by the 
classic TERD editor for representing the same constraints. </CAPTION>
<TR><TD><IMG
 WIDTH="342" HEIGHT="137"
 SRC="usersguideimg212.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDmanyone.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDmay">&#160;</A><A NAME="8957">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.29:</STRONG>
Different conventions supported by the 
classic TERD editor for representing the same constraints.</CAPTION>
<TR><TD><IMG
 WIDTH="342" HEIGHT="137"
 SRC="usersguideimg213.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDmay.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
There are many other conventions to represent binary relationships.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDmanyone">A.28</A> shows different ways of representing the following
constraints: 
<UL>
<LI>
Each existing <I>E1</I> is related to at least one existing <I>E2</I> and
<LI>
Each existing <I>E2</I> is related to exactly one existing <I>E1</I>.
</UL>Figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDmay">A.29</A> shows different ways of representing the following
constraints: 
<UL>
<LI>
Each existing <I>E1</I> is related to at any number (including 0)
existing <I>E2</I> and
<LI>
Each existing <I>E2</I> is related to exactly one existing <I>E1</I>.
</UL>
<P>

<H3><A NAME="SECTION001131400000000000000">&#160;</A><A NAME="8710">&#160;</A>
<BR>
9.3.1.4 Relationships of higher arity
</H3>

<P>
<A NAME="8711">&#160;</A>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDdiam">&#160;</A><A NAME="8959">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.30:</STRONG>
The diamond representation for relationships.</CAPTION>
<TR><TD><IMG
 WIDTH="412" HEIGHT="45"
 SRC="usersguideimg214.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDdiam.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
A relationship is a Cartesian product of two or more entity
types, called its <EM>components</EM>.<A NAME="tex2html178"
 HREF="#foot8960"><SUP>9.2</SUP></A><A NAME="8718">&#160;</A><A NAME="8719">&#160;</A>
Relationships of arity higher than 2 are represented by a
diamond, connected by arrows to the boxes that represent its components.
These arrows represent the projection functions of a Cartesian product on
its components.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDdiam">A.30</A> contains exactly the same information as
figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDcard">A.23</A>. 
Note the placement of the cardinality constraints, which is at the root of
the arrow.
This agrees with the placement convention of constraints on relationship
lines. 
In fact, one can view the arrows in figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDdiam">A.30</A> as binary
relationships between <I>EMPLOYMENT</I> and its two components.
The meaning is that each business is related to at least one employment
instance (and hence to exactly one person), 
and that each person is related to exactly one employment instance (and
hence to exactly one business).
This agrees with the meaning of figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDcard">A.23</A>.

<P>

<H3><A NAME="SECTION001131500000000000000">&#160;</A><A NAME="8726">&#160;</A>
<BR>
9.3.1.5 Value types
</H3>

<P>
Value types (often called ``data types'') are represented by ovals.

<P>

<H3><A NAME="SECTION001131600000000000000">&#160;</A><A NAME="8728">&#160;</A>
<BR>
9.3.1.6 Attributes
</H3>

<P>
Entity attributes are represented by arrows from an entity type to an
oval 
and relationship attributes are represented by arrows from a relationship
diamond to an oval.
This means that the TCM convention does not distinguish between
``ordinary'' relationships, which do not have attributes, and ``associative
entity types'', which are relationships that can have attributes.

<P>

<H3><A NAME="SECTION001131700000000000000">&#160;</A><A NAME="8730">&#160;</A>
<BR>
9.3.1.7 Is-a relationships
</H3>

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.ERDisa">&#160;</A><A NAME="8962">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.31:</STRONG>
The representation of is-a relationships.</CAPTION>
<TR><TD><IMG
 WIDTH="285" HEIGHT="45"
 SRC="usersguideimg215.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/ERDisa.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
An is-a relationship is a binary relationship that is an inclusion
function. 
For example, figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDisa">A.31</A> shows that each <I>CAR</I> instance
is also a <I>VEHICLE</I> instance.
Extensionally, the set of all possible cars is a subset of the set of all
possible vehicles.
Intensionally, the set of properties shared by all cars includes the set of
properties shared by all vehicles.
<I>CAR</I> is called a <EM>specialization</EM> of <I>VEHICLE</I> and <I>VEHICLE</I> is called a <EM>generalization</EM> of
<I>CAR</I>.<A NAME="8744">&#160;</A><A NAME="8745">&#160;</A>

<P>
If there is more than one specialization of an entity type, then these must
be grouped into <EM>specialization groups</EM>.<A NAME="8747">&#160;</A>
This is represented by connecting the rectangles representing the
specializations 
to a small circle<A NAME="8748">&#160;</A>
called the <EM>taxonomy junction</EM> and connecting this with an
<I>is-a</I> arrow to the rectangle representing the generalization.
The taxonomy junction must be annotated as follows:
<UL>
<LI>
A ``<I>d</I>'' means that the
specializations are mutually disjoint.<A NAME="8753">&#160;</A>
<LI>
An ``<I>e</I>'' means that the specializations
jointly exhaust the generalization.<A NAME="8755">&#160;</A>
<LI>
A ``<I>de</I>'' means the conjunction of ``<I>d</I>'' and
``<I>e</I>'', i.e. the specializations partition the generalization.
</UL><A NAME="8760">&#160;</A>
A generalization can be specialized by any number of specialization groups.
For example, figure&nbsp;<A HREF="usersguidenode6.html#TaxonomyExample">4.5</A> means the following:
<UL>
<LI>Cars are vehicles and trucks are vehicles.
<LI>
The union of the set of all cars and all trucks equals the set of all
vehicles. 
So vehicles are trucks or cars (or both).
<LI>Diesel vehicles are vehicles and gas vehicles are vehicles.
<LI>
There is no vehicle both a diesel and a gas vehicle.
<LI>There may be vehicles that are neither diesel nor gas vehicles.
</UL>
<P>

<H2><A NAME="SECTION001132000000000000000">&#160;</A><A NAME="TUT-CRD">&#160;</A><A NAME="8766">&#160;</A>
<BR>
9.3.2 Class-Relationship Diagrams (TCRD)
</H2>

<P>

<H3><A NAME="SECTION001132100000000000000">&#160;</A><A NAME="8768">&#160;</A>
<BR>
9.3.2.1 Classes
</H3>

<P>
The CRD notation of TCM follows the convention that a class is represented
by a rectangle subdivided into three areas, that contain, from top to
bottom, the class name, the attributes, and the events that can occur in
the life of the class instances.
TCM can hide one or both of the event and attribute areas from view.
<A NAME="8769">&#160;</A>

<P>

<H3><A NAME="SECTION001132200000000000000">&#160;</A><A NAME="8771">&#160;</A><A NAME="8772">&#160;</A>
<BR>
9.3.2.2 Relationships
</H3>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.crd">&#160;</A><A NAME="8964">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.32:</STRONG>
The CRD representation of relationships.</CAPTION>
<TR><TD><IMG
 WIDTH="435" HEIGHT="45"
 SRC="usersguideimg216.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/crd.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Relationships are represented by rectangles just as classes are.
They are connected to their components by means of dashed arrows.
The meaning is exactly the same as in the ERD case.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.crd">A.32</A> has exactly the same information content as
figures&nbsp;<A HREF="usersguidenode11.html#fig.ERDcard">A.23</A>,&nbsp;<A HREF="usersguidenode11.html#fig.ERDreverse">A.27</A> and&nbsp;<A HREF="usersguidenode11.html#fig.ERDdiam">A.30</A>.
The line representation (figure&nbsp;<A HREF="usersguidenode11.html#fig.ERDcard">A.23</A>) is also allowed in the
CRD convention.
The advantage of the CRD convention over the diamond representation
is that a rectangle allows easier
placement of text inside the area.
In addition, the CRD convention used in TCM allows representation of such
complex structures as represented in figure&nbsp;<A HREF="usersguidenode11.html#fig.complex">A.33</A>, which cannot
be represented in the ERD convention.
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.complex">&#160;</A><A NAME="8966">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.33:</STRONG>
The CRD convention can represent complex mathematical structures.</CAPTION>
<TR><TD><IMG
 WIDTH="306" HEIGHT="278"
 SRC="usersguideimg217.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/complex.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Figure&nbsp;<A HREF="usersguidenode11.html#fig.complex">A.33</A> represents the following structures.
(To reduce clutter in the notation, we ignore the fact that
relationships are actually <EM>labeled</EM> Cartesian products.)<UL>
<LI>R1 = E1 <IMG
 WIDTH="17" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg218.gif"
 ALT="$\times$">
E2
<LI>f : E3 
<!-- MATH: $\rightarrow$ -->
<IMG
 WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="usersguideimg129.gif"
 ALT="$\rightarrow$">
R1
<LI>g : R1 
<!-- MATH: $\rightarrow$ -->
<IMG
 WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="usersguideimg129.gif"
 ALT="$\rightarrow$">
E4
<LI>R2 = R1 <IMG
 WIDTH="17" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg218.gif"
 ALT="$\times$">
E5
</UL>

<P>

<H3><A NAME="SECTION001132300000000000000">&#160;</A><A NAME="8792">&#160;</A>
<BR>
9.3.2.3 Is-a relationships
</H3>

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.static">&#160;</A><A NAME="8969">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.34:</STRONG>
Static specialization.</CAPTION>
<TR><TD><IMG
 WIDTH="343" HEIGHT="252"
 SRC="usersguideimg219.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/static.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
The CRD convention for representing is-a relationships extends the ERD
convention with constructs to represent static and dynamic specialization.
A static specialization group is represented by a small closed circle,
called a taxonomy junction,
and
a dynamic specialization group is represented by a dashed circle, called a
mode junction (see figure&nbsp;<A HREF="usersguidenode6.html#CRRepresentations">4.12</A>).<A NAME="8798">&#160;</A>
In figure&nbsp;<A HREF="usersguidenode11.html#fig.static">A.34</A>, an instance of <I>CAR</I> will never
become an instance of <I>AIRPLANE</I> and vice versa.
An instance is a member of a specialization for life.
By contrast, in figure&nbsp;<A HREF="usersguidenode6.html#ModeExample">4.16</A>, an instance of <I>MARRIED PERSON</I>
may move to another of the subclasses of <I>PERSON</I>.
Here, an instance is an instance of a specialization only for part of its
life. 
We call these specialization <EM>mode classes</EM>.<A NAME="8806">&#160;</A>
For example, <I>MARRIED PERSON</I> is a mode class of <I>PERSON</I>,  because a married person is a mode of a person.
Details of static and dynamic specialization are given<A NAME="8809">&#160;</A><A NAME="8810">&#160;</A>
elsewhere&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa94-01">24</A>,<A
 HREF="usersguidenode14.html#Wieringa95-04">25</A>].

<P>

<H2><A NAME="SECTION001133000000000000000">&#160;</A><A NAME="TUT-DFD">&#160;</A><A NAME="8814">&#160;</A>
<BR>
9.3.3 Data Flow Diagrams (TDFD)
</H2>

<P>
TDFD contains a subset of TEFD. Please see section&nbsp;<A HREF="usersguidenode11.html#TUT-EFD">A.1.2</A>.

<P>

<H2><A NAME="SECTION001134000000000000000">&#160;</A><A NAME="TUT-PSD">&#160;</A><A NAME="8818">&#160;</A><A NAME="8819">&#160;</A>
<BR>
9.3.4 Process Structure Diagrams (TPSD)
</H2>

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.psd">&#160;</A><A NAME="8971">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.35:</STRONG>
A process structure diagram.</CAPTION>
<TR><TD><IMG
 WIDTH="582" HEIGHT="333"
 SRC="usersguideimg220.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/psd.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Process structure diagrams are used in JSD to represent behavior.
A PSD is a tree in which the nodes are
labeled&nbsp;[<A
 HREF="usersguidenode14.html#Jackson83">11</A>,<A
 HREF="usersguidenode14.html#Wieringa96-01">22</A>].
The leaves of the tree represent atomic actions and the root
represents the entire process.
Sequence is represented by a left-to-right ordering of the children of
a node.
Iteration is represented by an asterisk label and choice by a small
circle in the nodes that represent the options.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.psd">A.35</A> gives an example.

<P>
PSDs are equivalent to regular expressions.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.psdstd">&#160;</A><A NAME="8973">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.36:</STRONG>
A Mealy diagram roughly equivalent
to figure&nbsp;<A HREF="usersguidenode11.html#fig.psd">A.35</A>.</CAPTION>
<TR><TD><IMG
 WIDTH="133" HEIGHT="425"
 SRC="usersguideimg221.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/psdstd.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
A Mealy machine roughly equivalent to this is shown in
figure&nbsp;<A HREF="usersguidenode11.html#fig.psdstd">A.36</A>.
The names of the nodes in a PSD can be reused as state names in a
Mealy STD.
However, the Mealy convention forces us to categorize an action as an
input or output action, whereas in PSDs this is not the case.
In figure&nbsp;<A HREF="usersguidenode11.html#fig.psdstd">A.36</A>
we arbitrarily categorized all PSD actions as output actions.

<P>
In JSD, PSDs are used to represent processes in reality and to
represent processes in the machine.
If used to represent processes in reality, common actions between PSDs
represent synchronous communication between these processes.
If used to represent processes in the software, communication between
processes is represented by means of system network diagrams, described
in section&nbsp;<A HREF="usersguidenode11.html#subsec.snd">A.3.5</A> below.

<P>

<H2><A NAME="SECTION001135000000000000000">&#160;</A><A NAME="TUT-SND">&#160;</A><A NAME="subsec.snd">&#160;</A><A NAME="8837">&#160;</A>
<BR>
9.3.5 System Network Diagrams (TSND)
</H2>

<P>
SNDs are used by JSD&nbsp;[<A
 HREF="usersguidenode14.html#Jackson83">11</A>] to represent communication
between processes.
SNDs are directed graphs with two kinds of nodes, that represent
processes and communications.
A process node must be specified by a PSD, just as a control process
in a DEFD must be specified by a STD.
There are three kinds of communication nodes:
<UL>
<LI><EM>Data streams</EM><A NAME="8841">&#160;</A>, represented by a circle.
These are FIFO queues, somewhat like Unix pipes between two processes.
Communication through a data stream connection is asynchronous.
<LI>
<EM>State vector connections</EM><A NAME="8843">&#160;</A>, 
in which the reader process reads the state of the writer process.
Initiative of the communication lies with the reader.
The writer is not disturbed by the read action.
The communication is synchronous.
A state vector connection is represented by a diamond connected to the
reader by an arrow and to the writer by an undirected line.
The direction of the arrow represents the direction of data flow.
<LI><EM>Controlled data stream connections</EM><A NAME="8845">&#160;</A>, 
represented by a circle with a small vertical line in it.
The circle is connected to a reader and a writer, where an arrow is
used to indicate the direction of data flow.
Communication is synchronous and takes place on the initiative of the
reader.
The reader checks the current state of the writer and if this
satisfies a certain condition, may update this state by sending it a
message.
</UL>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.snd">&#160;</A><A NAME="8975">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.37:</STRONG>
An SND of the robot controller of figure&nbsp;<A HREF="usersguidenode11.html#fig.robot">A.14</A>.</CAPTION>
<TR><TD><IMG
 WIDTH="574" HEIGHT="348"
 SRC="usersguideimg222.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/snd.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
Figure&nbsp;<A HREF="usersguidenode11.html#fig.snd">A.37</A> shows a SND of  the robot controller
of figure&nbsp;<A HREF="usersguidenode11.html#fig.robot">A.14</A>.
All rectangles represent software entities.
External entities are not shown.
We used the convention to end the name of 
a software entity that represents an
external entity with an <I>S</I> (for ``surrogate''), and to end
the name of a 
software entity  that embodies a software function with an <I>F</I>.
Each of the surrogate and function processes in the model must be
specified by a PSD.

<P>

<H2><A NAME="SECTION001136000000000000000">&#160;</A><A NAME="TUT-RPG">&#160;</A><A NAME="8858">&#160;</A>
<BR>
9.3.6 Recursive Process Graphs (TRPG)
</H2>

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.rpg1">&#160;</A><A NAME="8977">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.38:</STRONG>
A recursive process graph.</CAPTION>
<TR><TD><IMG
 WIDTH="160" HEIGHT="309"
 SRC="usersguideimg223.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/rpg1.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.rpg2">&#160;</A><A NAME="8979">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.39:</STRONG>
A recursive process graph with labeled nodes.</CAPTION>
<TR><TD><IMG
 WIDTH="196" HEIGHT="437"
 SRC="usersguideimg224.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/rpg2.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
A recursive process graph is a rooted directed graph in which the
nodes represent states and the edges represent atomic actions or other
processes.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.rpg1">A.38</A> shows a RPG equivalent to the PSD of
figure&nbsp;<A HREF="usersguidenode11.html#fig.psd">A.35</A>.
Nodes in RPGs can be labeled, just as in Mealy STDs.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.rpg2">A.39</A> shows a RPG with labeled nodes.

<P>
An RPG has an initial node, which is pointed at by a small arrow and<A NAME="8870">&#160;</A>
which can be labeled by the name of the process.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.rpg3">&#160;</A><A NAME="8981">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.40:</STRONG>
A recursive process graph with a call to another process.</CAPTION>
<TR><TD><IMG
 WIDTH="413" HEIGHT="437"
 SRC="usersguideimg225.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/rpg3.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
An edge in a RPG can be labeled with the name of an action or of a
process.
If it is labeled with a process name, the transition is equivalent to
performing this process.
Figure&nbsp;<A HREF="usersguidenode11.html#fig.rpg3">A.40</A> illustrates this.
The RPG in figure&nbsp;<A HREF="usersguidenode11.html#fig.rpg3">A.40</A> is equivalent to that of
figure&nbsp;<A HREF="usersguidenode11.html#fig.rpg2">A.39</A>.

<P>
<BR>
<DIV ALIGN="CENTER"><A NAME="fig.rpg4">&#160;</A><A NAME="8983">&#160;</A>
<TABLE WIDTH="50%">
<CAPTION><STRONG>Figure A.41:</STRONG>
A recursive process graph with a recursive call.</CAPTION>
<TR><TD><IMG
 WIDTH="115" HEIGHT="172"
 SRC="usersguideimg226.gif"
 ALT="\begin{figure}
\centerline{\epsfig{figure=p/rpg4.eps}} %
%
\end{figure}"></TD></TR>
</TABLE>
</DIV>
<BR>
The call to another process can be recursive, as illustrated in
figure&nbsp;<A HREF="usersguidenode11.html#fig.rpg4">A.41</A>.
This describes the process with possible traces 
<!-- MATH: ${\mbox{\sf
a}}^n{\mbox{\sf c}}$ -->
<IMG
 WIDTH="28" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="usersguideimg227.gif"
 ALT="${\mbox{\sf
a}}^n{\mbox{\sf c}}$">
for <IMG
 WIDTH="43" HEIGHT="28" ALIGN="MIDDLE" BORDER="0"
 SRC="usersguideimg228.gif"
 ALT="$n \geq 1$">.

<P>
Recursive process graphs are defined formally by Spruit and
Wieringa&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa91-08">26</A>], based upon the idea of recursive transition
networks&nbsp;[<A
 HREF="usersguidenode14.html#Woods70">27</A>].

<P>

<H2><A NAME="SECTION001137000000000000000">&#160;</A><A NAME="TUT-TDT">&#160;</A><A NAME="8889">&#160;</A>
<BR>
9.3.7 Transaction Decomposition Tables (TTDT)
</H2>

<P>
A transaction decomposition table is used to set off software entities
against external atomic system functions, called <EM>transactions</EM>.<A NAME="8891">&#160;</A>
The entries of the table then represent the work performed by the
software entities during the transaction.
For example, figure&nbsp;<A HREF="usersguidenode9.html#TDTExample">7.7</A> says that the transaction
<BR> <I>start_controlling_temperature</I> requires some actions to be taken by
software entities:
A <I>BATCH</I> object must perform action <I>do_temperature_ramp</I>, etc.

<P>
Transaction decomposition tables can also be used in combination with
ERDs and DFDs.
The left-hand column then represents entity types or data stores, and
the entries contain the letters C, R, U or D to indicate whether an
instance of the entity type is created, read, updated or deleted
during the transaction.
The resulting table is also called a <EM>CRUD table</EM>.<A NAME="8897">&#160;</A>

<P>
Transaction decomposition tables can also be used in JSD to discover
communications.
They also help to maintain traceability.
Methodological details are provided elsewhere&nbsp;[<A
 HREF="usersguidenode14.html#Wieringa96-01">22</A>,<A
 HREF="usersguidenode14.html#Wieringa95-03">21</A>].

<P>
<BR><HR><H4>Footnotes</H4>
<DL>
<DT><A NAME="foot8949">...
<I>c</I>&nbsp;</A><A NAME="foot8949"
 HREF="usersguidenode11.html#tex2html176"><SUP>9.1</SUP></A>
<DD>More precisely,
each <EM>existing</EM> instance of <I>E1</I> is related
to <I>n</I> <EM>existing</EM> instances of <I>E2</I>.

<DT><A NAME="foot8960">... <EM>components</EM>.</A><A NAME="foot8960"
 HREF="usersguidenode11.html#tex2html178"><SUP>9.2</SUP></A>
<DD>To be more precise, it is a <EM>labeled</EM> Cartesian
product.

</DL><HR>
<!--Navigation Panel-->
<A NAME="tex2html1041"
 HREF="usersguidenode12.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> 
<A NAME="tex2html1037"
 HREF="User.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> 
<A NAME="tex2html1031"
 HREF="usersguidenode10.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> 
<A NAME="tex2html1039"
 HREF="usersguidenode1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents_motif.gif"></A> 
<A NAME="tex2html1040"
 HREF="usersguidenode15.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index_motif.gif"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html1042"
 HREF="usersguidenode12.html">10. Frequently Asked Questions</A>
<B> Up:</B> <A NAME="tex2html1038"
 HREF="User.html">Toolkit for Conceptual Modeling</A>
<B> Previous:</B> <A NAME="tex2html1032"
 HREF="usersguidenode10.html">8. Tree Editing</A>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Henk van de Zandschulp</I>
<BR><I>2003-01-20</I>
</ADDRESS>
</BODY>
</HTML>