~ubuntu-branches/ubuntu/utopic/tesseract/utopic-proposed

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/**********************************************************************
 * File:        statistc.c  (Formerly stats.c)
 * Description: Simple statistical package for integer values.
 * Author:					Ray Smith
 * Created:					Mon Feb 04 16:56:05 GMT 1991
 *
 * (C) Copyright 1991, Hewlett-Packard Ltd.
 ** Licensed under the Apache License, Version 2.0 (the "License");
 ** you may not use this file except in compliance with the License.
 ** You may obtain a copy of the License at
 ** http://www.apache.org/licenses/LICENSE-2.0
 ** Unless required by applicable law or agreed to in writing, software
 ** distributed under the License is distributed on an "AS IS" BASIS,
 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 ** See the License for the specific language governing permissions and
 ** limitations under the License.
 *
 **********************************************************************/

// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif

#include          "mfcpch.h"     //precompiled headers
#include          "statistc.h"
#include          <string.h>
#include          <math.h>
#include          <stdlib.h>
#include          "helpers.h"
#include          "scrollview.h"
#include          "tprintf.h"

/**********************************************************************
 * STATS::STATS
 *
 * Construct a new stats element by allocating and zeroing the memory.
 **********************************************************************/
STATS::STATS(inT32 min_bucket_value, inT32 max_bucket_value_plus_1) {
  if (max_bucket_value_plus_1 <= min_bucket_value) {
    min_bucket_value = 0;
    max_bucket_value_plus_1 = 1;
  }
  rangemin_ = min_bucket_value;                // setup
  rangemax_ = max_bucket_value_plus_1;
  buckets_ = new inT32[rangemax_ - rangemin_];
  clear();
}

STATS::STATS() {
  rangemax_ = 0;
  rangemin_ = 0;
  buckets_ = NULL;
}

/**********************************************************************
 * STATS::set_range
 *
 * Alter the range on an existing stats element.
 **********************************************************************/
bool STATS::set_range(inT32 min_bucket_value, inT32 max_bucket_value_plus_1) {
  if (max_bucket_value_plus_1 <= min_bucket_value) {
    return false;
  }
  if (rangemax_ - rangemin_ != max_bucket_value_plus_1 - min_bucket_value) {
    delete [] buckets_;
    buckets_ = new inT32[max_bucket_value_plus_1 - min_bucket_value];
  }
  rangemin_ = min_bucket_value;                // setup
  rangemax_ = max_bucket_value_plus_1;
  clear();                // zero it
  return true;
}

/**********************************************************************
 * STATS::clear
 *
 * Clear out the STATS class by zeroing all the buckets.
 **********************************************************************/
void STATS::clear() {  // clear out buckets
  total_count_ = 0;
  if (buckets_ != NULL)
    memset(buckets_, 0, (rangemax_ - rangemin_) * sizeof(buckets_[0]));
}

/**********************************************************************
 * STATS::~STATS
 *
 * Destructor for a stats class.
 **********************************************************************/
STATS::~STATS () {
  if (buckets_ != NULL) {
    delete [] buckets_;
    buckets_ = NULL;
  }
}

/**********************************************************************
 * STATS::add
 *
 * Add a set of samples to (or delete from) a pile.
 **********************************************************************/
void STATS::add(inT32 value, inT32 count) {
  if (buckets_ == NULL) {
    return;
  }
  value = ClipToRange(value, rangemin_, rangemax_ - 1);
  buckets_[value - rangemin_] += count;
  total_count_ += count;          // keep count of total
}

/**********************************************************************
 * STATS::mode
 *
 * Find the mode of a stats class.
 **********************************************************************/
inT32 STATS::mode() const {  // get mode of samples
  if (buckets_ == NULL) {
    return rangemin_;
  }
  inT32 max = buckets_[0];           // max cell count
  inT32 maxindex = 0;                // index of max
  for (int index = rangemax_ - rangemin_ - 1; index > 0; --index) {
    if (buckets_[index] > max) {
      max = buckets_[index];      // find biggest
      maxindex = index;
    }
  }
  return maxindex + rangemin_;    // index of biggest
}

/**********************************************************************
 * STATS::mean
 *
 * Find the mean of a stats class.
 **********************************************************************/
double STATS::mean() const {  //get mean of samples
  if (buckets_ == NULL || total_count_ <= 0) {
    return static_cast<double>(rangemin_);
  }
  inT64 sum = 0;
  for (int index = rangemax_ - rangemin_ - 1; index >= 0; --index) {
    sum += static_cast<inT64>(index) * buckets_[index];
  }
  return static_cast<double>(sum) / total_count_ + rangemin_;
}

/**********************************************************************
 * STATS::sd
 *
 * Find the standard deviation of a stats class.
 **********************************************************************/
double STATS::sd() const {  //standard deviation
  if (buckets_ == NULL || total_count_ <= 0) {
    return 0.0;
  }
  inT64 sum = 0;
  double sqsum = 0.0;
  for (int index = rangemax_ - rangemin_ - 1; index >= 0; --index) {
    sum += static_cast<inT64>(index) * buckets_[index];
    sqsum += static_cast<double>(index) * index * buckets_[index];
  }
  double variance = static_cast<double>(sum) / total_count_;
  variance = sqsum / total_count_ - variance * variance;
  if (variance > 0.0)
    return sqrt(variance);
  return 0.0;
}

/**********************************************************************
 * STATS::ile
 *
 * Returns the fractile value such that frac fraction (in [0,1]) of samples
 * has a value less than the return value.
 **********************************************************************/
double STATS::ile(double frac) const {
  if (buckets_ == NULL || total_count_ == 0) {
    return static_cast<double>(rangemin_);
  }
#if 0
  // TODO(rays) The existing code doesn't seem to be doing the right thing
  // with target a double but this substitute crashes the code that uses it.
  // Investigate and fix properly.
  int target = IntCastRounded(frac * total_count_);
  target = ClipToRange(target, 1, total_count_);
#else
  double target = frac * total_count_;
  target = ClipToRange(target, 1.0, static_cast<double>(total_count_));
#endif
  int sum = 0;
  int index = 0;
  for (index = 0; index < rangemax_ - rangemin_ && sum < target;
       sum += buckets_[index++]);
  if (index > 0) {
    ASSERT_HOST(buckets_[index - 1] > 0);
    return rangemin_ + index -
        static_cast<double>(sum - target) / buckets_[index - 1];
  } else {
    return static_cast<double>(rangemin_);
  }
}

/**********************************************************************
 * STATS::min_bucket
 *
 * Find REAL minimum bucket - ile(0.0) isnt necessarily correct
 **********************************************************************/
inT32 STATS::min_bucket() const {  // Find min
  if (buckets_ == NULL || total_count_ == 0) {
    return rangemin_;
  }
  inT32 min = 0;
  for (min = 0; (min < rangemax_ - rangemin_) && (buckets_[min] == 0); min++);
  return rangemin_ + min;
}


/**********************************************************************
 * STATS::max_bucket
 *
 * Find REAL maximum bucket - ile(1.0) isnt necessarily correct
 **********************************************************************/

inT32 STATS::max_bucket() const {  // Find max
  if (buckets_ == NULL || total_count_ == 0) {
    return rangemin_;
  }
  inT32 max;
  for (max = rangemax_ - rangemin_ - 1; max > 0 && buckets_[max] == 0; max--);
  return rangemin_ + max;
}

/**********************************************************************
 * STATS::median
 *
 * Finds a more useful estimate of median than ile(0.5).
 *
 * Overcomes a problem with ile() - if the samples are, for example,
 * 6,6,13,14 ile(0.5) return 7.0 - when a more useful value would be midway
 * between 6 and 13 = 9.5
 **********************************************************************/
double STATS::median() const {  //get median
  if (buckets_ == NULL) {
    return static_cast<double>(rangemin_);
  }
  double median = ile(0.5);
  int median_pile = static_cast<int>(floor(median));
  if ((total_count_ > 1) && (pile_count(median_pile) == 0)) {
    inT32 min_pile;
    inT32 max_pile;
    /* Find preceeding non zero pile */
    for (min_pile = median_pile; pile_count(min_pile) == 0; min_pile--);
    /* Find following non zero pile */
    for (max_pile = median_pile; pile_count(max_pile) == 0; max_pile++);
    median = (min_pile + max_pile) / 2.0;
  }
  return median;
}

/**********************************************************************
 * STATS::local_min
 *
 * Return TRUE if this point is a local min.
 **********************************************************************/
bool STATS::local_min(inT32 x) const {
  if (buckets_ == NULL) {
    return false;
  }
  x = ClipToRange(x, rangemin_, rangemax_ - 1) - rangemin_;
  if (buckets_[x] == 0)
    return true;
  inT32 index;                   // table index
  for (index = x - 1; index >= 0 && buckets_[index] == buckets_[x]; --index);
  if (index >= 0 && buckets_[index] < buckets_[x])
    return false;
  for (index = x + 1; index < rangemax_ - rangemin_ &&
       buckets_[index] == buckets_[x]; ++index);
  if (index < rangemax_ - rangemin_ && buckets_[index] < buckets_[x])
    return false;
  else
    return true;
}

/**********************************************************************
 * STATS::smooth
 *
 * Apply a triangular smoothing filter to the stats.
 * This makes the modes a bit more useful.
 * The factor gives the height of the triangle, i.e. the weight of the
 * centre.
 **********************************************************************/
void STATS::smooth(inT32 factor) {
  if (buckets_ == NULL || factor < 2) {
    return;
  }
  STATS result(rangemin_, rangemax_);
  int entrycount = rangemax_ - rangemin_;
  for (int entry = 0; entry < entrycount; entry++) {
                                 //centre weight
    int count = buckets_[entry] * factor;
    for (int offset = 1; offset < factor; offset++) {
      if (entry - offset >= 0)
        count += buckets_[entry - offset] * (factor - offset);
      if (entry + offset < entrycount)
        count += buckets_[entry + offset] * (factor - offset);
    }
    result.add(entry + rangemin_, count);
  }
  total_count_ = result.total_count_;
  memcpy(buckets_, result.buckets_, entrycount * sizeof(buckets_[0]));
}

/**********************************************************************
 * STATS::cluster
 *
 * Cluster the samples into max_cluster clusters.
 * Each call runs one iteration. The array of clusters must be
 * max_clusters+1 in size as cluster 0 is used to indicate which samples
 * have been used.
 * The return value is the current number of clusters.
 **********************************************************************/

inT32 STATS::cluster(float lower,         // thresholds
                     float upper,
                     float multiple,      // distance threshold
                     inT32 max_clusters,  // max no to make
                     STATS *clusters) {   // array of clusters
  BOOL8 new_cluster;             // added one
  float *centres;                // cluster centres
  inT32 entry;                   // bucket index
  inT32 cluster;                 // cluster index
  inT32 best_cluster;            // one to assign to
  inT32 new_centre = 0;          // residual mode
  inT32 new_mode;                // pile count of new_centre
  inT32 count;                   // pile to place
  float dist;                    // from cluster
  float min_dist;                // from best_cluster
  inT32 cluster_count;           // no of clusters

  if (buckets_ == NULL || max_clusters < 1)
    return 0;
  centres = new float[max_clusters + 1];
  for (cluster_count = 1; cluster_count <= max_clusters
       && clusters[cluster_count].buckets_ != NULL
       && clusters[cluster_count].total_count_ > 0;
       cluster_count++) {
    centres[cluster_count] =
      static_cast<float>(clusters[cluster_count].ile(0.5));
    new_centre = clusters[cluster_count].mode();
    for (entry = new_centre - 1; centres[cluster_count] - entry < lower
         && entry >= rangemin_
         && pile_count(entry) <= pile_count(entry + 1);
         entry--) {
      count = pile_count(entry) - clusters[0].pile_count(entry);
      if (count > 0) {
        clusters[cluster_count].add(entry, count);
        clusters[0].add (entry, count);
      }
    }
    for (entry = new_centre + 1; entry - centres[cluster_count] < lower
         && entry < rangemax_
         && pile_count(entry) <= pile_count(entry - 1);
         entry++) {
      count = pile_count(entry) - clusters[0].pile_count(entry);
      if (count > 0) {
        clusters[cluster_count].add(entry, count);
        clusters[0].add(entry, count);
      }
    }
  }
  cluster_count--;

  if (cluster_count == 0) {
    clusters[0].set_range(rangemin_, rangemax_);
  }
  do {
    new_cluster = FALSE;
    new_mode = 0;
    for (entry = 0; entry < rangemax_ - rangemin_; entry++) {
      count = buckets_[entry] - clusters[0].buckets_[entry];
      //remaining pile
      if (count > 0) {           //any to handle
        min_dist = static_cast<float>(MAX_INT32);
        best_cluster = 0;
        for (cluster = 1; cluster <= cluster_count; cluster++) {
          dist = entry + rangemin_ - centres[cluster];
          //find distance
          if (dist < 0)
            dist = -dist;
          if (dist < min_dist) {
            min_dist = dist;     //find least
            best_cluster = cluster;
          }
        }
        if (min_dist > upper     //far enough for new
          && (best_cluster == 0
          || entry + rangemin_ > centres[best_cluster] * multiple
        || entry + rangemin_ < centres[best_cluster] / multiple)) {
          if (count > new_mode) {
            new_mode = count;
            new_centre = entry + rangemin_;
          }
        }
      }
    }
                                 // need new and room
    if (new_mode > 0 && cluster_count < max_clusters) {
      cluster_count++;
      new_cluster = TRUE;
      if (!clusters[cluster_count].set_range(rangemin_, rangemax_))
        return 0;
      centres[cluster_count] = static_cast<float>(new_centre);
      clusters[cluster_count].add(new_centre, new_mode);
      clusters[0].add(new_centre, new_mode);
      for (entry = new_centre - 1; centres[cluster_count] - entry < lower
        && entry >= rangemin_
      && pile_count (entry) <= pile_count(entry + 1); entry--) {
        count = pile_count(entry) - clusters[0].pile_count(entry);
        if (count > 0) {
          clusters[cluster_count].add(entry, count);
          clusters[0].add(entry, count);
        }
      }
      for (entry = new_centre + 1; entry - centres[cluster_count] < lower
        && entry < rangemax_
      && pile_count (entry) <= pile_count(entry - 1); entry++) {
        count = pile_count(entry) - clusters[0].pile_count(entry);
        if (count > 0) {
          clusters[cluster_count].add(entry, count);
          clusters[0].add (entry, count);
        }
      }
      centres[cluster_count] =
        static_cast<float>(clusters[cluster_count].ile(0.5));
    }
  } while (new_cluster && cluster_count < max_clusters);
  delete [] centres;
  return cluster_count;
}

/**********************************************************************
 * STATS::print
 *
 * Prints a summary and table of the histogram.
 **********************************************************************/
void STATS::print() const {
  if (buckets_ == NULL) {
    return;
  }
  inT32 min = min_bucket() - rangemin_;
  inT32 max = max_bucket() - rangemin_;

  int num_printed = 0;
  for (int index = min; index <= max; index++) {
    if (buckets_[index] != 0) {
      tprintf("%4d:%-3d ", rangemin_ + index, buckets_[index]);
      if (++num_printed % 8 == 0)
        tprintf ("\n");
    }
  }
  tprintf ("\n");
  print_summary();
}



/**********************************************************************
 * STATS::print_summary
 *
 * Print a summary of the stats.
 **********************************************************************/
void STATS::print_summary() const {
  if (buckets_ == NULL) {
    return;
  }
  inT32 min = min_bucket();
  inT32 max = max_bucket();
  tprintf("Total count=%d\n", total_count_);
  tprintf("Min=%.2f Really=%d\n", ile(0.0), min);
  tprintf("Lower quartile=%.2f\n", ile(0.25));
  tprintf("Median=%.2f, ile(0.5)=%.2f\n", median(), ile(0.5));
  tprintf("Upper quartile=%.2f\n", ile(0.75));
  tprintf("Max=%.2f Really=%d\n", ile(1.0), max);
  tprintf("Range=%d\n", max + 1 - min);
  tprintf("Mean= %.2f\n", mean());
  tprintf("SD= %.2f\n", sd());
}


/**********************************************************************
 * STATS::plot
 *
 * Draw a histogram of the stats table.
 **********************************************************************/

#ifndef GRAPHICS_DISABLED
void STATS::plot(ScrollView* window,  // to draw in
                 float xorigin,       // bottom left
                 float yorigin,
                 float xscale,        // one x unit
                 float yscale,        // one y unit
                 ScrollView::Color colour) const {   // colour to draw in
  if (buckets_ == NULL) {
    return;
  }
  window->Pen(colour);

  for (int index = 0; index < rangemax_ - rangemin_; index++) {
    window->Rectangle( xorigin + xscale * index, yorigin,
      xorigin + xscale * (index + 1),
      yorigin + yscale * buckets_[index]);
  }
}
#endif


/**********************************************************************
 * STATS::plotline
 *
 * Draw a histogram of the stats table. (Line only)
 **********************************************************************/

#ifndef GRAPHICS_DISABLED
void STATS::plotline(ScrollView* window,  // to draw in
                     float xorigin,       // bottom left
                     float yorigin,
                     float xscale,        // one x unit
                     float yscale,        // one y unit
                     ScrollView::Color colour) const {  // colour to draw in
  if (buckets_ == NULL) {
    return;
  }
  window->Pen(colour);
  window->SetCursor(xorigin, yorigin + yscale * buckets_[0]);
  for (int index = 0; index < rangemax_ - rangemin_; index++) {
    window->DrawTo(xorigin + xscale * index,
                   yorigin + yscale * buckets_[index]);
  }
}
#endif


/**********************************************************************
 * choose_nth_item
 *
 * Returns the index of what would b the nth item in the array
 * if the members were sorted, without actually sorting.
 **********************************************************************/

inT32 choose_nth_item(inT32 index, float *array, inT32 count) {
  inT32 next_sample;             // next one to do
  inT32 next_lesser;             // space for new
  inT32 prev_greater;            // last one saved
  inT32 equal_count;             // no of equal ones
  float pivot;                   // proposed median
  float sample;                  // current sample

  if (count <= 1)
    return 0;
  if (count == 2) {
    if (array[0] < array[1]) {
      return index >= 1 ? 1 : 0;
    }
    else {
      return index >= 1 ? 0 : 1;
    }
  }
  else {
    if (index < 0)
      index = 0;                 // ensure legal
    else if (index >= count)
      index = count - 1;
    equal_count = (inT32) (rand() % count);
    pivot = array[equal_count];
                                 // fill gap
    array[equal_count] = array[0];
    next_lesser = 0;
    prev_greater = count;
    equal_count = 1;
    for (next_sample = 1; next_sample < prev_greater;) {
      sample = array[next_sample];
      if (sample < pivot) {
                                 // shuffle
        array[next_lesser++] = sample;
        next_sample++;
      }
      else if (sample > pivot) {
        prev_greater--;
                                 // juggle
        array[next_sample] = array[prev_greater];
        array[prev_greater] = sample;
      }
      else {
        equal_count++;
        next_sample++;
      }
    }
    for (next_sample = next_lesser; next_sample < prev_greater;)
      array[next_sample++] = pivot;
    if (index < next_lesser)
      return choose_nth_item (index, array, next_lesser);
    else if (index < prev_greater)
      return next_lesser;        // in equal bracket
    else
      return choose_nth_item (index - prev_greater,
        array + prev_greater,
        count - prev_greater) + prev_greater;
  }
}

/**********************************************************************
 * choose_nth_item
 *
 * Returns the index of what would be the nth item in the array
 * if the members were sorted, without actually sorting.
 **********************************************************************/
inT32 choose_nth_item(inT32 index, void *array, inT32 count, size_t size,
                      int (*compar)(const void*, const void*)) {
  int result;                    // of compar
  inT32 next_sample;             // next one to do
  inT32 next_lesser;             // space for new
  inT32 prev_greater;            // last one saved
  inT32 equal_count;             // no of equal ones
  inT32 pivot;                   // proposed median

  if (count <= 1)
    return 0;
  if (count == 2) {
    if (compar (array, (char *) array + size) < 0) {
      return index >= 1 ? 1 : 0;
    }
    else {
      return index >= 1 ? 0 : 1;
    }
  }
  if (index < 0)
    index = 0;                   // ensure legal
  else if (index >= count)
    index = count - 1;
  pivot = (inT32) (rand () % count);
  swap_entries (array, size, pivot, 0);
  next_lesser = 0;
  prev_greater = count;
  equal_count = 1;
  for (next_sample = 1; next_sample < prev_greater;) {
    result =
      compar ((char *) array + size * next_sample,
      (char *) array + size * next_lesser);
    if (result < 0) {
      swap_entries (array, size, next_lesser++, next_sample++);
      // shuffle
    }
    else if (result > 0) {
      prev_greater--;
      swap_entries(array, size, prev_greater, next_sample);
    }
    else {
      equal_count++;
      next_sample++;
    }
  }
  if (index < next_lesser)
    return choose_nth_item (index, array, next_lesser, size, compar);
  else if (index < prev_greater)
    return next_lesser;          // in equal bracket
  else
    return choose_nth_item (index - prev_greater,
      (char *) array + size * prev_greater,
      count - prev_greater, size,
      compar) + prev_greater;
}

/**********************************************************************
 * swap_entries
 *
 * Swap 2 entries of arbitrary size in-place in a table.
 **********************************************************************/
void swap_entries(void *array,   // array of entries
                  size_t size,   // size of entry
                  inT32 index1,  // entries to swap
                  inT32 index2) {
  char tmp;
  char *ptr1;                    // to entries
  char *ptr2;
  size_t count;                  // of bytes

  ptr1 = reinterpret_cast<char*>(array) + index1 * size;
  ptr2 = reinterpret_cast<char*>(array) + index2 * size;
  for (count = 0; count < size; count++) {
    tmp = *ptr1;
    *ptr1++ = *ptr2;
    *ptr2++ = tmp;               // tedious!
  }
}