GCL TK Manual

Chapter 1: General 3

1 General

1.1 Introduction

GCL-TK is a windowing interface for GNU Common Lisp. It provides the functionality of
the TK widget set, which in turn implements a widget set which has the look and feel of
Motif.

The interface allows the user to draw graphics, get input from menus, make regions
mouse sensitive, and bind lisp commands to regions. It communicates over a socket with a
gcltksrv process, which speaks to the display via the TK library. The displaying process
may run on a machine which is closer to the display, and so involves less communication.
It also may remain active even though the lisp is involved in a separate user computation.
The display server can, however, interrupt the lisp at will, to inquire about variables and
run commands.

The user may also interface with existing TCL/TK programs, binding some buttons, or
tracking some objects.

The size of the program is moderate. In its current form it adds only about 45K bytes
to the lisp image, and the gcltksrv program uses shared libraries, and is on the order of
150Kbytes on a sparc.

This chapter describes some of the common features of the command structure of widgets,
and of control functions. The actual functions for construction of windows are discussed
in (undefined) [Widgets|, page (undefined), and more general functions for making them
appear, lowering them, querying about them in (undefined) [Control], page (undefined).

1.2 Getting Started

Once GCL has been properly installed you should be able to do the following simple example:
(in-package "TK")
(tkconnect)
(button ’.hello :text "Hello World" :command ’(print "hi"))
==>_HELLO
(pack ’.hello)

We first switched to the "TK" package, so that functions like button and pack would be
found. After doing the tkconnect, a window should appear on your screen, see See (unde-
fined) [tkconnect]|, page (undefined). The invocation of the function button creates a new
function called .hello which is a widget function. It is then made visible in the window by
using the pack function.

You may now click on the little window, and you should see the command executed in
your lisp. Thus "hi" should be printed in the lisp window. This will happen whether or
not you have a job running in the lisp, that is lisp will be interrupted and your command
will run, and then return the control to your program.

The function button is called a widget constructor, and the function .hello is called
a widget. If you have managed to accomplish the above, then GCL is probably installed
correctly, and you can graduate to the next section! If you dont like reading but prefer to
look at demos and code, then you should look in the demos directory, where you will find a

4 No Title

number of examples. A monitor for the garbage collector (mkgcmonitor), a demonstration
of canvas widgets (mkitems), a sample listbox with scrolling (mklistbox).

1.3 Common Features of Widgets

A widget is a lisp symbol which has a function binding. The first argument is always
a keyword and is called the option. The argument pattern for the remaining arguments
depends on the option. The most common option is : configure in which case the remaining
arguments are alternating keyword/value pairs, with the same keywords being permitted
as at the creation of the widget.

A widget is created by means of a widget constructor, of which there are currently 15,
each of them appearing as the title of a section in (undefined) [Widgets|, page (undefined).
They live in the "TK" package, and for the moment we will assume we have switched to this
package. Thus for example button is such a widget constructor function. Of course this is
lisp, and you can make your own widget constructors, but when you do so it is a good idea
to follow the standard argument patterns that are outlined in this section.

(button ’.hello)
==> _HELLO

creates a widget whose name is .hello. There is a parent child hierarchy among widgets
which is implicit in the name used for the widget. This is much like the pathname structure
on a Unix or Dos file system, except that >.’ is used as the separator rather than a / or
\. For this reason the widget instances are sometimes referred to as pathnames. A child
of the parent widget .hello might be called .hello. joe, and a child of this last might
be .hello.joe.bar. The parent of everyone is called . . Multiple top level windows are
created using the toplevel command (see (undefined) [toplevel], page (undefined)).

The widget constructor functions take keyword and value pairs, which allow you to
specify attributes at the time of creation:
(button ’.hello :text "Hello World" :width 20)
==>_HELLO

indicating that we want the text in the button window to be Hello World and the width
of the window to be 20 characters wide. Other types of windows allow specification in
centimeters 2c, or in inches (2i) or in millimeters 2m or in pixels 2. But text windows
usually have their dimensions specified as multiples of a character width and height. This
latter concept is called a grid.

Once the window has been created, if you want to change the text you do NOT do:
(button ’.hello :text "Bye World" :width 20)

This would be in error, because the window .hello already exists. You would either have
to first call

(destroy ’.hello)

But usually you just want to change an attribute. .hello is actually a function, as we
mentioned earlier, and it is this function that you use:

(.hello :configure :text "Bye World")

This would simply change the text, and not change where the window had been placed
on the screen (if it had), or how it had been packed into the window hierarchy. Here the

Chapter 1: General 5

argument :configure is called an option, and it specifies which types of keywords can
follow it. For example

(.hello :flash)

is also valid, but in this case the :text keyword is not permitted after flash. If it were, then
it would mean something else besides what it means in the above. For example one might

have defined
(.hello :flash :text "PUSH ME")

so here the same keyword :text would mean something else, eg to flash a subliminal message
on the screen.

We often refer to calls to the widget functions as messages. One reason for this is that
they actually turn into messages to the graphics process gcltksrv. To actually see these
messages you can do

(debugging t).

1.4 Return Values

1.4.1 Widget Constructor Return Values

On successful completion, the widget constructor functions return the symbol passed in as
the first argument. It will now have a functional binding. It is an error to pass in a symbol
which already corresponds to a widget, without first calling the destroy command. On
failure, an error is signalled.

1.4.2 Widget Return Values

The widget functions themselves, do not normally return any value. Indeed the lisp process
does not wait for them to return, but merely dispatches the commands, such as to change
the text in themselves. Sometimes however you either wish to wait, in order to synchronize,
or you wish to see if your command fails or succeeds. You request values by passing the
keyword :return and a value indicating the type.

(.hello :configure :text "Bye World" :return ’string)

==> nn

=>T
the empty string is returned as first value, and the second value T indicates that the new
text value was successfully set. LISP will not continue until the tkclsrv process indicates
back that the function call has succeeded. While waiting of course LISP will continue to
process other graphics events which arrive, since otherwise a deadlock would arise: the user
for instance might click on a mouse, just after we had decided to wait for a return value
from the .hello function. More generally a user program may be running in GCL and be
interrupted to receive and act on communications from the gcltksrv process. If an error
occurred then the second return value of the lisp function will be NIL. In this case the first
value, the string is usually an informative message about the type of error.

A special variable tk: :*break-on-errors* which if not nil, requests that that LISP
signal an error when a message is received indicating a function failed. Whenever a command
fails, whether a return value was requested or not, gcltksrv returns a message indicating
failure. The default is to not go into the debugger. When debugging your windows it may
be convenient however to set this variable to T to track down incorrect messages.

6 No Title

The gcltksrv process always returns strings as values. If :return type is specified, then
conversion to type is accomplished by calling

(coerce-result return-string type)

Here type must be a symbol with a coercion-functions property. The builtin return
types which may be requested are:

T in which case the string passed back from the gcltksrv process, will be read
by the lisp reader.

number the string is converted to a number using the current *read-base*

list-strings
(coerce-result "a b {c d} e" ’list-strings)
==> ("a" "b" "C d" ||e||)

boolean (coerce-result "1" ’boolean) ==> T (coerce-result "0" ’boolean) ==> NIL

The above symbols are in the TK or LISP package. It would be possible to add new types
just as the :return t is done:

(setf (get ’t ’coercion-functions)
(cons #’(lambda (x) (our-read-from-string x 0))
#’ (lambda (x) (format nil "“s" x))))

The coercion-functions property of a symbol, is a cons whose car is the coercion
form from a string to some possibly different lisp object, and whose cdr is a function which
builds a string to send to the graphics server. Often the two functions are inverse functions
one of the other up to equal.

1.4.3 Control Function Return Values

The control funcions (see (undefined) [Control], page (undefined)) do not return a value
or wait unless requested to do so, using the :return keyword. The types and method of
specification are the same as for the Widget Functions in the previous section.

(winfo :width ’.hello :return ’number)

==> 120
indicates that the .hello button is actually 120 pixels wide.

1.5 Argument Lists

1.5.1 Widget Functions

The rule is that the first argument for a widget function is a keyword, called the option.
The pattern of the remaining arguments depends completely on the option argument. Thus

(.hello option 7argl? 7arg2? ...)

One option which is permitted for every widget function is :configure. The argument
pattern following it is the same keyword/value pair list which is used in widget creation.
For a button widget, the other valid options are :deactivate, :flash, and :invoke. To
find these, since .hello was constructed with the button constructor, you should see See
(undefined) [button|, page (undefined). The argument pattern for other options depends
completely on the option and the widget function. For example if .scrollbar is a scroll

Chapter 1: General 7

bar window, then the option :set must be followed by 4 numeric arguments, which indicate
how the scrollbar should be displayed, see See (undefined) [scrollbar|, page (undefined).
(.scrollbar :set al a2 a3 a4)
If on the other hand .scale is a scale (see (undefined) [scale], page (undefined)), then
we have
(.scale :set al)

only one numeric argument should be supplied, in order to position the scale.

1.5.2 Widget Constructor Argument Lists

These are
(widget-constructor pathname :keywordl valuel :keyword2 value2 ...)

to create the widget whose name is pathname. The possible keywords allowed are specified
in the corresponding section of See (undefined) [Widgets|, page (undefined).

1.5.3 Concatenation Using ‘:’ in Argument List

What has been said so far about arguments is not quite true. A special string concatena-
tion construction is allowed in argument lists for widgets, widget constructors and control
functions.

First we introduce the function tk-conc which takes an arbitrary number of arguments,
which may be symbols, strings or numbers, and concatenates these into a string. The print
names of symbols are converted to lower case, and package names are ignored.

(tk-conc "a" 1 :b ’cd "e") ==> "albcde"

One could use tk-conc to construct arguments for widget functions. But even though
tk-conc has been made quite efficient, it still would involve the creation of a string. The
: construct avoids this. In a call to a widget function, a widget constructor, or a control
function you may remove the call to tk-conc and place : in between each of its arguments.
Those functions are able to understand this and treat the extra arguments as if they were
glued together in one string, but without the extra cost of actually forming that string.

(tk-concabc .. w)<==>a:b:c: ... w
(setq i 10)

(.hello :configure :text i : " pies")

(.hello :configure :text (tk-conc i " pies"))

(.hello :configure :text (format nil "“a pies" i))

The last three examples would all result in the text string being "10 pies", but the first
method is the most efficient. That call will be made with no string or cons creation. The
GC Monitor example, is written in such a way that there is no creation of cons or string
types during normal operation. This is particularly useful in that case, since one is trying
to monitor usage of conses by other programs, not its own usage.

1.6 Lisp Functions Invoked from Graphics

It is possible to make certain areas of a window mouse sensitive, or to run commands on
reception of certain events such as keystrokes, while the focus is in a certain window. This
is done by having a lisp function invoked or some lisp form evaluated. We shall refer to
such a lisp function or form as a command.

8 No Title

For example

(button °’.button :text "Hello" :command ’(print "hi"))
(button ’.jim :text "Call Jim" :command ’call-jim)
In the first case when the window .button is clicked on, the word "hi" will be printed
in the lisp to standard output. In the second case call-jim will be funcalled with no
arguments.

A command must be one of the following three types. What happens depends on which
type it is:

‘function’
If the value satisfies functionp then it will be called with a number of arguments
which is dependent on the way it was bound, to graphics.

‘string’ If the command is a string, then it is passed directly to TCL/TK for evaluation
on that side. Lisp will not be required for the evaluation when the command
is invoked.

‘lisp form’
Any other lisp object is regarded as a lisp form to be eval’d, and this will be
done when the command is invoked.

The following keywords accept as their value a command:

:command

:yscroll :yscrollcommand
:xscroll :xscrollcommand
:scrollcommand

:bind

and in addition bind takes a command as its third argument, see See (undefined) [bind],
page (undefined).

Below we give three different examples using the 3 possibilities for a command: functionp,
string, and lisp form. They all accomplish exactly the same thing. For given a frame . frame
we could construct a listbox in it as:

(1istbox ’.frame.listbox :yscroll ’joe)

Then whenever the listbox view position changes, or text is inserted, so that something
changes, the function joe will be invoked with 4 arguments giving the totalsize of the text,
maximum number of units the window can display, the index of the top unit, and finally
the index of the bottom unit. What these arguments are is specific to the widget listbox
and is documented See (undefined) [listbox|, page (undefined).

joe might be used to do anything, but a common usage is to have joe alter the position
of some other window, such as a scroll bar window. Indeed if .scrollbar is a scrollbar
then the function

(defun joe (a b c d)
(.scrollbar :set a b c d))
would look after sizing the scrollbar appropriately for the percentage of the window visible,
and positioning it.

A second method of accomplishing this identical, using a string (the second type of

command),

Chapter 1: General 9

(listbox ’.frame.listbox :yscroll ".scrollbar set")

and this will not involve a call back to lisp. It uses the fact that the TK graphics side
understands the window name .scrollbar and that it takes the option set. Note that it
does not get the : before the keyword in this case.

In the case of a command which is a lisp form but is not installed via bind or :bind,
then the form will be installed as

#’ (lambda (&rest *arglist*) lisp-form)

where the lisp-form might wish to access the elements of the special variable *arglist*.
Most often this list will be empty, but for example if the command was setup for .scale
which is a scale, then the command will be supplied one argument which is the new numeric
value which is the scale position. A third way of accomplishing the scrollbar setting using
a lisp form is:

(listbox ’.frame.listbox :yscroll ’(apply ’.scrollbar :set *arglistx))

The bind command and :bind keyword, have an additional wrinkle, see See (undefined)
[bind], page (undefined). These are associated to an event in a particular window, and the
lisp function or form to be evaled must have access to that information. For example the x
y position, the window name, the key pressed, etc. This is done via percent symbols which
are specified, see See (undefined) [bind], page (undefined).

(bind "Entry" "<Control-KeyPress>" ’(emacs-move %W %A))

will cause the function emacs-move to be be invoked whenever a control key is pressed
(unless there are more key specific or window specific bindings of said key). It will be
invoked with two arguments, the first %W indicating the window in which it was invoked,
and the second being a string which is the ascii keysym which was pressed at the same time
as the control key.

These percent constructs are only permitted in commands which are invoked via bind
or :bind. The lisp form which is passed as the command, is searched for the percent
constructs, and then a function

#’ (lambda (%W %A) (emacs-move %W %A))
will be invoked with two arguments, which will be supplied by the TK graphics server,

at the time the command is invoked. The *arglist* construct is not available for these
commands.

1.7 Linked Variables

It is possible to link lisp variables to TK variables. In general when the TK variable is
changed, by for instance clicking on a radiobutton, the linked lisp variable will be changed.
Conversely changing the lisp variable will be noticed by the TK graphics side, if one does
the assignment in lisp using setk instead of setq.

(button °’.hello :textvariable ’#*message* :text "hi there")
(pack ’.hello)

This causes linking of the global variable *message* in lisp to a corresponding variable
in TK. Moreover the message that is in the button .hello will be whatever the value of
this global variable is (so long as the TK side is notified of the change!).

Thus if one does

10 No Title

(setk *message* "good bye")
then the button will change to have good bye as its text. The lisp macro setk expands into
(progl (setf *message* "good bye") (notice-text-variables))

which does the assignment, and then goes thru the linked variables checking for those that
have changed, and updating the TK side should there be any. Thus if you have a more
complex program which might have done the assignment of your global variable, you may
include the call to notice-text-variables at the end, to assure that the graphics side
knows about the changes.

A variable which is linked using the keyword :textvariable is always a variable con-
taining a string.
However it is possible to have other types of variables.

(checkbutton ’.checkbuttonl :text "A button" :variable ’(boolean *joex))

(checkbutton ’.checkbutton2 :text "A button" :variable ’*joex*)

(checkbutton ’.checkbutton3 :text "Debugging" :variable ’(t *debugk)
:onvalue 100 :offvalue -1)

The first two examples are the same in that the default variable type for a checkbutton is
boolean. Notice that the specification of a variable type is by (type variable). The types
which are permissible are those which have coercion-fucntions, See (undefined) [Return
Values|, page (undefined). In the first example a variable *joe* will be linked, and its
default initial value will be set to nil, since the default initial state of the check button is
off, and the default off value is nil. Actually on the TK side, the corresponding boolean
values are "1" and "0", but the boolean type makes these become t and nil.

In the third example the variable *debug® may have any lisp value (here type is t). The
initial value will be made to be -1, since the checkbutton is off. Clicking on .checkbutton3
will result in the value of *debug* being changed to 100, and the light in the button will be
toggled to on, See (undefined) [checkbutton], page (undefined). You may set the variable
to be another value besides 100.

You may also call
(link-text-variable ’*joe* ’boolean)

to cause the linking of a variable named *joe*. This is done automatically whenever the
variable is specified after one of the keys
:variable :textvariable.

Just as one must be cautious about using global variables in lisp, one must be cautious in
making such linked variables. In particular note that the TK side, uses variables for various
purposes. If you make a checkbutton with pathname .a.b.c then unless you specify a
:variable option, the variable ¢ will become associated to the TK value of the checkbutton.
We do NOT link this variable by default, feeling that one might inadvertently alter global
variables, and that they would not typically use the lisp convention of being of the form
c. You must specify the :variable option, or call link-variable.

1.8 tkconnect

tkconnect &key host display can-rsh gcltksrv

This function provides a connection to a graphics server process, which in turn connects
to possibly several graphics display screens. The graphics server process, called gcltksrv

Chapter 1: General 11

may or may not run on the same machine as the lisp to which it is attached. display
indicates the name of the default display to connect to, and this in turn defaults to the
value of the environment variable DISPLAY.

When tkconnect is invoked, a socket is opened and it waits for a graphics process to
connect to it. If the host argument is not supplied, then a process will be spawned which
will connect back to the lisp process. The name of the command for invoking the process is
the value of the gcltksrv argument, which defaults to the value of the environment variable
GCL_TK_SERVER. If that variable is not set, then the lisp *1lib-directory* is searched for
an entry gcl-tk/gcltksrv.

If host is supplied, then a command to run on the remote machine will be printed on
standard output. If can-rsh is not nil, then the command will not be printed, but rather
an attempt will be made to rsh to the machine, and to run the command.

Thus
(tkconnect)

would start the process on the local machine, and use for display the value of the environ-
ment variable DISPLAY.

(tkconnect :host "max.ma.utexas.edu" :can-rsh t)

would cause an attempt to rsh to max and to run the command there, to connect back to
the appropriate port on the localhost.
You may indicate that different toplevel windows be on different displays, by using the
:display argument when creating the window, See (undefined) [toplevel], page (undefined).
Clearly you must have a copy of the program gcltksrv and TK libraries installed on
the machine where you wish to run the server.

Chapter 2: Widgets 13

2 Widgets

2.1 button

button \- Create and manipulate button widgets

Synopsis

button pathName ?options?

Standard Options

activeBackground bitmap font relief
activeForeground borderWidth foreground text

anchor cursor padX textVariable
background disabledForeground padY

See (undefined) [options|, page (undefined), for more information.

Arguments for Button

:command

:height

:state

:width

Name="command" Class="Command"

Specifies a Tcl command to associate with the button. This command is typi-
cally invoked when mouse button 1 is released over the button window.

Name="height" Class="Height"

Specifies a desired height for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in lines of text. If this option isn’t specified, the
button’s desired height is computed from the size of the bitmap or text being
displayed in it.

Name="state" Class="State"

Specifies one of three states for the button: normal, active, or disabled. In
normal state the button is displayed using the foreground and background op-
tions. The active state is typically used when the pointer is over the button.
In active state the button is displayed using the activeForeground and active-
Background options. Disabled state means that the button is insensitive: it
doesn’t activate and doesn’t respond to mouse button presses. In this state
the disabledForeground and background options determine how the button is
displayed.

14 No Title

Name="width" Class="Width"

Specifies a desired width for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in characters. If this option isn’t specified, the
button’s desired width is computed from the size of the bitmap or text being
displayed in it.

Description

The button command creates a new window (given by the pathName argument) and makes
it into a button widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the button such as its
colors, font, text, and initial relief. The button command returns its pathName argument.
At the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A button is a widget that displays a textual string or bitmap. It can display itself in
either of three different ways, according to the state option; it can be made to appear raised,
sunken, or flat; and it can be made to flash. When a user invokes the button (by pressing
mouse button 1 with the cursor over the button), then the Tcl command specified in the
:command option is invoked.

A Button Widget’s Arguments

The button command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for button widgets:

pathName :activate
Change the button’s state to active and redisplay the button using its active
foreground and background colors instead of normal colors. This command is
ignored if the button’s state is disabled. This command is obsolete and will
eventually be removed; use “pathName :configure :state active” instead.

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the button command.

pathName :deactivate
Change the button’s state to normal and redisplay the button using its normal
foreground and background colors. This command is ignored if the button’s

Chapter 2: Widgets 15

state is disabled. This command is obsolete and will eventually be removed;
use “pathName :configure :state normal” instead.

pathName :flash
Flash the button. This is accomplished by redisplaying the button several
times, alternating between active and normal colors. At the end of the flash
the button is left in the same normal/active state as when the command was
invoked. This command is ignored if the button’s state is disabled.

pathName :invoke
Invoke the Tcl command associated with the button, if there is one. The return
value is the return value from the Tcl command, or an empty string if there
is no command associated with the button. This command is ignored if the
button’s state is disabled.

"Default Bindings"
Tk automatically creates class bindings for buttons that give them the following default
behavior:

[1] The button activates whenever the mouse passes over it and deactivates whenever
the mouse leaves the button.

[2] The button’s relief is changed to sunken whenever mouse button 1 is pressed over
the button, and the relief is restored to its original value when button 1 is later released.

[3] If mouse button 1 is pressed over the button and later released over the button,
the button is invoked. However, if the mouse is not over the button when button 1 is
released, then no invocation occurs.

If the button’s state is disabled then none of the above actions occur: the button is
completely non-responsive.

The behavior of buttons can be changed by defining new bindings for individual widgets
or by redefining the class bindings.

Keywords

button, widget
2.2 listbox
listbox \- Create and manipulate listbox widgets

Synopsis

listbox pathName ?options?

Standard Options

background foreground selectBackground xScrollCommand
borderWidth font selectBorderWidth yScrollCommand
cursor geometry selectForeground

exportSelection relief setGrid

See (undefined) [options], page (undefined), for more information.

16 No Title

Arguments for Listbox

None.

Description

The listbox command creates a new window (given by the pathName argument) and makes
it into a listbox widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the listbox such as its
colors, font, text, and relief. The listbox command returns its pathName argument. At
the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A listbox is a widget that displays a list of strings, one per line. When first created,
a new listbox has no elements in its list. Elements may be added or deleted using widget
commands described below. In addition, one or more elements may be selected as described
below. If a listbox is exporting its selection (see exportSelection option), then it will observe
the standard X11 protocols for handling the selection; listbox selections are available as type
STRING, consisting of a Tcl list with one entry for each selected element.

For large lists only a subset of the list elements will be displayed in the listbox window at
once; commands described below may be used to change the view in the window. Listboxes
allow scrolling in both directions using the standard xScrollCommand and yScrollCommand
options. They also support scanning, as described below.

A Listbox’s Arguments

The listbox command creates a new T'cl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for listbox widgets:

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the listbox command.

pathName :curselection
Returns a list containing the indices of all of the elements in the listbox that
are currently selected. If there are no elements selected in the listbox then an
empty string is returned.

pathName :delete first ?last?
Delete one or more elements of the listbox. First and last give the integer
indices of the first and last elements in the range to be deleted. If last isn’t

Chapter 2:

pathName

pathName

pathName

pathName

pathName

Widgets 17

specified it defaults to first, i.e. a single element is deleted. An index of 0
corresponds to the first element in the listbox. Either first or last may be
specified as end, in which case it refers to the last element of the listbox. This
command returns an empty string

:get index

Return the contents of the listbox element indicated by index. Index must be
a non-negative integer (0 corresponds to the first element in the listbox), or it
may also be specified as end to indicate the last element in the listbox.

:dinsert index 7element element ...7

Insert zero or more new elements in the list just before the element given by
index. If index is specified as end then the new elements are added to the end
of the list. Returns an empty string.

:nearest y
Given a y-coordinate within the listbox window, this command returns the
index of the (visible) listbox element nearest to that y-coordinate.

iscan option args

This command is used to implement scanning on listboxes. It has two forms,
depending on option:

pathName :scan :mark z y
Records z and y and the current view in the listbox window; used
in conjunction with later scan dragto commands. Typically this
command is associated with a mouse button press in the widget.
It returns an empty string.

pathName :scan :dragto z y.

This command computes the difference between its z and y argu-
ments and the z and y arguments to the last scan mark command
for the widget. It then adjusts the view by 10 times the difference
in coordinates. This command is typically associated with mouse
motion events in the widget, to produce the effect of dragging the
list at high speed through the window. The return value is an
empty string.

:select option arg

This command is used to adjust the selection within a listbox. It has several
forms, depending on option. In all of the forms the index end refers to the last
element in the listbox.

pathName :select :adjust index
Locate the end of the selection nearest to the element given by
indez, and adjust that end of the selection to be at index (i.e in-
cluding but not going beyond indezx). The other end of the selection
is made the anchor point for future select to commands. If the se-
lection isn’t currently in the listbox, then this command is identical
to the select from widget command. Returns an empty string.

18 No Title

pathName :select :clear
If the selection is in this listbox then it is cleared so that none of
the listbox’s elements are selected anymore.

pathName :select :from index
Set the selection to consist of element index, and make index the
anchor point for future select to widget commands. Returns an
empty string.

pathName :select :to index
Set the selection to consist of the elements from the anchor point
to element index, inclusive. The anchor point is determined by the
most recent select from or select adjust command in this widget.
If the selection isn’t in this widget, this command is identical to
select from. Returns an empty string.

pathName :size
Returns a decimal string indicating the total number of elements in the listbox.

pathName :xview index
Adjust the view in the listbox so that character position index is displayed at
the left edge of the widget. Returns an empty string.

pathName :yview index
Adjust the view in the listbox so that element indez is displayed at the top
of the widget. If index is specified as end it indicates the last element of the
listbox. Returns an empty string.

"Default Bindings"

Tk automatically creates class bindings for listboxes that give them the following default
behavior:

[1] When button 1 is pressed over a listbox, the element underneath the mouse cursor
is selected. The mouse can be dragged to select a range of elements.

[2] The ends of the selection can be adjusted by dragging with mouse button 1 while
the shift key is down; this will adjust the end of the selection that was nearest to the
mouse cursor when button 1 was pressed.

[3] The view in the listbox can be adjusted by dragging with mouse button 2.

The behavior of listboxes can be changed by defining new bindings for individual widgets
or by redefining the class bindings. In addition, the procedure tk_listboxSingleSelect may
be invoked to change listbox behavior so that only a single element may be selected at once.

Keywords

listbox, widget

2.3 scale

scale \- Create and manipulate scale widgets

Chapter 2: Widgets 19

Synopsis

scale pathName ?options?

Standard Options

activeForeground borderWidth font orient
background cursor foreground relief

See (undefined) [options|, page (undefined), for more information.

Arguments for Scale

:command

Name="command" Class="Command"

Specifies the prefix of a T'cl command to invoke whenever the value of the scale
is changed interactively. The actual command consists of this option followed
by a space and a number. The number indicates the new value of the scale.

:from
Name="from" Class="From"
Specifies the value corresponding to the left or top end of the scale. Must be
an integer.
:label
Name="1abel" Class="Label"
Specifies a string to displayed as a label for the scale. For vertical scales the
label is displayed just to the right of the top end of the scale. For horizontal
scales the label is displayed just above the left end of the scale.
:length
Name="length" Class="Length"
Specifies the desired long dimension of the scale in screen units, that is in any
of the forms acceptable to Tk_GetPixels. For vertical scales this is the scale’s
height; for horizontal scales it is the scale’s width.
:showvalue
Name="showValue" Class="ShowValue"
Specifies a boolean value indicating whether or not the current value of the
scale is to be displayed.
:sliderforeground

Name="sliderForeground" Class="sliderForeground"

Specifies the color to use for drawing the slider under normal conditions. When
the mouse is in the slider window then the slider’s color is determined by the
activeForeground option.

20 No Title

:sliderlength
Name="sliderLength" Class="SliderLength"

Specfies the size of the slider, measured in screen units along the slider’s long
dimension. The value may be specified in any of the forms acceptable to
Tk_GetPixels.

:state

Name="state" Class="State"

Specifies one of two states for the scale: normal or disabled. If the scale is
disabled then the value may not be changed and the scale won’t activate when
the mouse enters it.

:tickinterval
Name="tickInterval" Class="TickInterval"

Must be an integer value. Determines the spacing between numerical tick-marks
displayed below or to the left of the slider. If specified as 0, then no tick-marks
will be displayed.

:to

Name="to" Class="To"

Specifies the value corresponding to the right or bottom end of the scale. Must
be an integer. This value may be either less than or greater than the from
option.

:width
Name="width" Class="Width"

Specifies the desired narrow dimension of the scale in screen units (i.e. any of
the forms acceptable to Tk_GetPixels). For vertical scales this is the scale’s
width; for horizontal scales this is the scale’s height.

Description

The scale command creates a new window (given by the pathName argument) and makes it
into a scale widget. Additional options, described above, may be specified on the command
line or in the option database to configure aspects of the scale such as its colors, orientation,
and relief. The scale command returns its pathName argument. At the time this command
is invoked, there must not exist a window named pathName, but pathName’s parent must
exist,.

A scale is a widget that displays a rectangular region and a small slider. The rectangular
region corresponds to a range of integer values (determined by the from and to options), and
the position of the slider selects a particular integer value. The slider’s position (and hence
the scale’s value) may be adjusted by clicking or dragging with the mouse as described in

Chapter 2: Widgets 21

the BINDINGS section below. Whenever the scale’s value is changed, a Tcl command is
invoked (using the command option) to notify other interested widgets of the change.

Three annotations may be displayed in a scale widget: a label appearing at the top-left
of the widget (top-right for vertical scales), a number displayed just underneath the slider
(just to the left of the slider for vertical scales), and a collection of numerical tick-marks just
underneath the current value (just to the left of the current value for vertical scales). Each
of these three annotations may be selectively enabled or disabled using the configuration
options.

A Scale’s" Argumentsommand"

The scale command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for scale widgets:

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_ConfigureInfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the scale command.

pathName :get
Returns a decimal string giving the current value of the scale.

pathName :set value
This command is invoked to change the current value of the scale, and hence
the position at which the slider is displayed. Value gives the new value for the
scale.

Bindings

When a new scale is created, it is given the following initial behavior by default:

<Enter> Change the slider display to use activeForeground instead of sliderForeground.
<Leave> Reset the slider display to use sliderForeground instead of activeForeground.

<ButtonPress-1>
Change the slider display so that the slider appears sunken rather than raised.
Move the slider (and adjust the scale’s value) to correspond to the current
mouse position.

<Buttonl-Motion>
Move the slider (and adjust the scale’s value) to correspond to the current
mouse position.

22 No Title

<ButtonRelease-1>
Reset the slider display so that the slider appears raised again.

Keywords

scale, widget

2.4 canvas

canvas \- Create and manipulate canvas widgets
Synopsis

canvas pathName ?options?

Standard Options

background insertBorderWidth relief xScrollCommand
borderWidth insertOffTime selectBackground yScrollCommand
cursor insertOnTime selectBorderWidth
insertBackground insertWidth selectForeground

See (undefined) [options|, page (undefined), for more information.

Arguments for Canvas

:closeenough
Name="closeEnough" Class="CloseEnough"

Specifies a floating-point value indicating how close the mouse cursor must be
to an item before it is considered to be “inside” the item. Defaults to 1.0.
:confine

Name="confine" Class="Confine"

Specifies a boolean value that indicates whether or not it should be allowable to
set the canvas’s view outside the region defined by the scrollRegion argument.
Defaults to true, which means that the view will be constrained within the
scroll region.

:height
Name="height" Class="Height"

Specifies a desired window height that the canvas widget should request from
its geometry manager. The value may be specified in any of the forms described
in the COORDINATES section below.

:scrollincrement
Name="scrollIncrement" Class="Scrolllncrement"

Specifies a distance used as increment during scrolling: when one of the arrow
buttons on an associated scrollbar is pressed, the picture will shift by this

Chapter 2: Widgets 23

distance. The distance may be specified in any of the forms described in the
COORDINATES section below.

:scrollregion
Name="scrollRegion" Class="ScrollRegion"

Specifies a list with four coordinates describing the left, top, right, and bottom
coordinates of a rectangular region. This region is used for scrolling purposes
and is considered to be the boundary of the information in the canvas. Each
of the coordinates may be specified in any of the forms given in the COORDI-
NATES section below.

:width
Name="width" Class="width"
Specifies a desired window width that the canvas widget should request from its
geometry manager. The value may be specified in any of the forms described
in the COORDINATES section below.
Introduction

The canvas command creates a new window (given by the pathName argument) and makes
it into a canvas widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the canvas such as its colors
and 3-D relief. The canvas command returns its pathName argument. At the time this
command is invoked, there must not exist a window named pathName, but pathName’s
parent must exist.

Canvas widgets implement structured graphics. A canvas displays any number of items,
which may be things like rectangles, circles, lines, and text. Items may be manipulated
(e.g. moved or re-colored) and commands may be associated with items in much the same
way that the bind command allows commands to be bound to widgets. For example, a
particular command may be associated with the <Button-1> event so that the command is
invoked whenever button 1 is pressed with the mouse cursor over an item. This means that
items in a canvas can have behaviors defined by the Tcl scripts bound to them.

Display List

The items in a canvas are ordered for purposes of display, with the first item in the display
list being displayed first, followed by the next item in the list, and so on. Items later in
the display list obscure those that are earlier in the display list and are sometimes referred
to as being “on top” of earlier items. When a new item is created it is placed at the end
of the display list, on top of everything else. Widget commands may be used to re-arrange
the order of the display list.

Item Ids And Tags

Items in a canvas widget may be named in either of two ways: by id or by tag. Each item
has a unique identifying number which is assigned to that item when it is created. The id
of an item never changes and id numbers are never re-used within the lifetime of a canvas
widget.

24 No Title

Each item may also have any number of tags associated with it. A tag is just a string
of characters, and it may take any form except that of an integer. For example, “x123” is
OK but “123” isn’t. The same tag may be associated with many different items. This is
commonly done to group items in various interesting ways; for example, all selected items
might be given the tag “selected”.

The tag all is implicitly associated with every item in the canvas; it may be used to
invoke operations on all the items in the canvas.

The tag current is managed automatically by Tk; it applies to the current item, which
is the topmost item whose drawn area covers the position of the mouse cursor. If the mouse
is not in the canvas widget or is not over an item, then no item has the current tag.

When specifying items in canvas widget commands, if the specifier is an integer then it
is assumed to refer to the single item with that id. If the specifier is not an integer, then it
is assumed to refer to all of the items in the canvas that have a tag matching the specifier.
The symbol tagOrld is used below to indicate that an argument specifies either an id that
selects a single item or a tag that selects zero or more items. Some widget commands only
operate on a single item at a time; if tagOrld is specified in a way that names multiple
items, then the normal behavior is for the command to use the first (lowest) of these items
in the display list that is suitable for the command. Exceptions are noted in the widget
command descriptions below.

Coordinates

All coordinates related to canvases are stored as floating-point numbers. Coordinates and
distances are specified in screen units, which are floating-point numbers optionally followed
by one of several letters. If no letter is supplied then the distance is in pixels. If the letter
is m then the distance is in millimeters on the screen; if it is ¢ then the distance is in
centimeters; i means inches, and p means printers points (1/72 inch). Larger y-coordinates
refer to points lower on the screen; larger x-coordinates refer to points farther to the right.

Transformations

Normally the origin of the canvas coordinate system is at the upper-left corner of the window
containing the canvas. It is possible to adjust the origin of the canvas coordinate system
relative to the origin of the window using the xview and yview widget commands; this
is typically used for scrolling. Canvases do not support scaling or rotation of the canvas
coordinate system relative to the window coordinate system.

Indidividual items may be moved or scaled using widget commands described below, but
they may not be rotated.

Indices

Text items support the notion of an index for identifying particular positions within the
item. Indices are used for commands such as inserting text, deleting a range of characters,
and setting the insertion cursor position. An index may be specified in any of a number of
ways, and different types of items may support different forms for specifying indices. Text
items support the following forms for an index; if you define new types of text-like items, it
would be advisable to support as many of these forms as practical. Note that it is possible
to refer to the character just after the last one in the text item; this is necessary for such
tasks as inserting new text at the end of the item.

Chapter 2:

number

end

insert

sel.first

sel.last

Qz,y

Widgets 25

A decimal number giving the position of the desired character within the text
item. O refers to the first character, 1 to the next character, and so on. A
number less than 0 is treated as if it were zero, and a number greater than the
length of the text item is treated as if it were equal to the length of the text
item.

Refers to the character just after the last one in the item (same as the number
of characters in the item).

Refers to the character just before which the insertion cursor is drawn in this
item.

Refers to the first selected character in the item. If the selection isn’t in this
item then this form is illegal.

Refers to the last selected character in the item. If the selection isn’t in this
item then this form is illegal.

Refers to the character at the point given by z and y, where x and y are specified
in the coordinate system of the canvas. If z and y lie outside the coordinates
covered by the text item, then they refer to the first or last character in the
line that is closest to the given point.

A Canvas Widget’s Arguments

The canvas command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option ?arg arg ...7

Option and the args determine the exact behavior of the command. The following widget
commands are possible for canvas widgets:

pathName :addtag tag searchSpec Targ arg ...7

For each item that meets the constraints specified by searchSpec and the args,
add tag to the list of tags associated with the item if it isn’t already present
on that list. It is possible that no items will satisfy the constraints given by
searchSpec and args, in which case the command has no effect. This command
returns an empty string as result. SearchSpec and arg’s may take any of the
following forms:

above tagOrld
Selects the item just after (above) the one given by tagOrld in the
display list. If tagOrld denotes more than one item, then the last
(topmost) of these items in the display list is used.

all Selects all the items in the canvas.

below tagOrld
Selects the item just before (below) the one given by tagOrld in
the display list. If tagOrld denotes more than one item, then the
first (lowest) of these items in the display list is used.

closest = y Thalo? ?start?
Selects the item closest to the point given by x and y. If more than
one item is at the same closest distance (e.g. two items overlap

26

No Title

the point), then the top-most of these items (the last one in the
display list) is used. If halo is specified, then it must be a non-
negative value. Any item closer than halo to the point is considered
to overlap it. The start argument may be used to step circularly
through all the closest items. If start is specified, it names an item
using a tag or id (if by tag, it selects the first item in the display list
with the given tag). Instead of selecting the topmost closest item,
this form will select the topmost closest item that is below start in
the display list; if no such item exists, then the selection behaves
as if the start argument had not been specified.

enclosed z1 yI z2 y2
Selects all the items completely enclosed within the rectangular
region given by z1, y1, 2, and y2. X1 must be no greater then z2
and yI must be no greater than y2.

overlapping =1 y1 z2 y2
Selects all the items that overlap or are enclosed within the rectan-

gular region given by z1, y1, 2, and y2. XI must be no greater
then z2 and yI must be no greater than y2.

withtag tagOrld
Selects all the items given by tagOrld.

pathName :bbox tagOrld ?tagOrld tagOrld ...7

Returns a list with four elements giving an approximate bounding box for all
the items named by the tagOrld arguments. The list has the form “x! yi1 z2
y2” such that the drawn areas of all the named elements are within the region
bounded by zI on the left, 22 on the right, y7 on the top, and y2 on the
bottom. The return value may overestimate the actual bounding box by a few
pixels. If no items match any of the tagOrld arguments then an empty string
is returned.

pathName :bind tagOrld ?sequence? ?command?

This command associates command with all the items given by tagOrld such
that whenever the event sequence given by sequence occurs for one of the items
the command will be invoked. This widget command is similar to the bind com-
mand except that it operates on items in a canvas rather than entire widgets.
See the bind manual entry for complete details on the syntax of sequence and
the substitutions performed on command before invoking it. If all arguments
are specified then a new binding is created, replacing any existing binding for
the same sequence and tagOrld (if the first character of command is “+” then
command augments an existing binding rather than replacing it). In this case
the return value is an empty string. If command is omitted then the command
returns the command associated with tagOrld and sequence (an error occurs
if there is no such binding). If both command and sequence are omitted then
the command returns a list of all the sequences for which bindings have been
defined for tagOrld.

The only events for which bindings may be specified are those related to the mouse and

keyboard, such as Enter, Leave, ButtonPress, Motion, and KeyPress. The handling of

Chapter 2: Widgets 27

events in canvases uses the current item defined in ITEM IDS AND TAGS above. Enter
and Leave events trigger for an item when it becomes the current item or ceases to be the
current item; note that these events are different than Enter and Leave events for windows.
Mouse-related events are directed to the current item, if any. Keyboard-related events are
directed to the focus item, if any (see the focus widget command below for more on this).

It is possible for multiple commands to be bound to a single event sequence for a single
object. This occurs, for example, if one command is associated with the item’s id and
another is associated with one of the item’s tags. When this occurs, the first matching
binding is used. A binding for the item’s id has highest priority, followed by the oldest tag
for the item and proceeding through all of the item’s tags up through the most-recently-
added one. If a binding is associated with the tag all, the binding will have lower priority
than all other bindings associated with the item.

pathName :canvasx screenx ?gridspacing?
Given a screen x-coordinate screenz this command returns the canvas
x-coordinate that is displayed at that location. If gridspacing is specified, then
the canvas coordinate is rounded to the nearest multiple of gridspacing units.

pathName :canvasy screeny ?gridspacing?
Given a screen y-coordinate screeny this command returns the canvas
y-coordinate that is displayed at that location. If gridspacing is specified, then
the canvas coordinate is rounded to the nearest multiple of gridspacing units.

pathName :configure ?option? ?wvalue? ?option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the canvas command.

pathName :coords tagOrld 7z0 y0 ...7
Query or modify the coordinates that define an item. If no coordinates are
specified, this command returns a list whose elements are the coordinates of
the item named by tagOrld. If coordinates are specified, then they replace the
current coordinates for the named item. If tagOrld refers to multiple items,
then the first one in the display list is used.

pathName :create type x y 7z y ...7 Toption value ...7
Create a new item in pathName of type type. The exact format of the arguments
after type depends on type, but usually they consist of the coordinates for one
or more points, followed by specifications for zero or more item options. See
the subsections on individual item types below for more on the syntax of this
command. This command returns the id for the new item.

pathName :dchars tagOrld first ?last?
For each item given by tagOrld, delete the characters in the range given by
first and last, inclusive. If some of the items given by tagOrld don’t support

28 No Title

text operations, then they are ignored. First and last are indices of characters
within the item(s) as described in INDICES above. If last is omitted, it defaults
to first. This command returns an empty string.

pathName :delete 7tagOrld tagOrld ...7
Delete each of the items given by each tagOrld, and return an empty string.

pathName :dtag tagOrld 7tagToDelete?
For each of the items given by tagOrld, delete the tag given by tagToDelete
from the list of those associated with the item. If an item doesn’t have the
tag tagToDelete then the item is unaffected by the command. If tagToDelete is
omitted then it defaults to tagOrld. This command returns an empty string.

pathName :find searchCommand ?arg arg ...7
This command returns a list consisting of all the items that meet the constraints
specified by searchCommand and arg’s. SearchCommand and args have any of
the forms accepted by the addtag command.

pathName :focus 7tagOrid?

Set the keyboard focus for the canvas widget to the item given by tagOrld. If
tagOrld refers to several items, then the focus is set to the first such item in
the display list that supports the insertion cursor. If tagOrld doesn’t refer to
any items, or if none of them support the insertion cursor, then the focus isn’t
changed. If tagOrld is an empty string, then the focus item is reset so that no
item has the focus. If tagOrld is not specified then the command returns the
id for the item that currently has the focus, or an empty string if no item has
the focus.

Once the focus has been set to an item, the item will display the insertion cursor and
all keyboard events will be directed to that item. The focus item within a canvas and the
focus window on the screen (set with the focus command) are totally independent: a given
item doesn’t actually have the input focus unless (a) its canvas is the focus window and
(b) the item is the focus item within the canvas. In most cases it is advisable to follow the
focus widget command with the focus command to set the focus window to the canvas (if
it wasn’t there already).

pathName :gettags tagOrld
Return a list whose elements are the tags associated with the item given by
tagOrld. If tagOrld refers to more than one item, then the tags are returned
from the first such item in the display list. If tagOrld doesn’t refer to any items,
or if the item contains no tags, then an empty string is returned.

pathName :icursor tagOrld index

Set the position of the insertion cursor for the item(s) given by tagOrld to just
before the character whose position is given by index. If some or all of the
items given by tagOrld don’t support an insertion cursor then this command
has no effect on them. See INDICES above for a description of the legal forms
for index. Note: the insertion cursor is only displayed in an item if that item
currently has the keyboard focus (see the widget command focus, below), but
the cursor position may be set even when the item doesn’t have the focus. This
command returns an empty string.

Chapter 2:

pathName :

pathName :

pathName :

pathName :

pathName :

pathName :

Widgets 29

index tagOrld index

This command returns a decimal string giving the numerical index within
tagOrld corresponding to indexr. Index gives a textual description of the desired
position as described in INDICES above. The return value is guaranteed to lie
between 0 and the number of characters within the item, inclusive. If tagOrld
refers to multiple items, then the index is processed in the first of these items
that supports indexing operations (in display list order).

insert tagOrld beforeThis string

For each of the items given by tagOrld, if the item supports text insertion then
string is inserted into the item’s text just before the character whose index is
beforeThis. See INDICES above for information about the forms allowed for
beforeThis. This command returns an empty string.

itemconfigure tagOrld ?option? Tvalue? Toption value ...7

This command is similar to the configure widget command except that it mod-
ifies item-specific options for the items given by tagOrld instead of modifying
options for the overall canvas widget. If no option is specified, returns a list
describing all of the available options for the first item given by tagOrld (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s) in each of the items given by tagOrld; in this case the command returns
an empty string. The options and values are the same as those permissible in
the create widget command when the item(s) were created; see the sections
describing individual item types below for details on the legal options.

lower tagOrld ?belowThis?

Move all of the items given by tagOrld to a new position in the display list
just before the item given by belowThis. If tagOrld refers to more than one
item then all are moved but the relative order of the moved items will not be
changed. BelowThis is a tag or id; if it refers to more than one item then the
first (lowest) of these items in the display list is used as the destination location
for the moved items. This command returns an empty string.

move tagOrld ztAmount yAmount

Move each of the items given by tagOrld in the canvas coordinate space by
adding zAmount to the x-coordinate of each point associated with the item
and yAmount to the y-coordinate of each point associated with the item. This
command returns an empty string.

postscript ?option value option value ...7

Generate a Postscript representation for part or all of the canvas. If the :file
option is specified then the Postscript is written to a file and an empty string
is returned; otherwise the Postscript is returned as the result of the command.
The Postscript is created in Encapsulated Postscript form using version 3.0
of the Document Structuring Conventions. The option\-value argument pairs

30

No Title

provide additional information to control the generation of Postscript. The
following options are supported:

:colormap varName

VarName must be the name of a global array variable that specifies
a color mapping to use in the Postscript. Each element of varName
must consist of Postscript code to set a particular color value (e.g.
“1.0 1.0 0.0 setrgbcolor”). When outputting color information in
the Postscript, Tk checks to see if there is an element of varName
with the same name as the color. If so, Tk uses the value of the
element as the Postscript command to set the color. If this option
hasn’t been specified, or if there isn’t an entry in varName for a
given color, then Tk uses the red, green, and blue intensities from
the X color.

:colormode mode

Specifies how to output color information. Mode must be either
color (for full color output), gray (convert all colors to their gray-
scale equivalents) or mono (convert all colors to black or white).

file fileName

Specifies the name of the file in which to write the Postscript. If
this option isn’t specified then the Postscript is returned as the
result of the command instead of being written to a file.

:fontmap varName

:height size

VarName must be the name of a global array variable that specifies
a font mapping to use in the Postscript. Each element of varName
must consist of a Tcl list with two elements, which are the name
and point size of a Postscript font. When outputting Postscript
commands for a particular font, Tk checks to see if varName con-
tains an element with the same name as the font. If there is such an
element, then the font information contained in that element is used
in the Postscript. Otherwise Tk attempts to guess what Postscript
font to use. Tk’s guesses generally only work for well-known fonts
such as Times and Helvetica and Courier, and only if the X font
name does not omit any dashes up through the point size. For ex-
ample, \fB\-*\-Courier\-Bold\-R\-Normal\-\-*\-120\-* will work
but \fB*Courier\-Bold\-R\-Normal*120* will not; Tk needs the
dashes to parse the font name).

Specifies the height of the area of the canvas to print. Defaults to
the height of the canvas window.

:pageanchor anchor

Specifies which point of the printed area should be appear over
the positioning point on the page (which is given by the :pagex
and :pagey options). For example, :pageanchor n means that the
top center of the printed area should be over the positioning point.
Defaults to center.

Chapter 2: Widgets

31

:pageheight size

Specifies that the Postscript should be scaled in both x and y so that
the printed area is size high on the Postscript page. Size consists of
a floating-point number followed by ¢ for centimeters, i for inches,
m for millimeters, or p or nothing for printer’s points (1/72 inch).
Defaults to the height of the printed area on the screen. If both
:pageheight and :pagewidth are specified then the scale factor from
the later option is used (non-uniform scaling is not implemented).

:pagewidth size

Specifies that the Postscript should be scaled in both x and y so
that the printed area is size wide on the Postscript page. Size has
the same form as for :pageheight. Defaults to the width of the
printed area on the screen. If both :pageheight and :pagewidth are
specified then the scale factor from the later option is used (non-
uniform scaling is not implemented).

:pagex position

Position gives the x-coordinate of the positioning point on the Post-
script page, using any of the forms allowed for :pageheight. Used in
conjunction with the :pagey and :pageanchor options to determine
where the printed area appears on the Postscript page. Defaults to
the center of the page.

:pagey position

Position gives the y-coordinate of the positioning point on the Post-
script page, using any of the forms allowed for :pageheight. Used in
conjunction with the :pagex and :pageanchor options to determine
where the printed area appears on the Postscript page. Defaults to
the center of the page.

:rotate boolean

:width size

X position

y position

Boolean specifies whether the printed area is to be rotated 90 de-
grees. In non-rotated output the x-axis of the printed area runs
along the short dimension of the page (“portrait” orientation); in
rotated output the x-axis runs along the long dimension of the page
(“landscape” orientation). Defaults to non-rotated.

Specifies the width of the area of the canvas to print. Defaults to
the width of the canvas window.

Specifies the x-coordinate of the left edge of the area of the canvas
that is to be printed, in canvas coordinates, not window coordi-
nates. Defaults to the coordinate of the left edge of the window.

Specifies the y-coordinate of the top edge of the area of the canvas
that is to be printed, in canvas coordinates, not window coordi-
nates. Defaults to the coordinate of the top edge of the window.

32 No Title

pathName :raise tagOrld ?aboveThis?
Move all of the items given by tagOrld to a new position in the display list
just after the item given by aboveThis. If tagOrld refers to more than one
item then all are moved but the relative order of the moved items will not be
changed. AboveThis is a tag or id; if it refers to more than one item then
the last (topmost) of these items in the display list is used as the destination
location for the moved items. This command returns an empty string.

pathName :scale tagOrld xOrigin yOrigin xScale yScale

Rescale all of the items given by tagOrld in canvas coordinate space. XOrigin
and yOrigin identify the origin for the scaling operation and xScale and yScale
identify the scale factors for x- and y-coordinates, respectively (a scale factor of
1.0 implies no change to that coordinate). For each of the points defining each
item, the x-coordinate is adjusted to change the distance from zOrigin by a
factor of zScale. Similarly, each y-coordinate is adjusted to change the distance
from yOrigin by a factor of yScale. This command returns an empty string.

pathName :scan option args
This command is used to implement scanning on canvases. It has two forms,
depending on option:

pathName :scan :mark z y
Records z and y and the canvas’s current view; used in conjunc-
tion with later scan dragto commands. Typically this command is
associated with a mouse button press in the widget and z and y
are the coordinates of the mouse. It returns an empty string.

pathName :scan :dragto z y.

This command computes the difference between its z and y ar-
guments (which are typically mouse coordinates) and the z and y
arguments to the last scan mark command for the widget. It then
adjusts the view by 10 times the difference in coordinates. This
command is typically associated with mouse motion events in the
widget, to produce the effect of dragging the canvas at high speed
through its window. The return value is an empty string.

pathName :select option ?tagOrld arg?
Manipulates the selection in one of several ways, depending on option. The
command may take any of the forms described below. In all of the descriptions
below, tagOrld must refer to an item that supports indexing and selection; if it
refers to multiple items then the first of these that supports indexing and the
selection is used. Index gives a textual description of a position within tagOrld,
as described in INDICES above.

pathName :select :adjust tagOrld index
Locate the end of the selection in tagOrld nearest to the character
given by inder, and adjust that end of the selection to be at index
(i.e. including but not going beyond index). The other end of the
selection is made the anchor point for future select to commands. If
the selection isn’t currently in tagOrld then this command behaves

Chapter 2: Widgets 33

the same as the select to widget command. Returns an empty
string.

pathName :select :clear
Clear the selection if it is in this widget. If the selection isn’t in this
widget then the command has no effect. Returns an empty string.

pathName :select :from tagOrld index
Set the selection anchor point for the widget to be just before the
character given by index in the item given by tagOrld. This com-
mand doesn’t change the selection; it just sets the fixed end of the
selection for future select to commands. Returns an empty string.

pathName :select :item
Returns the id of the selected item, if the selection is in an item
in this canvas. If the selection is not in this canvas then an empty
string is returned.

pathName :select :to tagOrld index

Set the selection to consist of those characters of tagOrld between
the selection anchor point and index. The new selection will include
the character given by index; it will include the character given by
the anchor point only if indez is greater than or equal to the anchor
point. The anchor point is determined by the most recent select
adjust or select from command for this widget. If the selection
anchor point for the widget isn’t currently in tagOrld, then it is set
to the same character given by indexr. Returns an empty string.

pathName :type tagOrld
Returns the type of the item given by tagOrld, such as rectangle or text. If
tagOrld refers to more than one item, then the type of the first item in the
display list is returned. If tagOrld doesn’t refer to any items at all then an
empty string is returned.

pathName :xview indez
Change the view in the canvas so that the canvas position given by index ap-
pears at the left edge of the window. This command is typically used by scroll-
bars to scroll the canvas. Index counts in units of scroll increments (the value
of the scrolllncrement option): a value of 0 corresponds to the left edge of the
scroll region (as defined by the scrollRegion option), a value of 1 means one
scroll unit to the right of this, and so on. The return value is an empty string.

pathName :yview inder
Change the view in the canvas so that the canvas position given by index ap-
pears at the top edge of the window. This command is typically used by scroll-
bars to scroll the canvas. Index counts in units of scroll increments (the value
of the scrolllncrement option): a value of 0 corresponds to the top edge of the
scroll region (as defined by the scrollRegion option), a value of 1 means one
scroll unit below this, and so on. The return value is an empty string.

34 No Title

Overview Of Item Types

The sections below describe the various types of items supported by canvas widgets. Each
item type is characterized by two things: first, the form of the create command used to
create instances of the type; and second, a set of configuration options for items of that
type, which may be used in the create and itemconfigure widget commands. Most items
don’t support indexing or selection or the commands related to them, such as index and
insert. Where items do support these facilities, it is noted explicitly in the descriptions
below (at present, only text items provide this support).

Arc Items

Items of type arc appear on the display as arc-shaped regions. An arc is a section of an oval
delimited by two angles (specified by the :start and :extent options) and displayed in one
of several ways (specified by the :style option). Arcs are created with widget commands of
the following form:

pathName :create arc x1 yI1 z2 y2 ?option value option value ...7
The arguments =1, y1, 2, and y2 give the coordinates of two diagonally oppo-
site corners of a rectangular region enclosing the oval that defines the arc. After
the coordinates there may be any number of option-value pairs, each of which
sets one of the configuration options for the item. These same option\-value
pairs may be used in itemconfigure widget commands to change the item’s
configuration. The following options are supported for arcs:

:extent degrees
Specifies the size of the angular range occupied by the arc. The
arc’s range extends for degrees degrees counter-clockwise from the
starting angle given by the :start option. Degrees may be negative.

fill color Fill the region of the arc with color. Color may have any of the
forms accepted by Tk_GetColor. If color is an empty string (the
default), then then the arc will not be filled.

:outline color
Color specifies a color to use for drawing the arc’s outline; it may
have any of the forms accepted by Tk_GetColor. This option de-
faults to black. If the arc’s style is arc then this option is ignored
(the section of perimeter is filled using the :fill option). If color is
specified as an empty string then no outline is drawn for the arc.

istart degrees
Specifies the beginning of the angular range occupied by the arc.
Degrees is given in units of degrees measured counter-clockwise
from the 3-o’clock position; it may be either positive or negative.

:stipple bitmap
Indicates that the arc should be filled in a stipple pattern; bitmap
specifies the stipple pattern to use, in any of the forms accepted by
Tk_GetBitmap. If the :fill option hasn’t been specified then this
option has no effect. If bitmap is an empty string (the default),
then filling is done in a solid fashion.

Chapter 2: Widgets 35

:style type Specifies how to draw the arc. If type is pieslice (the default) then
the arc’s region is defined by a section of the oval’s perimeter plus
two line segments, one between the center of the oval and each end
of the perimeter section. If type is chord then the arc’s region is
defined by a section of the oval’s perimeter plus a single line segment
connecting the two end points of the perimeter section. If type is arc
then the arc’s region consists of a section of the perimeter alone. In
this last case there is no outline for the arc and the :outline option
is ignored.

itags taglList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

:width outline Width
Specifies the width of the outline to be drawn around the arc’s
region, in any of the forms described in the COORDINATES section
above. If the :outline option has been specified as an empty string
then this option has no effect. Wide outlines will be drawn centered
on the edges of the arc’s region. This option defaults to 1.0.

Bitmap Items

Items of type bitmap appear on the display as images with two colors, foreground and
background. Bitmaps are created with widget commands of the following form:

pathName :create bitmap z y 7option value option value ...7

The arguments z and y specify the coordinates of a point used to position the
bitmap on the display (see the :anchor option below for more information on
how bitmaps are displayed). After the coordinates there may be any number
of option-value pairs, each of which sets one of the configuration options for
the item. These same option\-value pairs may be used in itemconfigure wid-
get commands to change the item’s configuration. The following options are
supported for bitmaps:

:anchor anchorPos
AnchorPos tells how to position the bitmap relative to the posi-
tioning point for the item; it may have any of the forms accepted
by Tk_GetAnchor. For example, if anchorPos is center then the
bitmap is centered on the point; if anchorPos is n then the bitmap
will be drawn so that its top center point is at the positioning point.
This option defaults to center.

:background color
Specifies a color to use for each of the bitmap pixels whose value
is 0. Color may have any of the forms accepted by Tk_GetColor.
If this option isn’t specified, or if it is specified as an empty string,
then the background color for the canvas is used.

36 No Title

:bitmap bitmap
Specifies the bitmap to display in the item. Bitmap may have any
of the forms accepted by Tk_GetBitmap.

:foreground color
Specifies a color to use for each of the bitmap pixels whose value is
1. Color may have any of the forms accepted by Tk_GetColor and
defaults to black.

:tags tagList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

Line Items

Items of type line appear on the display as one or more connected line segments or curves.
Lines are created with widget commands of the following form:

pathName :create line z1 y1... xn yn 7option value option value ...7
The arguments z1 through yn give the coordinates for a series of two or more
points that describe a series of connected line segments. After the coordinates
there may be any number of option-value pairs, each of which sets one of the
configuration options for the item. These same option\-value pairs may be
used in itemconfigure widget commands to change the item’s configuration.
The following options are supported for lines:

:arrow where
Indicates whether or not arrowheads are to be drawn at one or both
ends of the line. Where must have one of the values none (for no
arrowheads), first (for an arrowhead at the first point of the line),
last (for an arrowhead at the last point of the line), or both (for
arrowheads at both ends). This option defaults to none.

:arrowshape shape

This option indicates how to draw arrowheads. The shape argument
must be a list with three elements, each specifying a distance in any
of the forms described in the COORDINATES section above. The
first element of the list gives the distance along the line from the
neck of the arrowhead to its tip. The second element gives the
distance along the line from the trailing points of the arrowhead to
the tip, and the third element gives the distance from the outside
edge of the line to the trailing points. If this option isn’t specified
then Tk picks a “reasonable” shape.

:capstyle style
Specifies the ways in which caps are to be drawn at the end-
points of the line. Style may have any of the forms accepted by
Tk_GetCapStyle (butt, projecting, or round). If this option isn’t
specified then it defaults to butt. Where arrowheads are drawn the
cap style is ignored.

Chapter 2: Widgets 37

fill color Color specifies a color to use for drawing the line; it may have
any of the forms acceptable to Tk_GetColor. It may also be an
empty string, in which case the line will be transparent. This option
defaults to black.

:joinstyle style
Specifies the ways in which joints are to be drawn at the ver-
tices of the line. Style may have any of the forms accepted by
Tk_GetCapStyle (bevel, miter, or round). If this option isn’t spec-
ified then it defaults to miter. If the line only contains two points
then this option is irrelevant.

:smooth boolean
Boolean must have one of the forms accepted by Tk_GetBoolean.
It indicates whether or not the line should be drawn as a curve. If
so, the line is rendered as a set of Bezier splines: one spline is drawn
for the first and second line segments, one for the second and third,
and so on. Straight-line segments can be generated within a curve
by duplicating the end-points of the desired line segment.

:splinesteps number
Specifies the degree of smoothness desired for curves: each spline
will be approximated with number line segments. This option is
ignored unless the :smooth option is true.

:stipple bitmap
Indicates that the line should be filled in a stipple pattern; bitmap
specifies the stipple pattern to use, in any of the forms accepted
by Tk_GetBitmap. If bitmap is an empty string (the default), then
filling is done in a solid fashion.

itags taglList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

:width line Width
LineWidth specifies the width of the line, in any of the forms de-
scribed in the COORDINATES section above. Wide lines will be
drawn centered on the path specified by the points. If this option
isn’t specified then it defaults to 1.0.

Oval Items

Items of type oval appear as circular or oval regions on the display. Each oval may have an
outline, a fill, or both. Ovals are created with widget commands of the following form:

pathName :create oval x1 y1 2 y2 7option value option value ...7
The arguments z1, yI, 2, and y2 give the coordinates of two diagonally op-
posite corners of a rectangular region enclosing the oval. The oval will include
the top and left edges of the rectangle not the lower or right edges. If the
region is square then the resulting oval is circular; otherwise it is elongated in

38

No Title

shape. After the coordinates there may be any number of option-value pairs,
each of which sets one of the configuration options for the item. These same
option\-value pairs may be used in itemconfigure widget commands to change
the item’s configuration. The following options are supported for ovals:

fill color Fill the area of the oval with color. Color may have any of the
forms accepted by Tk_GetColor. If color is an empty string (the
default), then then the oval will not be filled.

:outline color
Color specifies a color to use for drawing the oval’s outline; it may
have any of the forms accepted by Tk_GetColor. This option de-
faults to black. If color is an empty string then no outline will be
drawn for the oval.

:stipple bitmap
Indicates that the oval should be filled in a stipple pattern; bitmap
specifies the stipple pattern to use, in any of the forms accepted by
Tk_GetBitmap. If the :fill option hasn’t been specified then this
option has no effect. If bitmap is an empty string (the default),
then filling is done in a solid fashion.

:itags tagList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

:width outline Width
outline Width specifies the width of the outline to be drawn around
the oval, in any of the forms described in the COORDINATES
section above. If the :outline option hasn’t been specified then this
option has no effect. Wide outlines are drawn centered on the oval
path defined by z1, y1, 2, and y2. This option defaults to 1.0.

Polygon Items

Items of type polygon appear as polygonal or curved filled regions on the display. Polygons
are created with widget commands of the following form:

pathName :create polygon z1 yI ... xn yn 7option value option value ...7

The arguments z1 through yn specify the coordinates for three or more points
that define a closed polygon. The first and last points may be the same; whether
they are or not, Tk will draw the polygon as a closed polygon. After the
coordinates there may be any number of option-value pairs, each of which
sets one of the configuration options for the item. These same option\-value
pairs may be used in itemconfigure widget commands to change the item’s
configuration. The following options are supported for polygons:

fill color Color specifies a color to use for filling the area of the polygon; it
may have any of the forms acceptable to Tk_GetColor. If color is
an empty string then the polygon will be transparent. This option
defaults to black.

Chapter 2: Widgets 39

:smooth boolean

Boolean must have one of the forms accepted by Tk_GetBoolean
It indicates whether or not the polygon should be drawn with a
curved perimeter. If so, the outline of the polygon becomes a set
of Bezier splines, one spline for the first and second line segments,
one for the second and third, and so on. Straight-line segments can
be generated in a smoothed polygon by duplicating the end-points
of the desired line segment.

:splinesteps number
Specifies the degree of smoothness desired for curves: each spline
will be approximated with number line segments. This option is
ignored unless the :smooth option is true.

:stipple bitmap
Indicates that the polygon should be filled in a stipple pattern; bit-
map specifies the stipple pattern to use, in any of the forms accepted
by Tk_GetBitmap. If bitmap is an empty string (the default), then
filling is done in a solid fashion.

:tags tagList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

Rectangle Items

Items of type rectangle appear as rectangular regions on the display. Each rectangle may
have an outline, a fill, or both. Rectangles are created with widget commands of the
following form:

pathName :create rectangle x1 yI z2 y2 ?option value option value ...7

The arguments =1, y1, 2, and y2 give the coordinates of two diagonally oppo-
site corners of the rectangle (the rectangle will include its upper and left edges
but not its lower or right edges). After the coordinates there may be any num-
ber of option-value pairs, each of which sets one of the configuration options
for the item. These same option\-value pairs may be used in itemconfigure
widget commands to change the item’s configuration. The following options
are supported for rectangles:

fill color Fill the area of the rectangle with color, which may be specified in
any of the forms accepted by Tk_GetColor. If color is an empty
string (the default), then then the rectangle will not be filled.

:outline color
Draw an outline around the edge of the rectangle in color. Color
may have any of the forms accepted by Tk_GetColor. This option
defaults to black. If color is an empty string then no outline will
be drawn for the rectangle.

40

No Title

:stipple bitmap

Indicates that the rectangle should be filled in a stipple pattern;
bitmap specifies the stipple pattern to use, in any of the forms
accepted by Tk_GetBitmap. If the :fill option hasn’t been specified
then this option has no effect. If bitmap is an empty string (the
default), then filling is done in a solid fashion.

itags taglList

Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

:width outline Width

Text Items

Outline Width specifies the width of the outline to be drawn around
the rectangle, in any of the forms described in the COORDINATES
section above. If the :outline option hasn’t been specified then
this option has no effect. Wide outlines are drawn centered on
the rectangular path defined by z1, yI, 2, and y2. This option
defaults to 1.0.

A text item displays a string of characters on the screen in one or more lines. Text items
support indexing and selection, along with the following text-related canvas widget com-
mands: dchars, focus, icursor, index, insert, select. Text items are created with widget
commands of the following form:

pathName :create text x y ?option value option value ...7
The arguments z and y specify the coordinates of a point used to position the
text on the display (see the options below for more information on how text
is displayed). After the coordinates there may be any number of option-value
pairs, each of which sets one of the configuration options for the item. These
same option\-value pairs may be used in itemconfigure widget commands to
change the item’s configuration. The following options are supported for text

items:

:anchor anchorPos

Aill color

AnchorPos tells how to position the text relative to the position-
ing point for the text; it may have any of the forms accepted by
Tk_GetAnchor. For example, if anchorPos is center then the text
is centered on the point; if anchorPos is n then the text will be
drawn such that the top center point of the rectangular region oc-
cupied by the text will be at the positioning point. This option
defaults to center.

Color specifies a color to use for filling the text characters; it may
have any of the forms accepted by Tk_GetColor. If this option isn’t
specified then it defaults to black.

Chapter 2: Widgets 41

:font fontName
Specifies the font to use for the text item. FontName may be
any string acceptable to Tk_GetFontStruct. If this option isn’t
specified, it defaults to a system-dependent font.

sjustify how
Specifies how to justify the text within its bounding region. How
must be one of the values left, right, or center. This option will
only matter if the text is displayed as multiple lines. If the option
is omitted, it defaults to left.

:stipple bitmap
Indicates that the text should be drawn in a stippled pattern rather
than solid; bitmap specifies the stipple pattern to use, in any of the
forms accepted by Tk_GetBitmap. If bitmap is an empty string
(the default) then the text is drawn in a solid fashion.

itags taglList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

itext string
String specifies the characters to be displayed in the text item.
Newline characters cause line breaks. The characters in the item
may also be changed with the insert and delete widget commands.
This option defaults to an empty string.

:width lineLength

Specifies a maximum line length for the text, in any of the forms
described in the COORDINATES section abov. If this option is
zero (the default) the text is broken into lines only at newline char-
acters. However, if this option is non-zero then any line that would
be longer than lineLength is broken just before a space character
to make the line shorter than lineLength; the space character is
treated as if it were a newline character.

Window Items

Items of type window cause a particular window to be displayed at a given position on the
canvas. Window items are created with widget commands of the following form:

pathName :create window x y 7option value option value ...7

The arguments z and y specify the coordinates of a point used to position the window
on the display (see the :anchor option below for more information on how bitmaps are
displayed). After the coordinates there may be any number of option-value pairs, each of
which sets one of the configuration options for the item. These same option\-value pairs
may be used in itemconfigure widget commands to change the item’s configuration. The
following options are supported for window items:

42 No Title

:anchor anchorPos
AnchorPos tells how to position the window relative to the positioning point
for the item; it may have any of the forms accepted by Tk_GetAnchor. For
example, if anchorPos is center then the window is centered on the point; if
anchorPos is n then the window will be drawn so that its top center point is
at the positioning point. This option defaults to center.

:height pixels
Specifies the height to assign to the item’s window. Pizels may have any of
the forms described in the COORDINATES section above. If this option isn’t
specified, or if it is specified as an empty string, then the window is given
whatever height it requests internally.

:itags tagList
Specifies a set of tags to apply to the item. TagList consists of a list of tag
names, which replace any existing tags for the item. TagList may be an empty
list.

:width pizels
Specifies the width to assign to the item’s window. Pizels may have any of
the forms described in the COORDINATES section above. If this option isn’t
specified, or if it is specified as an empty string, then the window is given
whatever width it requests internally.

:window pathName
Specifies the window to associate with this item. The window specified by
pathName must either be a child of the canvas widget or a child of some ancestor
of the canvas widget. PathName may not refer to a top-level window.

Application-Defined Item Types

It is possible for individual applications to define new item types for canvas widgets using
C code. The interfaces for this mechanism are not presently documented, and it’s possible
they may change, but you should be able to see how they work by examining the code for
some of the existing item types.

Bindings

In the current implementation, new canvases are not given any default behavior: you’ll have
to execute explicit Tcl commands to give the canvas its behavior.

Credits

Tk’s canvas widget is a blatant ripoff of ideas from Joel Bartlett’s ezd program. Fzd provides
structured graphics in a Scheme environment and preceded canvases by a year or two. Its
simple mechanisms for placing and animating graphical objects inspired the functions of
canvases.

Keywords

canvas, widget

Chapter 2: Widgets 43

2.5 menu
menu \- Create and manipulate menu widgets
Synopsis

menu pathName ?options?

Standard Options

activeBackground background disabledForeground
activeBorderWidth borderWidth font
activeForeground cursor foreground

See (undefined) [options|, page (undefined), for more information.

Arguments for Menu

:postcommand
Name="postCommand" Class="Command"

If this option is specified then it provides a Tcl command to execute each time
the menu is posted. The command is invoked by the post widget command
before posting the menu.

:selector
Name="selector" Class="Foreground"
For menu entries that are check buttons or radio buttons, this option specifies
the color to display in the selector when the check button or radio button is
selected.
Introduction

The menu command creates a new top-level window (given by the pathName argument) and
makes it into a menu widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the menu such as its colors
and font. The menu command returns its pathName argument. At the time this command
is invoked, there must not exist a window named pathName, but pathName’s parent must
exist.

A menu is a widget that displays a collection of one-line entries arranged in a column.
There exist several different types of entries, each with different properties. Entries of
different types may be combined in a single menu. Menu entries are not the same as entry
widgets. In fact, menu entries are not even distinct widgets; the entire menu is one widget.

Menu entries are displayed with up to three separate fields. The main field is a label
in the form of text or a bitmap, which is determined by the :label or :bitmap option for
the entry. If the :accelerator option is specified for an entry then a second textual field is
displayed to the right of the label. The accelerator typically describes a keystroke sequence
that may be typed in the application to cause the same result as invoking the menu entry.
The third field is a selector. The selector is present only for check-button or radio-button

44 No Title

entries. It indicates whether the entry is selected or not, and is displayed to the left of the
entry’s string.

In normal use, an entry becomes active (displays itself differently) whenever the mouse
pointer is over the entry. If a mouse button is released over the entry then the entry
is invoked. The effect of invocation is different for each type of entry; these effects are
described below in the sections on individual entries.

Entries may be disabled, which causes their labels and accelerators to be displayed with
dimmer colors. A disabled entry cannot be activated or invoked. Disabled entries may be
re-enabled, at which point it becomes possible to activate and invoke them again.

Command Entries

The most common kind of menu entry is a command entry, which behaves much like a
button widget. When a command entry is invoked, a Tcl command is executed. The Tcl
command is specified with the :command option.

Separator Entries

A separator is an entry that is displayed as a horizontal dividing line. A separator may not
be activated or invoked, and it has no behavior other than its display appearance.

Check-Button Entries

A check-button menu entry behaves much like a check-button widget. When it is invoked
it toggles back and forth between the selected and deselected states. When the entry is
selected, a particular value is stored in a particular global variable (as determined by the
:onvalue and :variable options for the entry); when the entry is deselected another value
(determined by the :offvalue option) is stored in the global variable. A selector box is
displayed to the left of the label in a check-button entry. If the entry is selected then the
box’s center is displayed in the color given by the selector option for the menu; otherwise
the box’s center is displayed in the background color for the menu. If a :command option is
specified for a check-button entry, then its value is evaluated as a Tcl command each time
the entry is invoked; this happens after toggling the entry’s selected state.

Radio-Button Entries

A radio-button menu entry behaves much like a radio-button widget. Radio-button entries
are organized in groups of which only one entry may be selected at a time. Whenever a
particular entry becomes selected it stores a particular value into a particular global variable
(as determined by the :value and :variable options for the entry). This action causes any
previously-selected entry in the same group to deselect itself. Once an entry has become
selected, any change to the entry’s associated variable will cause the entry to deselect itself.
Grouping of radio-button entries is determined by their associated variables: if two entries
have the same associated variable then they are in the same group. A selector diamond is
displayed to the left of the label in each radio-button entry. If the entry is selected then
the diamond’s center is displayed in the color given by the selector option for the menu;
otherwise the diamond’s center is displayed in the background color for the menu. If a
:command option is specified for a radio-button entry, then its value is evaluated as a Tcl
command each time the entry is invoked; this happens after selecting the entry.

Chapter 2: Widgets 45

Cascade Entries

A cascade entry is one with an associated menu (determined by the :menu option). Cas-
cade entries allow the construction of cascading menus. When the entry is activated, the
associated menu is posted just to the right of the entry; that menu remains posted until
the higher-level menu is unposted or until some other entry is activated in the higher-level
menu. The associated menu should normally be a child of the menu containing the cascade
entry, in order for menu traversal to work correctly.

A cascade entry posts its associated menu by invoking a Tcl command of the form

menu :post T y
where menu is the path name of the associated menu, z and y are the root-
window coordinates of the upper-right corner of the cascade entry, and group is
the name of the menu’s group (as determined in its last post widget command).
The lower-level menu is unposted by executing a Tcl command with the form

menu:unpost
where menu is the name of the associated menu.

If a :command option is specified for a cascade entry then it is evaluated as a Tcl
command each time the associated menu is posted (the evaluation occurs before the menu
is posted).

A Menu Widget’s Arguments

The menu command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7
Option and the args determine the exact behavior of the command.

Many of the widget commands for a menu take as one argument an indicator of which
entry of the menu to operate on. These indicators are called indexes and may be specified
in any of the following forms:

number Specifies the entry numerically, where 0 corresponds to the top-most entry of
the menu, 1 to the entry below it, and so on.

active Indicates the entry that is currently active. If no entry is active then this form
is equivalent to none. This form may not be abbreviated.

last Indicates the bottommost entry in the menu. If there are no entries in the menu
then this form is equivalent to none. This form may not be abbreviated.

none Indicates “no entry at all”; this is used most commonly with the activate option
to deactivate all the entries in the menu. In most cases the specification of
none causes nothing to happen in the widget command. This form may not be
abbreviated.

@number In this form, number is treated as a y-coordinate in the menu’s window; the
entry spanning that y-coordinate is used. For example, “@0” indicates the top-
most entry in the window. If number is outside the range of the window then
this form is equivalent to none.

46

pattern

No Title

If the index doesn’t satisfy one of the above forms then this form is used. Pattern
is pattern-matched against the label of each entry in the menu, in order from
the top down, until a matching entry is found. The rules of Tcl_StringMatch
are used.

The following widget commands are possible for menu widgets:

pathName :activate index

Change the state of the entry indicated by index to active and redisplay it
using its active colors. Any previously-active entry is deactivated. If index is
specified as none, or if the specified entry is disabled, then the menu ends up
with no active entry. Returns an empty string.

pathName :add type ?option value option value ...7

Add a new entry to the bottom of the menu. The new entry’s type is given
by type and must be one of cascade, checkbutton, command, radiobutton, or
separator, or a unique abbreviation of one of the above. If additional arguments
are present, they specify any of the following options:

:activebackground value
Specifies a background color to use for displaying this entry when it
is active. If this option is specified as an empty string (the default),
then the activeBackground option for the overall menu is used. This
option is not available for separator entries.

:accelerator value
Specifies a string to display at the right side of the menu entry.
Normally describes an accelerator keystroke sequence that may be
typed to invoke the same function as the menu entry. This option
is not available for separator entries.

:background value
Specifies a background color to use for displaying this entry when
it is in the normal state (neither active nor disabled). If this option
is specified as an empty string (the default), then the background
option for the overall menu is used. This option is not available for
separator entries.

:bitmap value
Specifies a bitmap to display in the menu instead of a textual la-
bel, in any of the forms accepted by Tk_GetBitmap. This option
overrides the :label option but may be reset to an empty string to
enable a textual label to be displayed. This option is not available
for separator entries.

:command value
For command, checkbutton, and radiobutton entries, specifies a
Tcl command to execute when the menu entry is invoked. For
cascade entries, specifies a Tcl command to execute when the entry
is activated (i.e. just before its submenu is posted). Not available
for separator entries.

Chapter 2: Widgets 47

:font value
Specifies the font to use when drawing the label or accelerator string
in this entry. If this option is specified as an empty string (the
default) then the font option for the overall menu is used. This
option is not available for separator entries.

:label value
Specifies a string to display as an identifying label in the menu
entry. Not available for separator entries.

:menu value
Available only for cascade entries. Specifies the path name of the
menu associated with this entry.

:offvalue value
Available only for check-button entries. Specifies the value to store
in the entry’s associated variable when the entry is deselected.

:onvalue value
Available only for check-button entries. Specifies the value to store
in the entry’s associated variable when the entry is selected.

:state value

Specifies one of three states for the entry: normal, active, or dis-
abled. In normal state the entry is displayed using the foreground
option for the menu and the background option from the entry or
the menu. The active state is typically used when the pointer is over
the entry. In active state the entry is displayed using the active-
Foreground option for the menu along with the activebackground
option from the entry. Disabled state means that the entry is in-
sensitive: it doesn’t activate and doesn’t respond to mouse button
presses or releases. In this state the entry is displayed according to
the disabledForeground option for the menu and the background
option from the entry. This option is not available for separator
entries.

:underline value
Specifies the integer index of a character to underline in the entry.
This option is typically used to indicate keyboard traversal char-
acters. 0 corresponds to the first character of the text displayed
in the entry, 1 to the next character, and so on. If a bitmap is
displayed in the entry then this option is ignored. This option is
not available for separator entries.

:value value
Available only for radio-button entries. Specifies the value to store
in the entry’s associated variable when the entry is selected.

:variable value
Available only for check-button and radio-button entries. Specifies
the name of a global value to set when the entry is selected. For

48

No Title

check-button entries the variable is also set when the entry is des-
elected. For radio-button entries, changing the variable causes the
currently-selected entry to deselect itself.

The add widget command returns an empty string.

pathName

pathName

pathName

pathName

pathName

pathName

pathName

:configure 7option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_ConfigureInfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the menu command.

:delete index1 ?index2?
Delete all of the menu entries between indez! and indezx2 inclusive. If index2
is omitted then it defaults to indexl. Returns an empty string.

:disable index
Change the state of the entry given by index to disabled and redisplay the entry
using its disabled colors. Returns an empty string. This command is obsolete
and will eventually be removed; use “pathName :entryconfigure indexr :state
disabled” instead.

:enable index
Change the state of the entry given by index to normal and redisplay the entry
using its normal colors. Returns an empty string. This command is obsolete
and will eventually be removed; use “pathName :entryconfigure indexr :state
normal” instead.

:entryconfigure index 7options?

This command is similar to the configure command, except that it applies to
the options for an individual entry, whereas configure applies to the options for
the menu as a whole. Options may have any of the values accepted by the add
widget command. If options are specified, options are modified as indicated
in the command and the command returns an empty string. If no options
are specified, returns a list describing the current options for entry index (see
Tk_Configurelnfo for information on the format of this list).

sindex index
Returns the numerical index corresponding to indez, or none if index was spec-
ified as none.

:invoke index
Invoke the action of the menu entry. See the sections on the individual entries
above for details on what happens. If the menu entry is disabled then nothing
happens. If the entry has a command associated with it then the result of that
command is returned as the result of the invoke widget command. Otherwise

Chapter 2: Widgets 49

the result is an empty string. Note: invoking a menu entry does not automati-
cally unpost the menu. Normally the associated menubutton will take care of
unposting the menu.

pathName :post = y
Arrange for the menu to be displayed on the screen at the root-window coordi-
nates given by x and y. These coordinates are adjusted if necessary to guarantee
that the entire menu is visible on the screen. This command normally returns
an empty string. If the :postcommand option has been specified, then its value
is executed as a Tcl script before posting the menu and the result of that script
is returned as the result of the post widget command. If an error returns while
executing the command, then the error is returned without posting the menu.

pathName :unpost
Unmap the window so that it is no longer displayed. If a lower-level cascaded
menu is posted, unpost that menu. Returns an empty string.

pathName :yposition index
Returns a decimal string giving the y-coordinate within the menu window of
the topmost pixel in the entry specified by index.

Default Bindings

Tk automatically creates class bindings for menus that give them the following default
behavior:

[1] When the mouse cursor enters a menu, the entry underneath the mouse cursor is
activated; as the mouse moves around the menu, the active entry changes to track the
mouse.

[2] When button 1 is released over a menu, the active entry (if any) is invoked.
[3] A menu can be repositioned on the screen by dragging it with mouse button 2.

[4] A number of other bindings are created to support keyboard menu traversal. See
the manual entry for tk_bindForTraversal for details on these bindings.

Disabled menu entries are non-responsive: they don’t activate and ignore mouse button
presses and releases.

The behavior of menus can be changed by defining new bindings for individual widgets
or by redefining the class bindings.

Bugs

At present it isn’t possible to use the option database to specify values for the options to
individual entries.

Keywords

menu, widget

2.6 scrollbar

scrollbar \- Create and manipulate scrollbar widgets

50 No Title

Synopsis

scrollbar pathName ?options?

Standard Options

activeForeground cursor relief
background foreground repeatDelay
borderWidth orient repeatInterval

See (undefined) [options|, page (undefined), for more information.

Arguments for Scrollbar

:command

Name="command" Class="Command"

Specifies the prefix of a Tcl command to invoke to change the view in the
widget associated with the scrollbar. When a user requests a view change by
manipulating the scrollbar, a Tcl command is invoked. The actual command
consists of this option followed by a space and a number. The number indicates
the logical unit that should appear at the top of the associated window.

:width
Name="width" Class="Width"
Specifies the desired narrow dimension of the scrollbar window, not including
3-D border, if any. For vertical scrollbars this will be the width and for hori-
zontal scrollbars this will be the height. The value may have any of the forms
acceptable to Tk_GetPixels.
Description

The scrollbar command creates a new window (given by the pathName argument) and
makes it into a scrollbar widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the scrollbar such as its
colors, orientation, and relief. The scrollbar command returns its pathName argument. At
the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A scrollbar is a widget that displays two arrows, one at each end of the scrollbar, and
a slider in the middle portion of the scrollbar. A scrollbar is used to provide information
about what is visible in an associated window that displays an object of some sort (such
as a file being edited or a drawing). The position and size of the slider indicate which
portion of the object is visible in the associated window. For example, if the slider in a
vertical scrollbar covers the top third of the area between the two arrows, it means that the
associated window displays the top third of its object.

Scrollbars can be used to adjust the view in the associated window by clicking or dragging
with the mouse. See the BINDINGS section below for details.

Chapter 2: Widgets 51

A Scrollbar Widget’s Arguments

The scrollbar command creates a new Tcl command whose name is pathName. This com-
mand may be used to invoke various operations on the widget. It has the following general
form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for scrollbar widgets:

pathName :configure ?option? ?wvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the scrollbar command.

pathName :get
Returns a Tcl list containing four decimal values, which are the current totalU-
nits, widnowUnits, firstUnit, and lastUnit values for the scrollbar. These are
the values from the most recent set widget command on the scrollbar.

pathName :set totalUnits windowUnits firstUnit lastUnit

This command is invoked to give the scrollbar information about the widget
associated with the scrollbar. TotalUnits is an integer value giving the total size
of the object being displayed in the associated widget. The meaning of one unit
depends on the associated widget; for example, in a text editor widget units
might correspond to lines of text. WindowUnits indicates the total number of
units that can fit in the associated window at one time. FirstUnit and lastUnit
give the indices of the first and last units currently visible in the associated
window (zero corresponds to the first unit of the object). This command should
be invoked by the associated widget whenever its object or window changes size
and whenever it changes the view in its window.

Bindings
The description below assumes a vertically-oriented scrollbar. For a horizontally-oriented
scrollbar replace the words “up”, “down”, “top”, and “bottom” with “left”, “right”, “left”,
and “right”, respectively

A scrollbar widget is divided into five distinct areas. From top to bottom, they are: the
top arrow, the top gap (the empty space between the arrow and the slider), the slider, the

bottom gap, and the bottom arrow. Pressing mouse button 1 in each area has a different
effect:

top arrow Causes the view in the associated window to shift up by one unit (i.e. the object
appears to move down one unit in its window). If the button is held down the
action will auto-repeat.

52

top gap

slider

bottom gap

No Title

Causes the view in the associated window to shift up by one less than the
number of units in the window (i.e. the portion of the object that used to
appear at the very top of the window will now appear at the very bottom). If
the button is held down the action will auto-repeat.

Pressing button 1 in this area has no immediate effect except to cause the slider
to appear sunken rather than raised. However, if the mouse is moved with the
button down then the slider will be dragged, adjusting the view as the mouse
is moved.

Causes the view in the associated window to shift down by one less than the
number of units in the window (i.e. the portion of the object that used to
appear at the very bottom of the window will now appear at the very top). If
the button is held down the action will auto-repeat.

bottom arrow

Causes the view in the associated window to shift down by one unit (i.e. the
object appears to move up one unit in its window). If the button is held down
the action will auto-repeat.

Note: none of the actions described above has an immediate impact on the
position of the slider in the scrollbar. It simply invokes the command specified
in the command option to notify the associated widget that a change in view is
desired. If the view is actually changed then the associated widget must invoke
the scrollbar’s set widget command to change what is displayed in the scrollbar.

Keywords

scrollbar, widget

2.7 checkbutton

checkbutton \- Create and manipulate check-button widgets

Synopsis

checkbutton pathName ?options?

Standard Options

activeBackground bitmap font relief
activeForeground borderWidth foreground text

anchor cursor padX textVariable
background disabledForeground padY

See (undefined) [options|, page (undefined), for more information.

Arguments for Checkbutton

:command

Name="command" Class="Command"

Chapter 2:

:height

:offvalue

:onvalue

:selector

:state

:variable

Widgets 53

Specifies a Tcl command to associate with the button. This command is typ-
ically invoked when mouse button 1 is released over the button window. The
button’s global variable (:variable option) will be updated before the command
is invoked.

Name="height" Class="Height"

Specifies a desired height for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in lines of text. If this option isn’t specified, the
button’s desired height is computed from the size of the bitmap or text being
displayed in it.

Name="off Value" Class="Value"

Specifies value to store in the button’s associated variable whenever this button
is deselected. Defaults to “0”.

Name="onValue" Class="Value"

Specifies value to store in the button’s associated variable whenever this button
is selected. Defaults to “17.

Name="selector" Class="Foreground"

Specifies the color to draw in the selector when this button is selected. If
specified as an empty string then no selector is drawn for the button.

Name="state" Class="State"

Specifies one of three states for the check button: normal, active, or disabled. In
normal state the check button is displayed using the foreground and background
options. The active state is typically used when the pointer is over the check
button. In active state the check button is displayed using the activeForeground
and activeBackground options. Disabled state means that the check button is
insensitive: it doesn’t activate and doesn’t respond to mouse button presses. In
this state the disabledForeground and background options determine how the
check button is displayed.

Name="variable" Class="Variable"

54 No Title

Specifies name of global variable to set to indicate whether or not this button
is selected. Defaults to the name of the button within its parent (i.e. the last
element of the button window’s path name).

:width
Name="width" Class="Width"

Specifies a desired width for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in characters. If this option isn’t specified, the
button’s desired width is computed from the size of the bitmap or text being
displayed in it.

Description

The checkbutton command creates a new window (given by the pathName argument) and
makes it into a check-button widget. Additional options, described above, may be specified
on the command line or in the option database to configure aspects of the check button such
as its colors, font, text, and initial relief. The checkbutton command returns its pathName
argument. At the time this command is invoked, there must not exist a window named
pathName, but pathName’s parent must exist.

A check button is a widget that displays a textual string or bitmap and a square called a
selector. A check button has all of the behavior of a simple button, including the following:
it can display itself in either of three different ways, according to the state option; it can
be made to appear raised, sunken, or flat; it can be made to flash; and it invokes a Tcl
command whenever mouse button 1 is clicked over the check button.

In addition, check buttons can be selected. If a check button is selected then a special
highlight appears in the selector, and a Tcl variable associated with the check button is set
to a particular value (normally 1). If the check button is not selected, then the selector is
drawn in a different fashion and the associated variable is set to a different value (typically
0). By default, the name of the variable associated with a check button is the same as the
name used to create the check button. The variable name, and the “on” and “off” values
stored in it, may be modified with options on the command line or in the option database.
By default a check button is configured to select and deselect itself on alternate button
clicks. In addition, each check button monitors its associated variable and automatically
selects and deselects itself when the variables value changes to and from the button’s “on”
value.

A Checkbutton Widget’s Arguments

The checkbutton command creates a new Tcl command whose name is pathName. This
command may be used to invoke various operations on the widget. It has the following
general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for check button widgets:

Chapter 2:

pathName

pathName

pathName

pathName

pathName

pathName

pathName

pathName

Widgets 55

:activate

Change the check button’s state to active and redisplay the button using its ac-
tive foreground and background colors instead of normal colors. This command
is ignored if the check button’s state is disabled. This command is obsolete and
will eventually be removed; use “pathName :configure :state active” instead.

:configure ?option? Twvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the checkbutton command.

:deactivate

Change the check button’s state to normal and redisplay the button using its
normal foreground and background colors. This command is ignored if the
check button’s state is disabled. This command is obsolete and will eventually
be removed; use “pathName :configure :state normal” instead.

:deselect

Deselect the check button: redisplay it without a highlight in the selector and
set the associated variable to its “off” value.

:flash

Flash the check button. This is accomplished by redisplaying the check button
several times, alternating between active and normal colors. At the end of
the flash the check button is left in the same normal/active state as when the
command was invoked. This command is ignored if the check button’s state is
disabled.

:invoke

Does just what would have happened if the user invoked the check button
with the mouse: toggle the selection state of the button and invoke the Tcl
command associated with the check button, if there is one. The return value
is the return value from the Tcl command, or an empty string if there is no
command associated with the check button. This command is ignored if the
check button’s state is disabled.

:select

Select the check button: display it with a highlighted selector and set the
associated variable to its “on” value.

:toggle

Toggle the selection state of the button, redisplaying it and modifying its asso-
ciated variable to reflect the new state.

56 No Title

Bindings
Tk automatically creates class bindings for check buttons that give them the following
default behavior:

[1] The check button activates whenever the mouse passes over it and deactivates
whenever the mouse leaves the check button.

[2] The check button’s relief is changed to sunken whenever mouse button 1 is pressed
over it, and the relief is restored to its original value when button 1 is later released.

[3] If mouse button 1 is pressed over the check button and later released over the check
button, the check button is invoked (i.e. its selection state toggles and the command
associated with the button is invoked, if there is one). However, if the mouse is not
over the check button when button 1 is released, then no invocation occurs.

If the check button’s state is disabled then none of the above actions occur: the check
button is completely non-responsive.

The behavior of check buttons can be changed by defining new bindings for individual
widgets or by redefining the class bindings.

Keywords

check button, widget

2.8 menubutton

menubutton \- Create and manipulate menubutton widgets
Synopsis

menubutton pathName ?options?

Standard Options

activeBackground bitmap font relief
activeForeground borderWidth foreground text

anchor cursor padX textVariable
background disabledForeground padY underline

See (undefined) [options|, page (undefined), for more information.

Arguments for Menubutton

:height
Name="height" Class="Height"

Specifies a desired height for the menu button. If a bitmap is being displayed
in the menu button then the value is in screen units (i.e. any of the forms
acceptable to Tk_GetPixels); for text it is in lines of text. If this option isn’t
specified, the menu button’s desired height is computed from the size of the
bitmap or text being displayed in it.

‘menu

Chapter 2: Widgets 57

Name="menu" Class="MenuName"

Specifies the path name of the menu associated with this menubutton. The
menu must be a descendant of the menubutton in order for normal pull-down
operation to work via the mouse.

:state

Name="state" Class="State"

Specifies one of three states for the menu button: normal, active, or disabled. In
normal state the menu button is displayed using the foreground and background
options. The active state is typically used when the pointer is over the menu
button. In active state the menu button is displayed using the activeForeground
and activeBackground options. Disabled state means that the menu button is
insensitive: it doesn’t activate and doesn’t respond to mouse button presses. In
this state the disabledForeground and background options determine how the
button is displayed.

:width
Name="width" Class="Width"

Specifies a desired width for the menu button. If a bitmap is being displayed
in the menu button then the value is in screen units (i.e. any of the forms
acceptable to Tk_GetPixels); for text it is in characters. If this option isn’t
specified, the menu button’s desired width is computed from the size of the
bitmap or text being displayed in it.

Introduction

The menubutton command creates a new window (given by the pathName argument) and
makes it into a menubutton widget. Additional options, described above, may be specified
on the command line or in the option database to configure aspects of the menubutton such
as its colors, font, text, and initial relief. The menubutton command returns its pathName
argument. At the time this command is invoked, there must not exist a window named
pathName, but pathName’s parent must exist.

A menubutton is a widget that displays a textual string or bitmap and is associated with
a menu widget. In normal usage, pressing mouse button 1 over the menubutton causes the
associated menu to be posted just underneath the menubutton. If the mouse is moved over
the menu before releasing the mouse button, the button release causes the underlying menu
entry to be invoked. When the button is released, the menu is unposted.

Menubuttons are typically organized into groups called menu bars that allow scanning:
if the mouse button is pressed over one menubutton (causing it to post its menu) and
the mouse is moved over another menubutton in the same menu bar without releasing the
mouse button, then the menu of the first menubutton is unposted and the menu of the new
menubutton is posted instead. The tk-menu-bar procedure is used to set up menu bars for
scanning; see that procedure for more details.

58 No Title

A Menubutton Widget’s Arguments

The menubutton command creates a new Tcl command whose name is pathName. This
command may be used to invoke various operations on the widget. It has the following
general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for menubutton widgets:

pathName :activate
Change the menu button’s state to active and redisplay the menu button using
its active foreground and background colors instead of normal colors. The com-
mand returns an empty string. This command is ignored if the menu button’s
state is disabled. This command is obsolete and will eventually be removed;
use “pathName :configure :state active” instead.

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the menubutton command.

pathName :deactivate
Change the menu button’s state to normal and redisplay the menu button using
its normal foreground and background colors. The command returns an empty
string. This command is ignored if the menu button’s state is disabled. This
command is obsolete and will eventually be removed; use “pathName :configure
:state normal” instead.

"Default Bindings"

Tk automatically creates class bindings for menu buttons that give them the following
default behavior:

[1] A menu button activates whenever the mouse passes over it and deactivates when-
ever the mouse leaves it.

[2] A menu button’s relief is changed to raised whenever mouse button 1 is pressed over
it, and the relief is restored to its original value when button 1 is later released or the
mouse is dragged into another menu button in the same menu bar.

[3] When mouse button 1 is pressed over a menu button, or when the mouse is dragged
into a menu button with mouse button 1 pressed, the associated menu is posted; the
mouse can be dragged across the menu and released over an entry in the menu to invoke
that entry. The menu is unposted when button 1 is released outside either the menu or
the menu button. The menu is also unposted when the mouse is dragged into another
menu button in the same menu bar.

Chapter 2: Widgets 59

[4] If mouse button 1 is pressed and released within the menu button, then the menu
stays posted and keyboard traversal is possible as described in the manual entry for
tk-menu-bar.

[5] Menubuttons may also be posted by typing characters on the keyboard. See the
manual entry for tk-menu-bar for full details on keyboard menu traversal.

[6] If mouse button 2 is pressed over a menu button then the associated menu is posted
and also torn off: it can then be dragged around on the screen with button 2 and the
menu will not automatically unpost when entries in it are invoked. To close a torn off
menu, click mouse button 1 over the associated menu button.

If the menu button’s state is disabled then none of the above actions occur: the menu
button is completely non-responsive.

The behavior of menu buttons can be changed by defining new bindings for individual
widgets or by redefining the class bindings.

Keywords

menubutton, widget

2.9 text

text \- Create and manipulate text widgets
Synopsis

text pathName ?options?

Standard Options

background foreground insertWidth selectBorderWidth
borderWidth insertBackground padX selectForeground
cursor insertBorderWidth padY setGrid
exportSelection insertOffTime relief yScrollCommand
font insertOnTime selectBackground

See (undefined) [options|, page (undefined), for more information.

Arguments for Text

:height
Name="height" Class="Height"

Specifies the desired height for the window, in units of characters. Must be at
least one.

:state

Name="state" Class="State"

Specifies one of two states for the text: normal or disabled. If the text is
disabled then characters may not be inserted or deleted and no insertion cursor
will be displayed, even if the input focus is in the widget.

60 No Title

:width
Name="width" Class="Width"

Specifies the desired width for the window in units of characters. If the font
doesn’t have a uniform width then the width of the character “0” is used in
translating from character units to screen units.

rwrap

Name="wrap" Class="Wrap"

Specifies how to handle lines in the text that are too long to be displayed in a
single line of the text’s window. The value must be none or char or word. A
wrap mode of none means that each line of text appears as exactly one line on
the screen; extra characters that don’t fit on the screen are not displayed. In
the other modes each line of text will be broken up into several screen lines if
necessary to keep all the characters visible. In char mode a screen line break
may occur after any character; in word mode a line break will only be made at
word boundaries.

Description

The text command creates a new window (given by the pathName argument) and makes it
into a text widget. Additional options, described above, may be specified on the command
line or in the option database to configure aspects of the text such as its default background
color and relief. The text command returns the path name of the new window.

A text widget displays one or more lines of text and allows that text to be edited. Text
widgets support three different kinds of annotations on the text, called tags, marks, and
windows. Tags allow different portions of the text to be displayed with different fonts
and colors. In addition, Tcl commands can be associated with tags so that commands
are invoked when particular actions such as keystrokes and mouse button presses occur in
particular ranges of the text. See TAGS below for more details.

The second form of annotation consists of marks, which are floating markers in the text.
Marks are used to keep track of various interesting positions in the text as it is edited. See
MARKS below for more details.

The third form of annotation allows arbitrary windows to be displayed in the text widget.
See WINDOWS below for more details.

Indices

Many of the widget commands for texts take one or more indices as arguments. An index is
a string used to indicate a particular place within a text, such as a place to insert characters
or one endpoint of a range of characters to delete. Indices have the syntax

base modifier modifier modifier ...

Where base gives a starting point and the modifiers adjust the index from the starting
point (e.g. move forward or backward one character). Every index must contain a base, but
the modifiers are optional.

The base for an index must have one of the following forms:

Chapter 2:

line.char

Qz,y

end
mark

tag.first

tag.last

Widgets 61

Indicates char’th character on line line. Lines are numbered from 1 for consis-
tency with other UNIX programs that use this numbering scheme. Within a
line, characters are numbered from 0.

Indicates the character that covers the pixel whose x and y coordinates within
the text’s window are = and y.

Indicates the last character in the text, which is always a newline character.
Indicates the character just after the mark whose name is mark.

Indicates the first character in the text that has been tagged with tag. This
form generates an error if no characters are currently tagged with tag.

Indicates the character just after the last one in the text that has been tagged
with tag. This form generates an error if no characters are currently tagged
with tag.

If modifiers follow the base index, each one of them must have one of the forms listed
below. Keywords such as chars and wordend may be abbreviated as long as the abbreviation
is unambiguous.

+ count chars

Adjust the index forward by count characters, moving to later lines in the text if
necessary. If there are fewer than count characters in the text after the current
index, then set the index to the last character in the text. Spaces on either side
of count are optional.

- count chars

Adjust the index backward by count characters, moving to earlier lines in the
text if necessary. If there are fewer than count characters in the text before the
current index, then set the index to the first character in the text. Spaces on
either side of count are optional.

+ count lines

Adjust the index forward by count lines, retaining the same character position
within the line. If there are fewer than count lines after the line containing the
current index, then set the index to refer to the same character position on the
last line of the text. Then, if the line is not long enough to contain a character
at the indicated character position, adjust the character position to refer to
the last character of the line (the newline). Spaces on either side of count are
optional.

- count lines

linestart

Adjust the index backward by count lines, retaining the same character position
within the line. If there are fewer than count lines before the line containing
the current index, then set the index to refer to the same character position
on the first line of the text. Then, if the line is not long enough to contain a
character at the indicated character position, adjust the character position to
refer to the last character of the line (the newline). Spaces on either side of
count are optional.

Adjust the index to refer to the first character on the line.

62 No Title

lineend Adjust the index to refer to the last character on the line (the newline).

wordstart Adjust the index to refer to the first character of the word containing the current
index. A word consists of any number of adjacent characters that are letters,
digits, or underscores, or a single character that is not one of these.

wordend Adjust the index to refer to the character just after the last one of the word
containing the current index. If the current index refers to the last character of
the text then it is not modified.

If more than one modifier is present then they are applied in left-to-right order. For
example, the index “\fBend \- 1 chars” refers to the next-to-last character in the text and
“\fBinsert wordstart \- 1 ¢” refers to the character just before the first one in the word
containing the insertion cursor.

Tags

The first form of annotation in text widgets is a tag. A tag is a textual string that is
associated with some of the characters in a text. There may be any number of tags associated
with characters in a text. Each tag may refer to a single character, a range of characters,
or several ranges of characters. An individual character may have any number of tags
associated with it.

A priority order is defined among tags, and this order is used in implementing some
of the tag-related functions described below. When a tag is defined (by associating it
with characters or setting its display options or binding commands to it), it is given a
priority higher than any existing tag. The priority order of tags may be redefined using the
“pathName :tag :raise” and “pathName :tag :lower” widget commands.

Tags serve three purposes in text widgets. First, they control the way information
is displayed on the screen. By default, characters are displayed as determined by the
background, font, and foreground options for the text widget. However, display options may
be associated with individual tags using the “pathName :tag configure” widget command.
If a character has been tagged, then the display options associated with the tag override
the default display style. The following options are currently supported for tags:

:background color
Color specifies the background color to use for characters associated with the
tag. It may have any of the forms accepted by Tk_GetColor.

:bgstipple bitmap
Bitmap specifies a bitmap that is used as a stipple pattern for the background.
It may have any of the forms accepted by Tk_GetBitmap. If bitmap hasn’t
been specified, or if it is specified as an empty string, then a solid fill will be
used for the background.

:borderwidth pizels
Pizels specifies the width of a 3-D border to draw around the background. It
may have any of the forms accepted by Tk_GetPixels. This option is used in
conjunction with the :relief option to give a 3-D appearance to the background
for characters; it is ignored unless the :background option has been set for the
tag.

Chapter 2: Widgets 63

:fgstipple bitmap
Bitmap specifies a bitmap that is used as a stipple pattern when drawing text
and other foreground information such as underlines. It may have any of the
forms accepted by Tk_GetBitmap. If bitmap hasn’t been specified, or if it is
specified as an empty string, then a solid fill will be used.

:font fontName
FontName is the name of a font to use for drawing characters. It may have any
of the forms accepted by Tk_GetFontStruct.

:foreground color
Color specifies the color to use when drawing text and other foreground informa-
tion such as underlines. It may have any of the forms accepted by Tk_GetColor.

:relief relief
\fIRelief specifies the 3-D relief to use for drawing backgrounds, in any of the
forms accepted by Tk_GetRelief. This option is used in conjunction with the
:borderwidth option to give a 3-D appearance to the background for characters;
it is ignored unless the :background option has been set for the tag.

:underline boolean
Boolean specifies whether or not to draw an underline underneath characters.
It may have any of the forms accepted by Tk_GetBoolean.

If a character has several tags associated with it, and if their display options
conflict, then the options of the highest priority tag are used. If a particular
display option hasn’t been specified for a particular tag, or if it is specified as
an empty string, then that option will never be used; the next-highest-priority
tag’s option will used instead. If no tag specifies a particular display optionl,
then the default style for the widget will be used.

The second purpose for tags is event bindings. You can associate bindings with
a tag in much the same way you can associate bindings with a widget class:
whenever particular X events occur on characters with the given tag, a given
Tcl command will be executed. Tag bindings can be used to give behaviors
to ranges of characters; among other things, this allows hypertext-like features
to be implemented. For details, see the description of the tag bind widget
command below.

The third use for tags is in managing the selection. See THE SELECTION
below.

Marks

The second form of annotation in text widgets is a mark. Marks are used for remembering
particular places in a text. They are something like tags, in that they have names and they
refer to places in the file, but a mark isn’t associated with particular characters. Instead,
a mark is associated with the gap between two characters. Only a single position may be
associated with a mark at any given time. If the characters around a mark are deleted
the mark will still remain; it will just have new neighbor characters. In contrast, if the
characters containing a tag are deleted then the tag will no longer have an association
with characters in the file. Marks may be manipulated with the “pathName :mark” widget

64 No Title

command, and their current locations may be determined by using the mark name as an
index in widget commands.

The name space for marks is different from that for tags: the same name may be used
for both a mark and a tag, but they will refer to different things.

Two marks have special significance. First, the mark insert is associated with the in-
sertion cursor, as described under THE INSERTION CURSOR below. Second, the mark
current is associated with the character closest to the mouse and is adjusted automatically
to track the mouse position and any changes to the text in the widget (one exception: cur-
rent is not updated in response to mouse motions if a mouse button is down; the update
will be deferred until all mouse buttons have been released). Neither of these special marks
may be unset.

Windows

The third form of annotation in text widgets is a window. Window support isn’t imple-
mented yet, but when it is it will be described here.

The Selection

Text widgets support the standard X selection. Selection support is implemented via tags.
If the exportSelection option for the text widget is true then the sel tag will be associated
with the selection:

[1] Whenever characters are tagged with sel the text widget will claim ownership of the
selection.

[2] Attempts to retrieve the selection will be serviced by the text widget, returning all
the charaters with the sel tag.

[3] If the selection is claimed away by another application or by another window within
this application, then the sel tag will be removed from all characters in the text.

The sel tag is automatically defined when a text widget is created, and it may not be
deleted with the “pathName :tag delete” widget command. Furthermore, the selectBack-
ground, selectBorderWidth, and selectForeground options for the text widget are tied to
the :background, :borderwidth, and :foreground options for the sel tag: changes in either
will automatically be reflected in the other.

The Insertion Cursor

The mark named insert has special significance in text widgets. It is defined automatically
when a text widget is created and it may not be unset with the “pathName :mark unset”
widget command. The insert mark represents the position of the insertion cursor, and the
insertion cursor will automatically be drawn at this point whenever the text widget has the
input focus.

A Text Widget’s Arguments

The text command creates a new Tcl command whose name is the same as the path name of
the text’s window. This command may be used to invoke various operations on the widget.
It has the following general form:

pathName option Targ arg ...7

Chapter 2: Widgets 65

PathName is the name of the command, which is the same as the text widget’s path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for text widgets:

pathName :compare index! op index?2
Compares the indices given by inder! and inder2 according to the relational
operator given by op, and returns 1 if the relationship is satisfied and 0 if it
isn’t. Op must be one of the operators <, <=, ==, >=, > or !=. If op is ==
then 1 is returned if the two indices refer to the same character, if op is < then
1 is returned if indexl refers to an earlier character in the text than index2,
and so on.

pathName :configure ?option? ?value option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the text command.

pathName :debug ?boolean?

If boolean is specified, then it must have one of the true or false values accepted
by Tcl_GetBoolean. If the value is a true one then internal consistency checks
will be turned on in the B-tree code associated with text widgets. If boolean
has a false value then the debugging checks will be turned off. In either case the
command returns an empty string. If boolean is not specified then the command
returns on or off to indicate whether or not debugging is turned on. There is a
single debugging switch shared by all text widgets: turning debugging on or off
in any widget turns it on or off for all widgets. For widgets with large amounts
of text, the consistency checks may cause a noticeable slow-down.

pathName :delete index! 7index2?

Delete a range of characters from the text. If both index! and index2 are
specified, then delete all the characters starting with the one given by index!
and stopping just before index2 (i.e. the character at index2 is not deleted). If
index2 doesn’t specify a position later in the text than index! then no characters
are deleted. If index2 isn’t specified then the single character at index! is
deleted. It is not allowable to delete characters in a way that would leave the
text without a newline as the last character. The command returns an empty
string.

pathName :get indexl Tindex2?
Return a range of characters from the text. The return value will be all the
characters in the text starting with the one whose index is index! and ending
just before the one whose index is indez2 (the character at index2 will not be
returned). If indez2 is omitted then the single character at index! is returned.
If there are no characters in the specified range (e.g. index! is past the end

66 No Title

of the file or index?2 is less than or equal to index!) then an empty string is
returned.

pathName :index index
Returns the position corresponding to indez in the form line.char where line is
the line number and char is the character number. Indexr may have any of the
forms described under INDICES above.

pathName :insert \flindex chars
Inserts chars into the text just before the character at index and returns an
empty string. It is not possible to insert characters after the last newline of the
text.

pathName :mark option Targ arg ...7
This command is used to manipulate marks. The exact behavior of the com-
mand depends on the option argument that follows the mark argument. The
following forms of the command are currently supported:

pathName :mark :names
Returns a list whose elements are the names of all the marks that
are currently set.

pathName :mark :set markName index
Sets the mark named markName to a position just before the char-
acter at indez. If markName already exists, it is moved from its old
position; if it doesn’t exist, a new mark is created. This command
returns an empty string.

pathName :mark :unset markName ?markName markName ...7
Remove the mark corresponding to each of the markName argu-
ments. The removed marks will not be usable in indices and will
not be returned by future calls to “pathName :mark names”. This
command returns an empty string.

pathName :scan option args
This command is used to implement scanning on texts. It has two forms,
depending on option:

pathName :scan :mark y
Records y and the current view in the text window; used in conjunc-
tion with later scan dragto commands. Typically this command is
associated with a mouse button press in the widget. It returns an
empty string.

pathName :scan :dragto y
This command computes the difference between its y argument and
the y argument to the last scan mark command for the widget. It
then adjusts the view up or down by 10 times the difference in
y-coordinates. This command is typically associated with mouse
motion events in the widget, to produce the effect of dragging the
text at high speed through the window. The return value is an
empty string.

Chapter 2: Widgets 67

pathName :tag option Targ arg ...7
This command is used to manipulate tags. The exact behavior of the command
depends on the option argument that follows the tag argument. The following
forms of the command are currently supported:

pathName :tag :add tagName index1 ?index2?

Associate the tag tagName with all of the characters starting with
index! and ending just before index2 (the character at indez2 isn’t
tagged). If index?2 is omitted then the single character at indez! is
tagged. If there are no characters in the specified range (e.g. index!
is past the end of the file or index2 is less than or equal to inderl)
then the command has no effect. This command returns an empty
string.

pathName :tag :bind tagName ?sequence? 7command?
This command associates command with the tag given by tagName.
Whenever the event sequence given by sequence occurs for a char-
acter that has been tagged with tagName, the command will be
invoked. This widget command is similar to the bind command
except that it operates on characters in a text rather than entire
widgets. See the bind manual entry for complete details on the
syntax of sequence and the substitutions performed on command
before invoking it. If all arguments are specified then a new binding
is created, replacing any existing binding for the same sequence and
tagName (if the first character of command is “+” then command
augments an existing binding rather than replacing it). In this case
the return value is an empty string. If command is omitted then
the command returns the command associated with tagName and
sequence (an error occurs if there is no such binding). If both com-
mand and sequence are omitted then the command returns a list of
all the sequences for which bindings have been defined for tagName.

The only events for which bindings may be specified are those re-
lated to the mouse and keyboard, such as Enter, Leave, Button-
Press, Motion, and KeyPress. Event bindings for a text widget use
the current mark described under MARKS above. Enter events
trigger for a character when it becomes the current character (i.e.
the current mark moves to just in front of that character). Leave
events trigger for a character when it ceases to be the current item
(i.e. the current mark moves away from that character, or the char-
acter is deleted). These events are different than Enter and Leave
events for windows. Mouse and keyboard events are directed to the
current character.

It is possible for the current character to have multiple tags, and
for each of them to have a binding for a particular event sequence.
When this occurs, the binding from the highest priority tag is used.
If a particular tag doesn’t have a binding that matches an event,
then the tag is ignored and tags with lower priority will be checked.

No Title

If bindings are created for the widget as a whole using the bind
command, then those bindings will supplement the tag bindings.
This means that a single event can trigger two Tcl scripts, one for
a widget-level binding and one for a tag-level binding.

pathName :tag :configure tagName ?option? Tvalue? Toption value ...7

This command is similar to the configure widget command except
that it modifies options associated with the tag given by tagName
instead of modifying options for the overall text widget. If no option
is specified, the command returns a list describing all of the avail-
able options for tagName (see Tk_Configurelnfo for information on
the format of this list). If option is specified with no value, then the
command returns a list describing the one named option (this list
will be identical to the corresponding sublist of the value returned
if no option is specified). If one or more option:value pairs are spec-
ified, then the command modifies the given option(s) to have the
given value(s) in tagName; in this case the command returns an
empty string. See TAGS above for details on the options available
for tags.

pathName :tag :delete tagName "tagName ...7
Deletes all tag information for each of the tagName arguments.
The command removes the tags from all characters in the file and
also deletes any other information associated with the tags, such as
bindings and display information. The command returns an empty
string.

pathName :tag :lower tagName ?belowThis?
Changes the priority of tag tagName so that it is just lower in prior-
ity than the tag whose name is belowThis. If belowThis is omitted,
then tagName’s priority is changed to make it lowest priority of all
tags.

pathName :tag :names ?index?

Returns a list whose elements are the names of all the tags that are
active at the character position given by index. If index is omitted,
then the return value will describe all of the tags that exist for the
text (this includes all tags that have been named in a “pathName
itag” widget command but haven’t been deleted by a “pathName
:tag :delete” widget command, even if no characters are currently
marked with the tag). The list will be sorted in order from lowest
priority to highest priority.

pathName :tag :nextrange tagName index! 7index2?
This command searches the text for a range of characters tagged
with tagName where the first character of the range is no earlier
than the character at index! and no later than the character just
before indez2 (a range starting at indez2 will not be considered).
If several matching ranges exist, the first one is chosen. The com-
mand’s return value is a list containing two elements, which are

Chapter 2: Widgets

69

the index of the first character of the range and the index of the
character just after the last one in the range. If no matching range
is found then the return value is an empty string. If indez2 is not
given then it defaults to the end of the text.

pathName :tag :raise tagName 7aboveThis?

Changes the priority of tag tagName so that it is just higher in
priority than the tag whose name is aboveThis. If aboveThis is
omitted, then tagName’s priority is changed to make it highest
priority of all tags.

pathName :tag :ranges tagName

Returns a list describing all of the ranges of text that have been
tagged with tagName. The first two elements of the list describe
the first tagged range in the text, the next two elements describe
the second range, and so on. The first element of each pair contains
the index of the first character of the range, and the second element
of the pair contains the index of the character just after the last
one in the range. If there are no characters tagged with tag then
an empty string is returned.

pathName :tag :remove tagName indexl 7index2?

Remove the tag tagName from all of the characters starting at
index! and ending just before index2 (the character at indez2 isn’t
affected). If index2 is omitted then the single character at index!
is untagged. If there are no characters in the specified range (e.g.
index] is past the end of the file or index?2 is less than or equal to
indezr!) then the command has no effect. This command returns
an empty string.

pathName :yview 7:pickplace? what

This command changes the view in the widget’s window so that the line given
by what is visible in the window. What may be either an absolute line number,
where 0 corresponds to the first line of the file, or an index with any of the
forms described under INDICES above. The first form (absolute line number)
is used in the commands issued by scrollbars to control the widget’s view. If
the :pickplace option isn’t specified then what will appear at the top of the
window. If :pickplace is specified then the widget chooses where what appears
in the window:

[1] If what is already visible somewhere in the window then the command
does nothing.

[2] If what is only a few lines off-screen above the window then it will be
positioned at the top of the window.

[3] If what is only a few lines off-screen below the window then it will be
positioned at the bottom of the window.

[4] Otherwise, what will be centered in the window.

70 No Title

The :pickplace option is typically used after inserting text to make sure that the
insertion cursor is still visible on the screen. This command returns an empty
string.

Bindings

Tk automatically creates class bindings for texts that give them the following default be-
havior:

[1] Pressing mouse button 1 in an text positions the insertion cursor just before the
character underneath the mouse cursor and sets the input focus to this widget.

[2] Dragging with mouse button 1 strokes out a selection between the insertion cursor
and the character under the mouse.

[3] If you double-press mouse button 1 then the word under the mouse cursor will
be selected, the insertion cursor will be positioned at the beginning of the word, and
dragging the mouse will stroke out a selection whole words at a time.

[4] If you triple-press mouse button 1 then the line under the mouse cursor will be se-
lected, the insertion cursor will be positioned at the beginning of the line, and dragging
the mouse will stroke out a selection whole line at a time.

[5] The ends of the selection can be adjusted by dragging with mouse button 1 while
the shift key is down; this will adjust the end of the selection that was nearest to the
mouse cursor when button 1 was pressed. If the selection was made in word or line
mode then it will be adjusted in this same mode.

[6] The view in the text can be adjusted by dragging with mouse button 2.

[7] If the input focus is in a text widget and characters are typed on the keyboard, the
characters are inserted just before the insertion cursor.

[8] Control+h and the Backspace and Delete keys erase the character just before the
insertion cursor.

[9] Control+v inserts the current selection just before the insertion cursor.

[10] Control+d deletes the selected characters; an error occurs if the selection is not in
this widget.

If the text is disabled using the state option, then the text’s view can still be adjusted
and text in the text can still be selected, but no insertion cursor will be displayed and no
text modifications will take place.

The behavior of texts can be changed by defining new bindings for individual widgets
or by redefining the class bindings.

"Performance Issues"

Text widgets should run efficiently under a variety of conditions. The text widget uses about
2-3 bytes of main memory for each byte of text, so texts containing a megabyte or more
should be practical on most workstations. Text is represented internally with a modified
B-tree structure that makes operations relatively efficient even with large texts. Tags are
included in the B-tree structure in a way that allows tags to span large ranges or have many
disjoint smaller ranges without loss of efficiency. Marks are also implemented in a way that
allows large numbers of marks. The only known mode of operation where a text widget
may not run efficiently is if it has a very large number of different tags. Hundreds of tags

Chapter 2: Widgets 71

should be fine, or even a thousand, but tens of thousands of tags will make texts consume
a lot of memory and run slowly.

Keywords

text, widget

2.10 entry

entry \- Create and manipulate entry widgets

Synopsis

entry pathName ?options?

Standard Options

background foreground insertWidth selectForeground
borderWidth insertBackground relief textVariable
cursor insertBorderWidth scrollCommand

exportSelection insertOffTime selectBackground

font insertOnTime selectBorderWidth

See (undefined) [options], page (undefined), for more information.

Arguments for Entry

:state
Name="state" Class="State"
Specifies one of two states for the entry: normal or disabled. If the entry is
disabled then the value may not be changed using widget commands and no
insertion cursor will be displayed, even if the input focus is in the widget.
:width
Name="width" Class="Width"
Specifies an integer value indicating the desired width of the entry window, in
average-size characters of the widget’s font.
Description

The entry command creates a new window (given by the pathName argument) and makes
it into an entry widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the entry such as its colors,
font, and relief. The entry command returns its pathName argument. At the time this
command is invoked, there must not exist a window named pathName, but pathName’s
parent must exist.

An entry is a widget that displays a one-line text string and allows that string to be
edited using widget commands described below, which are typically bound to keystrokes and
mouse actions. When first created, an entry’s string is empty. A portion of the entry may

72 No Title

be selected as described below. If an entry is exporting its selection (see the exportSelection
option), then it will observe the standard X11 protocols for handling the selection; entry
selections are available as type STRING. Entries also observe the standard Tk rules for
dealing with the input focus. When an entry has the input focus it displays an insertion
cursor to indicate where new characters will be inserted.

Entries are capable of displaying strings that are too long to fit entirely within the
widget’s window. In this case, only a portion of the string will be displayed; commands
described below may be used to change the view in the window. FEntries use the stan-
dard scrollCommand mechanism for interacting with scrollbars (see the description of the
scrollCommand option for details). They also support scanning, as described below.

A Entry Widget’s Arguments
The entry command creates a new T'cl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:
pathName option 7arg arg ...7
Option and the args determine the exact behavior of the command.

Many of the widget commands for entries take one or more indices as arguments. An
index specifies a particular character in the entry’s string, in any of the following ways:

number Specifies the character as a numerical index, where 0 corresponds to the first
character in the string.

end Indicates the character just after the last one in the entry’s string. This is
equivalent to specifying a numerical index equal to the length of the entry’s
string.

insert Indicates the character adjacent to and immediately following the insertion
Cursor.

sel.first Indicates the first character in the selection. It is an error to use this form if

the selection isn’t in the entry window.

sel.last Indicates the last character in the selection. It is an error to use this form if
the selection isn’t in the entry window.

@number In this form, number is treated as an x-coordinate in the entry’s window; the
character spanning that x-coordinate is used. For example, “@0” indicates the
left-most character in the window.

[Pl

Abbreviations may be used for any of the forms above, e.g. “€” or “sel.f’. In general,
out-of-range indices are automatically rounded to the nearest legal value.

The following commands are possible for entry widgets:

pathName :configure ?option? ?wvalue option value ...7
Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given

Chapter 2:

pathName

pathName

pathName

pathName

pathName

pathName

pathName

Widgets 73

value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the entry command.

:delete first ?last?

Delete one or more elements of the entry. First and last are indices of of the
first and last characters in the range to be deleted. If last isn’t specified it
defaults to first, i.e. a single character is deleted. This command returns an
empty string.

:get

Returns the entry’s string.

:dicursor index

Arrange for the insertion cursor to be displayed just before the character given
by index. Returns an empty string.

:index index

Returns the numerical index corresponding to index.

:dinsert index string

Insert the characters of string just before the character indicated by indez.
Returns an empty string.

:scan option args

This command is used to implement scanning on entries. It has two forms,
depending on option:

pathName :scan :mark x
Records z and the current view in the entry window; used in con-
junction with later scan dragto commands. Typically this com-
mand is associated with a mouse button press in the widget. It
returns an empty string.

pathName :scan :dragto x
This command computes the difference between its argument and
the z argument to the last scan mark command for the widget. It
then adjusts the view left or right by 10 times the difference in
x-coordinates. This command is typically associated with mouse
motion events in the widget, to produce the effect of dragging the
entry at high speed through the window. The return value is an
empty string.

:select option arg

This command is used to adjust the selection within an entry. It has several
forms, depending on option:

pathName :select :adjust index
Locate the end of the selection nearest to the character given by
indez, and adjust that end of the selection to be at index (i.e includ-
ing but not going beyond index). The other end of the selection is
made the anchor point for future select to commands. If the selec-
tion isn’t currently in the entry, then a new selection is created to

74 No Title

include the characters between indexr and the most recent selection
anchor point, inclusive. Returns an empty string.

pathName :select :clear
Clear the selection if it is currently in this widget. If the selection
isn’t in this widget then the command has no effect. Returns an
empty string.

pathName :select :from index
Set the selection anchor point to just before the character given by
index. Doesn’t change the selection. Returns an empty string.

pathName :select :to index
Set the selection to consist of the elements from the anchor point
to element index, inclusive. The anchor point is determined by the
most recent select from or select adjust command in this widget.
If the selection isn’t in this widget then a new selection is created
using the most recent anchor point specified for the widget. Returns
an empty string.

pathName :view index
Adjust the view in the entry so that element index is at the left edge of the
window. Returns an empty string.

"Default Bindings"
Tk automatically creates class bindings for entries that give them the following default
behavior:

[1] Clicking mouse button 1 in an entry positions the insertion cursor just before the
character underneath the mouse cursor and sets the input focus to this widget.

[2] Dragging with mouse button 1 strokes out a selection between the insertion cursor
and the character under the mouse.

[3] The ends of the selection can be adjusted by dragging with mouse button 1 while
the shift key is down; this will adjust the end of the selection that was nearest to the
mouse cursor when button 1 was pressed.

[4] The view in the entry can be adjusted by dragging with mouse button 2.

[5] If the input focus is in an entry widget and characters are typed on the keyboard,
the characters are inserted just before the insertion cursor.

[6] Control-h and the Backspace and Delete keys erase the character just before the
insertion cursor.

[7] Control-w erases the word just before the insertion cursor.

[8] Control-u clears the entry to an empty string.

[9] Control-v inserts the current selection just before the insertion cursor.

[10] Control-d deletes the selected characters; an error occurs if the selection is not in
this widget.

If the entry is disabled using the state option, then the entry’s view can still be adjusted
and text in the entry can still be selected, but no insertion cursor will be displayed and no
text modifications will take place.

Chapter 2: Widgets 75

The behavior of entries can be changed by defining new bindings for individual widgets
or by redefining the class bindings.

Keywords

entry, widget

2.11 message

message \- Create and manipulate message widgets

Synopsis

message pathName ?options?

Standard Options

anchor cursor padX text
background font padY textVariable
borderWidth foreground relief width

See (undefined) [options|, page (undefined), for more information.

Arguments for Message

:aspect

:justify

:width

Name="aspect" Class="Aspect"

Specifies a non-negative integer value indicating desired aspect ratio for the
text. The aspect ratio is specified as 100*width/height. 100 means the text
should be as wide as it is tall, 200 means the text should be twice as wide as it
is tall, 50 means the text should be twice as tall as it is wide, and so on. Used
to choose line length for text if width option isn’t specified. Defaults to 150.

Name="justify" Class="Justify"

Specifies how to justify lines of text. Must be one of left, center, or right. De-
faults to left. This option works together with the anchor, aspect, padX, padY,
and width options to provide a variety of arrangements of the text within the
window. The aspect and width options determine the amount of screen space
needed to display the text. The anchor, padX, and padY options determine
where this rectangular area is displayed within the widget’s window, and the
justify option determines how each line is displayed within that rectangular re-
gion. For example, suppose anchor is e and justify is left, and that the message
window is much larger than needed for the text. The the text will displayed so
that the left edges of all the lines line up and the right edge of the longest line
is padX from the right side of the window; the entire text block will be centered
in the vertical span of the window.

76 No Title

Name="width" Class="Width"

Specifies the length of lines in the window. The value may have any of the forms
acceptable to Tk_GetPixels. If this option has a value greater than zero then
the aspect option is ignored and the width option determines the line length.
If this option has a value less than or equal to zero, then the aspect option
determines the line length.

Description

The message command creates a new window (given by the pathName argument) and
makes it into a message widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the message such as its
colors, font, text, and initial relief. The message command returns its pathName argument.
At the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A message is a widget that displays a textual string. A message widget has three special
features. First, it breaks up its string into lines in order to produce a given aspect ratio
for the window. The line breaks are chosen at word boundaries wherever possible (if not
even a single word would fit on a line, then the word will be split across lines). Newline
characters in the string will force line breaks; they can be used, for example, to leave blank
lines in the display.

The second feature of a message widget is justification. The text may be displayed left-
justified (each line starts at the left side of the window), centered on a line-by-line basis, or
right-justified (each line ends at the right side of the window).

The third feature of a message widget is that it handles control characters and non-
printing characters specially. Tab characters are replaced with enough blank space to line
up on the next 8-character boundary. Newlines cause line breaks. Other control characters
(ASCII code less than 0x20) and characters not defined in the font are displayed as a four-
character sequence \fB\exhh where hh is the two-digit hexadecimal number corresponding
to the character. In the unusual case where the font doesn’t contain all of the characters in
“0123456789abcdef\ex” then control characters and undefined characters are not displayed
at all.

A Message Widget’s Arguments

The message command creates a new Tcl command whose name is pathName. This com-
mand may be used to invoke various operations on the widget. It has the following general
form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for message widgets:

pathName :configure ?option? Tvalue option value ...7
Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named

Chapter 2:

"Default

Widgets 77

option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the message command.

Bindings"

When a new message is created, it has no default event bindings: messages are intended for
output purposes only.

Bugs

Tabs don’t work very well with text that is centered or right-justified. The most common
result is that the line is justified wrong.

Keywords

message, widget

2.12 frame

frame \- Create and manipulate frame widgets

Synopsis

frame pathName 7:class className? ?options?

Standard Options

background cursor relief
borderWidth geometry

See (undefined) [options|, page (undefined), for more information.

Arguments for Frame

:height

:width

Name="height" Class="Height"

Specifies the desired height for the window in any of the forms acceptable to
Tk_GetPixels. This option is only used if the :geometry option is unspecified.
If this option is less than or equal to zero (and :geometry is not specified) then
the window will not request any size at all.

Name="width" Class="Width"

Specifies the desired width for the window in any of the forms acceptable to
Tk_GetPixels. This option is only used if the :geometry option is unspecified.
If this option is less than or equal to zero (and :geometry is not specified) then
the window will not request any size at all.

78 No Title

Description

The frame command creates a new window (given by the pathName argument) and makes it
into a frame widget. Additional options, described above, may be specified on the command
line or in the option database to configure aspects of the frame such as its background color
and relief. The frame command returns the path name of the new window.

A frame is a simple widget. Its primary purpose is to act as a spacer or container for
complex window layouts. The only features of a frame are its background color and an
optional 3-D border to make the frame appear raised or sunken.

In addition to the standard options listed above, a :class option may be specified on
the command line. If it is specified, then the new widget’s class will be set to className
instead of Frame. Changing the class of a frame widget may be useful in order to use a
special class name in database options referring to this widget and its children. Note: :class
is handled differently than other command-line options and cannot be specified using the
option database (it has to be processed before the other options are even looked up, since
the new class name will affect the lookup of the other options). In addition, the :class option
may not be queried or changed using the config command described below.

A Frame Widget’s Arguments

The frame command creates a new Tcl command whose name is the same as the path name
of the frame’s window. This command may be used to invoke various operations on the
widget. It has the following general form:

pathName option Targ arg ...7

PathName is the name of the command, which is the same as the frame widget’s path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for frame widgets:

pathName :configure ?option? Zvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the frame command.

Bindings

When a new frame is created, it has no default event bindings: frames are not intended to
be interactive.

Keywords

frame, widget

Chapter 2: Widgets 79

2.13 label

label \- Create and manipulate label widgets

Synopsis
label pathName ?options?

Standard Options

anchor borderWidth foreground relief
background cursor padX text
bitmap font padyY textVariable

See (undefined) [options|, page (undefined), for more information.

Arguments for Label

:height
Name="height" Class="Height"

Specifies a desired height for the label. If a bitmap is being displayed in the
label then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in lines of text. If this option isn’t specified, the
label’s desired height is computed from the size of the bitmap or text being
displayed in it.

:width
Name="width" Class="Width"

Specifies a desired width for the label. If a bitmap is being displayed in the
label then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in characters. If this option isn’t specified, the
label’s desired width is computed from the size of the bitmap or text being
displayed in it.

Description

The label command creates a new window (given by the pathName argument) and makes it
into a label widget. Additional options, described above, may be specified on the command
line or in the option database to configure aspects of the label such as its colors, font, text,
and initial relief. The label command returns its pathName argument. At the time this
command is invoked, there must not exist a window named pathName, but pathName’s
parent must exist.

A label is a widget that displays a textual string or bitmap. The label can be manipulated
in a few simple ways, such as changing its relief or text, using the commands described below.

A Label Widget’s Arguments

The label command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

80

No Title

pathName option 7arg arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for label widgets:

pathName :configure ?option? Tvalue option value ...7

Bindings

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_ConfigureInfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the label command.

When a new label is created, it has no default event bindings: labels are not intended to
be interactive.

Keywords

label, widget

2.14 radiobutton

radiobutton \- Create and manipulate radio-button widgets

Synopsis

radiobutton pathName 7 options?

Standard Options

activeBackground bitmap font relief
activeForeground borderWidth foreground text

anchor cursor padX textVariable
background disabledForeground padX

See (undefined) [options|, page (undefined), for more information.

Arguments for Radiobutton

:command

:height

Name="command" Class="Command"

Specifies a Tcl command to associate with the button. This command is typ-
ically invoked when mouse button 1 is released over the button window. The
button’s global variable (:variable option) will be updated before the command
is invoked.

Chapter 2:

:selector

:state

:value

:variable

:width

Widgets 81

Name="height" Class="Height"

Specifies a desired height for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in lines of text. If this option isn’t specified, the
button’s desired height is computed from the size of the bitmap or text being
displayed in it.

Name="selector" Class="Foreground"

Specifies the color to draw in the selector when this button is selected. If
specified as an empty string then no selector is drawn for the button.

Name="state" Class="State"

Specifies one of three states for the radio button: normal, active, or disabled. In
normal state the radio button is displayed using the foreground and background
options. The active state is typically used when the pointer is over the radio
button. In active state the radio button is displayed using the activeForeground
and activeBackground options. Disabled state means that the radio button is
insensitive: it doesn’t activate and doesn’t respond to mouse button presses. In
this state the disabledForeground and background options determine how the
radio button is displayed.

Name="value" Class="Value"

Specifies value to store in the button’s associated variable whenever this button
is selected. Defaults to the name of the radio button.

Name="variable" Class="Variable"

Specifies name of global variable to set whenever this button is selected.
Changes in this variable also cause the button to select or deselect itself.
Defaults to the value selectedButton.

Name="width" Class="Width"

Specifies a desired width for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in characters. If this option isn’t specified, the
button’s desired width is computed from the size of the bitmap or text being
displayed in it.

82 No Title

Description

The radiobutton command creates a new window (given by the pathName argument) and
makes it into a radiobutton widget. Additional options, described above, may be specified
on the command line or in the option database to configure aspects of the radio button such
as its colors, font, text, and initial relief. The radiobutton command returns its pathName
argument. At the time this command is invoked, there must not exist a window named
pathName, but pathName’s parent must exist.

A radio button is a widget that displays a textual string or bitmap and a diamond called
a selector. A radio button has all of the behavior of a simple button: it can display itself
in either of three different ways, according to the state option; it can be made to appear
raised, sunken, or flat; it can be made to flash; and it invokes a Tcl command whenever
mouse button 1 is clicked over the check button.

In addition, radio buttons can be selected. If a radio button is selected then a special
highlight appears in the selector and a Tcl variable associated with the radio button is set
to a particular value. If the radio button is not selected then the selector is drawn in a
different fashion. Typically, several radio buttons share a single variable and the value of
the variable indicates which radio button is to be selected. When a radio button is selected
it sets the value of the variable to indicate that fact; each radio button also monitors the
value of the variable and automatically selects and deselects itself when the variable’s value
changes. By default the variable selectedButton is used; its contents give the name of the
button that is selected, or the empty string if no button associated with that variable is
selected. The name of the variable for a radio button, plus the variable to be stored into it,
may be modified with options on the command line or in the option database. By default
a radio button is configured to select itself on button clicks.

A Radiobutton Widget’s Arguments

The radiobutton command creates a new Tcl command whose name is pathName. This
command may be used to invoke various operations on the widget. It has the following
general form:

pathName option 7arg arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for radio-button widgets:

pathName :activate
Change the radio button’s state to active and redisplay the button using its ac-
tive foreground and background colors instead of normal colors. This command
is ignored if the radio button’s state is disabled. This command is obsolete and
will eventually be removed; use “pathName :configure :state active” instead.

pathName :configure ?option? ?wvalue option value ...7
Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given

Chapter 2:

pathName

pathName

pathName

pathName

pathName

Widgets 83

value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the radiobutton command.

:deactivate

Change the radio button’s state to normal and redisplay the button using its
normal foreground and background colors. This command is ignored if the
radio button’s state is disabled. This command is obsolete and will eventually
be removed; use “pathName :configure :state normal” instead.

:deselect

Deselect the radio button: redisplay it without a highlight in the selector and
set the associated variable to an empty string. If this radio button was not
currently selected, then the command has no effect.

:flash

Flash the radio button. This is accomplished by redisplaying the radio button
several times, alternating between active and normal colors. At the end of
the flash the radio button is left in the same normal/active state as when the

command was invoked. This command is ignored if the radio button’s state is
disabled.

:invoke

Does just what would have happened if the user invoked the radio button with
the mouse: select the button and invoke its associated Tcl command, if there is
one. The return value is the return value from the Tcl command, or an empty
string if there is no command associated with the radio button. This command
is ignored if the radio button’s state is disabled.

:select

Select the radio button: display it with a highlighted selector and set the asso-
ciated variable to the value corresponding to this widget.

Bindings

Tk automatically creates class bindings for radio buttons that give them the following
default behavior:

[1] The radio button activates whenever the mouse passes over it and deactivates when-
ever the mouse leaves the radio button.

[2] The radio button’s relief is changed to sunken whenever mouse button 1 is pressed
over it, and the relief is restored to its original value when button 1 is later released.

[3] If mouse button 1 is pressed over the radio button and later released over the radio
button, the radio button is invoked (i.e. it is selected and the command associated
with the button is invoked, if there is one). However, if the mouse is not over the radio
button when button 1 is released, then no invocation occurs.

The behavior of radio buttons can be changed by defining new bindings for individual
widgets or by redefining the class bindings.

Keywords

radio button, widget

84 No Title

2.15 toplevel

toplevel \- Create and manipulate toplevel widgets
Synopsis
toplevel pathName ?7:screen screenName? ?:class className? ?options?

Standard Options

background geometry
borderWidth relief

See (undefined) [options|, page (undefined), for more information.

Arguments for Toplevel

Description

The toplevel command creates a new toplevel widget (given by the pathName argument).
Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the toplevel such as its background color and relief. The
toplevel command returns the path name of the new window.

A toplevel is similar to a frame except that it is created as a top-level window: its X
parent is the root window of a screen rather than the logical parent from its path name. The
primary purpose of a toplevel is to serve as a container for dialog boxes and other collections
of widgets. The only features of a toplevel are its background color and an optional 3-D
border to make the toplevel appear raised or sunken.

Two special command-line options may be provided to the toplevel command: :class and
:screen. If :class is specified, then the new widget’s class will be set to className instead
of Toplevel. Changing the class of a toplevel widget may be useful in order to use a special
class name in database options referring to this widget and its children. The :screen option
may be used to place the window on a different screen than the window’s logical parent.
Any valid screen name may be used, even one associated with a different display.

Note: :class and :screen are handled differently than other command-line options. They
may not be specified using the option database (these options must have been processed
before the new window has been created enough to use the option database; in particular,
the new class name will affect the lookup of options in the database). In addition, :class
and :screen may not be queried or changed using the config command described below.
However, the winfo :class command may be used to query the class of a window, and winfo
:screen may be used to query its screen.

A Toplevel Widget’s Arguments

The toplevel command creates a new Tcl command whose name is the same as the path
name of the toplevel’s window. This command may be used to invoke various operations
on the widget. It has the following general form:

pathName option Targ arg ...7

PathName is the name of the command, which is the same as the toplevel widget’s path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for toplevel widgets:

Chapter 2: Widgets 85

pathName :configure ?option? ?wvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the toplevel command.

Bindings

When a new toplevel is created, it has no default event bindings: toplevels are not intended
to be interactive.

Keywords

toplevel, widget

Chapter 3: Control 87

3 Control

3.1 after

after - Execute a command after a time delay

Synopsis

after ms Targl arg2 arg3 ...7

Description

This command is used to delay execution of the program or to execute a command in
background after a delay. The ms argument gives a time in milliseconds. If ms is the only
argument to after then the command sleeps for ms milliseconds and returns. While the
command is sleeping the application does not respond to X events and other events.

If additional arguments are present after ms, then a Tcl command is formed by con-
catenating all the additional arguments in the same fashion as the concat command. After
returns immediately but arranges for the command to be executed ms milliseconds later
in background. The command will be executed at global level (outside the context of any
Tcl procedure). If an error occurs while executing the delayed command then the tkerror
mechanism is used to report the error.

The after command always returns an empty string.

See (undefined) [tkerror], page (undefined).

Keywords

delay, sleep, time

3.2 bind

bind \- Arrange for X events to invoke Tcl commands

Synopsis

bind windowSpec
bind windowSpec sequence

bind windowSpec sequence command
bind windowSpec sequence +command

Description

If all three arguments are specified, bind will arrange for command (a Tcl command) to
be executed whenever the sequence of events given by sequence occurs in the window(s)
identified by windowSpec. If command is prefixed with a “+”, then it is appended to any
existing binding for sequence; otherwise command replaces the existing binding, if any. If
command is an empty string then the current binding for sequence is destroyed, leaving

88 No Title

sequence unbound. In all of the cases where a command argument is provided, bind returns
an empty string.

If sequence is specified without a command, then the command currently bound to
sequence is returned, or an empty string if there is no binding for sequence. If neither
sequence nor command is specified, then the return value is a list whose elements are all
the sequences for which there exist bindings for windowSpec.

The windowSpec argument selects which window(s) the binding applies to. It may have
one of three forms. If windowSpec is the path name for a window, then the binding applies
to that particular window. If windowSpec is the name of a class of widgets, then the binding
applies to all widgets in that class. Lastly, windowSpec may have the value all, in which
case the binding applies to all windows in the application.

The sequence argument specifies a sequence of one or more event patterns, with optional
white space between the patterns. Each event pattern may take either of two forms. In the
simplest case it is a single printing ASCII character, such as a or [. The character may not
be a space character or the character <. This form of pattern matches a KeyPress event for
the particular character. The second form of pattern is longer but more general. It has the
following syntax:

<modifier-modifier-type-detail>

The entire event pattern is surrounded by angle brackets. Inside the angle brackets are
zero or more modifiers, an event type, and an extra piece of information (detail) identifying
a particular button or keysym. Any of the fields may be omitted, as long as at least one of
type and detail is present. The fields must be separated by white space or dashes.

Modifiers may consist of any of the values in the following list:

Control Any

Shift Double

Lock Triple

Buttonl, B1 Modl, M1, Meta, M
Button2, B2 Mod2, M2, Alt
Button3, B3 Mod3, M3

Button4, B4 Mod4, M4

Button5, B5 Mod5, M5

Where more than one value is listed, separated by commas, the values are equivalent.
All of the modifiers except Any, Double, and Triple have the obvious X meanings. For
example, Buttonl requires that button 1 be depressed when the event occurs. Under normal
conditions the button and modifier state at the time of the event must match exactly those
specified in the bind command. If no modifiers are specified, then events will match only if
no modifiers are present. If the Any modifier is specified, then additional modifiers may be
present besides those specified explicitly. For example, if button 1 is pressed while the shift
and control keys are down, the specifier <Any-Control-Button-1> will match the event, but
the specifier <Control-Button-1> will not.

The Double and Triple modifiers are a convenience for specifying double mouse clicks
and other repeated events. They cause a particular event pattern to be repeated 2 or 3
times, and also place a time and space requirement on the sequence: for a sequence of
events to match a Double or Triple pattern, all of the events must occur close together in

Chapter 3: Control 89

time and without substantial mouse motion in between. For example, <Double-Button-1>
is equivalent to <Button-1><Button-1> with the extra time and space requirement.

The type field may be any of the standard X event types, with a few extra abbreviations.
Below is a list of all the valid types; where two name appear together, they are synonyms.

ButtonPress, Button Expose Leave
ButtonRelease FocusIn Map

Circulate FocusOut Property
CirculateRequest Gravity Reparent
Colormap Keymap ResizeRequest
Configure KeyPress, Key Unmap
ConfigureRequest KeyRelease Visibility
Destroy MapRequest

Enter Motion

The last part of a long event specification is detail. In the case of a ButtonPress or
ButtonRelease event, it is the number of a button (1-5). If a button number is given, then
only an event on that particular button will match; if no button number is given, then
an event on any button will match. Note: giving a specific button number is different
than specifying a button modifier; in the first case, it refers to a button being pressed or
released, while in the second it refers to some other button that is already depressed when
the matching event occurs. If a button number is given then type may be omitted: if will
default to ButtonPress. For example, the specifier <1> is equivalent to <ButtonPress-1>.

If the event type is KeyPress or KeyRelease, then detail may be specified in the form
of an X keysym. Keysyms are textual specifications for particular keys on the keyboard;
they include all the alphanumeric ASCII characters (e.g. “a” is the keysym for the ASCII
character “a”), plus descriptions for non-alphanumeric characters (“comma” is the keysym
for the comma character), plus descriptions for all the non-ASCII keys on the keyboard
(“Shift_L” is the keysm for the left shift key, and “F1” is the keysym for the F1 function
key, if it exists). The complete list of keysyms is not presented here; it should be available in
other X documentation. If necessary, you can use the %K notation described below to print
out the keysym name for an arbitrary key. If a keysym detail is given, then the type field
may be omitted; it will default to KeyPress. For example, <Control-comma> is equivalent
to <Control-KeyPress-comma>. If a keysym detail is specified then the Shift modifier need
not be specified and will be ignored if specified: each keysym already implies a particular
state for the shift key.

The command argument to bind is a Tcl command string, which will be executed when-
ever the given event sequence occurs. Command will be executed in the same interpreter
that the bind command was executed in. If command contains any % characters, then
the command string will not be executed directly. Instead, a new command string will be
generated by replacing each %, and the character following it, with information from the
current event. The replacement depends on the character following the %, as defined in the
list below. Unless otherwise indicated, the replacement string is the decimal value of the
given field from the current event. Some of the substitutions are only valid for certain types
of events; if they are used for other types of events the value substituted is undefined.

%% Replaced with a single percent.

90

| %o |

| %al
| %D |

| %c|

| %d |

| %f

| %h|

| %ok |

| Y%om |

| %o |

| %p |

| %s |

| %ot |
| %v |
| %w |

No Title

The number of the last client request processed by the server (the serial field
from the event). Valid for all event types.

The above field from the event. Valid only for ConfigureNotify events.

The number of the button that was pressed or released. Valid only for Button-
Press and ButtonRelease events.

The count field from the event. Valid only for Expose, GraphicsExpose, and
MappingNotify events.

The detail field from the event. The |%d]| is replaced by a string identifying
the detail. For EnterNotify, LeaveNotify, FocusIn, and FocusOut events, the
string will be one of the following:

NotifyAncestor NotifyNonlinearVirtual
NotifyDetailNone NotifyPointer
NotifyInferior NotifyPointerRoot
NotifyNonlinear NotifyVirtual
For ConfigureRequest events, the substituted string will be one of the following:
Above Opposite
Below TopIf
BottomIf

For events other than these, the substituted string is undefined. .RE

The focus field from the event (0 or 1). Valid only for EnterNotify and LeaveNo-
tify events.

The height field from the event. Valid only for Configure, ConfigureNotify,
Expose, GraphicsExpose, and ResizeRequest events.

The keycode field from the event. Valid only for KeyPress and KeyRelease
events.

The mode field from the event. The substituted string is one of NotifyNormal,
NotifyGrab, NotifyUngrab, or NotifyWhileGrabbed. Valid only for Enter Win-
dow, FocusIn, FocusOut, and LeaveWindow events.

The override_redirect field from the event. Valid only for CreateNotify, Map-
Notify, ReparentNotify, and ConfigureNotify events.

The place field from the event, substituted as one of the strings PlaceOnTop or
PlaceOnBottom. Valid only for CirculateNotify and CirculateRequest events.

The state field from the event. For ButtonPress, ButtonRelease, EnterNotify,
KeyPress, KeyRelease, LeaveNotify, and MotionNotify events, a decimal string
is substituted. For VisibilityNotify, one of the strings VisibilityUnobscured,
VisibilityPartiallyObscured, and VisibilityFullyObscured is substituted.

The time field from the event. Valid only for events that contain a time field.
The value_mask field from the event. Valid only for ConfigureRequest events.

The width field from the event. Valid only for Configure, ConfigureRequest,
Expose, GraphicsExpose, and ResizeRequest events.

Chapter 3:

| %x |
| %y |
%A

%B

%D
%E
%K

%N

%R

%S

%T
%W

%X

%Y

Control 91

The z field from the event. Valid only for events containing an z field.
The y field from the event. Valid only for events containing a y field.

Substitutes the ASCII character corresponding to the event, or the empty string
if the event doesn’t correspond to an ASCII character (e.g. the shift key was
pressed). XLookupString does all the work of translating from the event to an
ASCII character. Valid only for KeyPress and KeyRelease events.

The border_width field from the event. Valid only for ConfigureNotify and
CreateWindow events.

The display field from the event. Valid for all event types.
The send_event field from the event. Valid for all event types.

The keysym corresponding to the event, substituted as a textual string. Valid
only for KeyPress and KeyRelease events.

The keysym corresponding to the event, substituted as a decimal number. Valid
only for KeyPress and KeyRelease events.

The root window identifier from the event. Valid only for events containing a
root field.

The subwindow window identifier from the event. Valid only for events con-
taining a subwindow field.

The type field from the event. Valid for all event types.

The path name of the window to which the event was reported (the window
field from the event). Valid for all event types.

The z_root field from the event. If a virtual-root window manager is being
used then the substituted value is the corresponding x-coordinate in the virtual
root. Valid only for ButtonPress, ButtonRelease, KeyPress, KeyRelease, and
MotionNotify events.

The y_root field from the event. If a virtual-root window manager is being
used then the substituted value is the corresponding y-coordinate in the virtual
root. Valid only for ButtonPress, ButtonRelease, KeyPress, KeyRelease, and
MotionNotify events.

If the replacement string for a %-replacement contains characters that are interpreted
specially by the Tcl parser (such as backslashes or square brackets or spaces) additional
backslashes are added during replacement so that the result after parsing is the original
replacement string. For example, if command is

insert %A

and the character typed is an open square bracket, then the command actually executed

will be

insert \el

This will cause the insert to receive the original replacement string (open square bracket)
as its first argument. If the extra backslash hadn’t been added, Tcl would not have been
able to parse the command correctly.

92 No Title

At most one binding will trigger for any given X event. If several bindings match the
recent events, the most specific binding is chosen and its command will be executed. The
following tests are applied, in order, to determine which of several matching sequences is
more specific: (a) a binding whose windowSpec names a particular window is more specific
than a binding for a class, which is more specific than a binding whose windowSpec is all;
(b) a longer sequence (in terms of number of events matched) is more specific than a shorter
sequence; (c) an event pattern that specifies a specific button or key is more specific than
one that doesn’t; (e) an event pattern that requires a particular modifier is more specific
than one that doesn’t require the modifier; (e) an event pattern specifying the Any modifier
is less specific than one that doesn’t. If the matching sequences contain more than one
event, then tests (c)-(e) are applied in order from the most recent event to the least recent
event in the sequences. If these tests fail to determine a winner, then the most recently
registered sequence is the winner.

If an X event does not match any of the existing bindings, then the event is ignored (an
unbound event is not considered to be an error).

When a sequence specified in a bind command contains more than one event pattern,
then its command is executed whenever the recent events (leading up to and including the
current event) match the given sequence. This means, for example, that if button 1 is clicked
repeatedly the sequence <Double-ButtonPress-1> will match each button press but the first.
If extraneous events that would prevent a match occur in the middle of an event sequence
then the extraneous events are ignored unless they are KeyPress or ButtonPress events.
For example, <Double-ButtonPress-1> will match a sequence of presses of button 1, even
though there will be ButtonRelease events (and possibly MotionNotify events) between the
ButtonPress events. Furthermore, a KeyPress event may be preceded by any number of
other KeyPress events for modifier keys without the modifier keys preventing a match. For
example, the event sequence aB will match a press of the a key, a release of the a key, a
press of the Shift key, and a press of the b key: the press of Shift is ignored because it is
a modifier key. Finally, if several MotionNotify events occur in a row, only the last one is
used for purposes of matching binding sequences.

If an error occurs in executing the command for a binding then the tkerror mechanism is
used to report the error. The command will be executed at global level (outside the context
of any Tecl procedure).

See (undefined) [tkerror], page (undefined).
Keywords
form, manual
3.3 destroy

destroy \- Destroy one or more windows

Synopsis

destroy ?window window ...7

Chapter 3: Control 93

Description

This command deletes the windows given by the window arguments, plus all of their de-

scendants. If a window

w9

is deleted then the entire application will be destroyed. The

windows are destroyed in order, and if an error occurs in destroying a window the command
aborts without destroying the remaining windows.

Keywords

application,

destroy, window

3.4 tk-dialog

tk-dialog \-

Synopsis

Create modal dialog and wait for response

tk-dialog window title text bitmap default string string ...

Description

This procedure is part of the Tk script library. Its arguments describe a dialog box:

window

title
text

bitmap

default

string

Name of top-level window to use for dialog. Any existing window by this name
is destroyed.

Text to appear in the window manager’s title bar for the dialog.
Message to appear in the top portion of the dialog box.

If non-empty, specifies a bitmap to display in the top portion of the dialog, to
the left of the text. If this is an empty string then no bitmap is displayed in
the dialog.

If this is an integer greater than or equal to zero, then it gives the index of the
button that is to be the default button for the dialog (0 for the leftmost button,
and so on). If less than zero or an empty string then there won’t be any default
button.

There will be one button for each of these arguments. Each string specifies text
to display in a button, in order from left to right.

After creating a dialog box, tk-dialog waits for the user to select one of the
buttons either by clicking on the button with the mouse or by typing return
to invoke the default button (if any). Then it returns the index of the selected
button: 0 for the leftmost button, 1 for the button next to it, and so on.

While waiting for the user to respond, tk-dialog sets a local grab. This prevents
the user from interacting with the application in any way except to invoke the
dialog box.

Keywords

bitmap, dialog, modal

94 No Title

3.5 exit

exit \- Exit the process

Synopsis

exit ?returnCode?

Description

Terminate the process, returning returnCode (an integer) to the system as the exit status. If
returnCode isn’t specified then it defaults to 0. This command replaces the Tcl command by
the same name. It is identical to Tcl’s exit command except that before exiting it destroys
all the windows managed by the process. This allows various cleanup operations to be
performed, such as removing application names from the global registry of applications.

Keywords

exit, process

3.6 focus

focus \- Direct keyboard events to a particular window

Synopsis

focus

focus window
focus option Targ arg ...?

Description

The focus command is used to manage the Tk input focus. At any given time, one window
in an application is designated as the focus window for that application; any key press or
key release events directed to any window in the application will be redirected instead to
the focus window. If there is no focus window for an application then keyboard events
are discarded. Typically, windows that are prepared to deal with the focus (e.g. entries
and other widgets that display editable text) will claim the focus when mouse button 1
is pressed in them. When an application is created its main window is initially given the
focus.

The focus command can take any of the following forms:

focus If invoked with no arguments, focus returns the path name of the current focus
window, or none if there is no focus window.

focus window
If invoked with a single argument consisting of a window’s path name, focus
sets the input focus to that window. The return value is an empty string.

focus :default ?window?
If window is specified, it becomes the default focus window (the window that
receives the focus whenever the focus window is deleted) and the command

Chapter 3: Control 95

returns an empty string. If window isn’t specified, the command returns the
path name of the current default focus window, or none if there is no default.
Window may be specified as none to clear its existing value. The default window
is initially none.

focus :none
Clears the focus window, so that keyboard input to this application will be
discarded.

"Focus Events"

Tk’s model of the input focus is different than X’s model, and the focus window set with the
focus command is not usually the same as the X focus window. Tk never explicitly changes
the official X focus window. It waits for the window manager to direct the X input focus
to and from the application’s top-level windows, and it intercepts FocusIn and FocusOut
events coming from the X server to detect these changes. All of the focus events received
from X are discarded by Tk; they never reach the application. Instead, Tk generates a
different stream of FocusIn and FocusOut for the application. This means that FocusIn and
and FocusOut events seen by the application will not obey the conventions described in the
documentation for Xlib.

Tk applications receive two kinds of FocusIn and FocusOut events, which can be distin-
guished by their detail fields. Events with a detail of Notify Ancestor are directed to the
current focus window when it becomes active or inactive. A window is the active focus
whenever two conditions are simultaneously true: (a) the window is the focus window for
its application, and (b) some top-level window in the application has received the X focus.
When this happens Tk generates a Focusln event for the focus window with detail Noti-
fyAncestor. When a window loses the active focus (either because the window manager
removed the focus from the application or because the focus window changed within the
application) then it receives a FocusOut event with detail Notify Ancestor.

The events described above are directed to the application’s focus window regardless of
which top-level window within the application has received the focus. The second kind of
focus event is provided for applications that need to know which particular top-level window
has the X focus. Tk generates FocusIn and FocusOut events with detail NotifyVirtual for
top-level windows whenever they receive or lose the X focus. These events are generated
regardless of which window in the application has the Tk input focus. They do not imply
that keystrokes will be directed to the window that receives the event; they simply indicate
which top-level window is active as far as the window manager is concerned. If a top-level
window is also the application’s focus window, then it will receive both NotifyVirtual and
Notify Ancestor events when it receives or loses the X focus.

Tk does not generate the hierarchical chains of FocusIn and FocusOut events described
in the Xlib documentation (e.g. a window can get a FocusIn or FocusOut event without all
of its ancestors getting events too). Furthermore, the mode field in focus events is always
NotifyNormal and the only values ever present in the detail field are Notify Ancestor and
NotifyVirtual.

Keywords

events, focus, keyboard, top-level, window manager

96 No Title

3.7 grab
grab \- Confine pointer and keyboard events to a window sub-tree

Synopsis

grab 7:global? window
grab option 7arg arg ...7

Description

This command implements simple pointer and keyboard grabs for Tk. Tk’s grabs are
different than the grabs described in the Xlib documentation. When a grab is set for a
particular window, Tk restricts all pointer events to the grab window and its descendants
in Tk’s window hierarchy. Whenever the pointer is within the grab window’s subtree, the
pointer will behave exactly the same as if there had been no grab at all and all events
will be reported in the normal fashion. When the pointer is outside window’s tree, button
presses and releases and mouse motion events are reported to window, and window entry
and window exit events are ignored. The grab subtree “owns” the pointer: windows outside
the grab subtree will be visible on the screen but they will be insensitive until the grab is
released. The tree of windows underneath the grab window can include top-level windows,
in which case all of those top-level windows and their descendants will continue to receive
mouse events during the grab.

Two forms of grabs are possible: local and global. A local grab affects only the grabbing
application: events will be reported to other applications as if the grab had never occurred.
Grabs are local by default. A global grab locks out all applications on the screen, so that
only the given subtree of the grabbing application will be sensitive to pointer events (mouse
button presses, mouse button releases, pointer motions, window entries, and window exits).
During global grabs the window manager will not receive pointer events either.

During local grabs, keyboard events (key presses and key releases) are delivered as usual:
the window manager controls which application receives keyboard events, and if they are
sent to any window in the grabbing application then they are redirected to the focus window.
During a global grab Tk grabs the keyboard so that all keyboard events are always sent to
the grabbing application. The focus command is still used to determine which window in
the application receives the keyboard events. The keyboard grab is released when the grab
is released.

Grabs apply to particular displays. If an application has windows on multiple displays
then it can establish a separate grab on each display. The grab on a particular display
affects only the windows on that display. It is possible for different applications on a single
display to have simultaneous local grabs, but only one application can have a global grab
on a given display at once.

The grab command can take any of the following forms:

grab 7:global? window
Same as grab :set, described below.

grab :current ?window?
If window is specified, returns the name of the current grab window in this
application for window’s display, or an empty string if there is no such window.

Chapter 3: Control 97

If window is omitted, the command returns a list whose elements are all of the
windows grabbed by this application for all displays, or an empty string if the
application has no grabs.

grab :release window
Releases the grab on window if there is one, otherwise does nothing. Returns
an empty string.

grab :set 7:global? window
Sets a grab on window. If :global is specified then the grab is global, otherwise
it is local. If a grab was already in effect for this application on window’s display
then it is automatically released. If there is already a grab on window and it
has the same global/local form as the requested grab, then the command does
nothing. Returns an empty string.

grab :status window
Returns none if no grab is currently set on window, local if a local grab is set
on window, and global if a global grab is set.

Bugs

It took an incredibly complex and gross implementation to produce the simple grab effect
described above. Given the current implementation, it isn’t safe for applications to use the
Xlib grab facilities at all except through the Tk grab procedures. If applications try to
manipulate X’s grab mechanisms directly, things will probably break.

If a single process is managing several different Tk applications, only one of those appli-
cations can have a local grab for a given display at any given time. If the applications are
in different processes, this restriction doesn’t exist.

Keywords

grab, keyboard events, pointer events, window

3.8 tk-listbox-single-select

tk-listbox-single-select \- Allow only one selected element in listbox(es)

Synopsis

tk-listbox-single-select arg 7arg arg ...7

Description

This command is a Tcl procedure provided as part of the Tk script library. It takes as
arguments the path names of one or more listbox widgets, or the value Listbox. For each
named widget, tk-listbox-single-select modifies the bindings of the widget so that only a
single element may be selected at a time (the normal configuration allows multiple elements
to be selected). If the keyword Listbox is among the window arguments, then the class
bindings for listboxes are changed so that all listboxes have the one-selection-at-a-time
behavior.

98 No Title

Keywords

listbox, selection

3.9 lower

lower \- Change a window’s position in the stacking order

Synopsis

lower window ?belowThis?

Description

If the belowThis argument is omitted then the command lowers window so that it is below
all of its siblings in the stacking order (it will be obscured by any siblings that overlap it and
will not obscure any siblings). If belowThis is specified then it must be the path name of a
window that is either a sibling of window or the descendant of a sibling of window. In this
case the lower command will insert window into the stacking order just below belowThis
(or the ancestor of belowThis that is a sibling of window); this could end up either raising
or lowering window.

Keywords

lower, obscure, stacking order

3.10 tk-menu-bar

tk-menu-bar, tk_bindForTraversal \- Support for menu bars

Synopsis

tk-menu-bar frame Tmenu menu ...7

tk_bindForTraversal arg arg ...

Description

These two commands are Tcl procedures in the Tk script library. They provide support
for menu bars. A menu bar is a frame that contains a collection of menu buttons that
work together, so that the user can scan from one menu to another with the mouse: if the
mouse button is pressed over one menubutton (causing it to post its menu) and the mouse is
moved over another menubutton in the same menu bar without releasing the mouse button,
then the menu of the first menubutton is unposted and the menu of the new menubutton
is posted instead. Menus in a menu bar can also be accessed using keyboard traversal (i.e.
by typing keystrokes instead of using the mouse). In order for an application to use these
procedures, it must do three things, which are described in the paragraphs below.

First, each application must call tk-menu-bar to provide information about the menubar.
The frame argument gives the path name of the frame that contains all of the menu buttons,
and the menu arguments give path names for all of the menu buttons associated with the
menu bar. Normally frame is the parent of each of the menu’s. This need not be the
case, but frame must be an ancestor of each of the menu’s in order for grabs to work

Chapter 3: Control 99

correctly when the mouse is used to pull down menus. The order of the menu arguments
determines the traversal order for the menu buttons. If tk-menu-bar is called without any
menu arguments, it returns a list containing the current menu buttons for frame, or an
empty string if frame isn’t currently set up as a menu bar. If tk-menu-bar is called with
a single menu argument consisting of an empty string, any menubar information for frame
is removed; from now on the menu buttons will function independently without keyboard
traversal. Only one menu bar may be defined at a time within each top-level window.

The second thing an application must do is to identify the traversal characters for menu
buttons and menu entries. This is done by underlining those characters using the :underline
options for the widgets. The menu traversal system uses this information to traverse the
menus under keyboard control (see below).

The third thing that an application must do is to make sure that the input focus is
always in a window that has been configured to support menu traversal. If the input focus
is none then input characters will be discarded and no menu traversal will be possible. If
you have no other place to set the focus, set it to the menubar widget: tk-menu-bar creates
bindings for its frame argument to support menu traversal.

The Tk startup scripts configure all the Tk widget classes with bindings to support
menu traversal, so menu traversal will be possible regardless of which widget has the focus.
If your application defines new classes of widgets that support the input focus, then you
should call tk_bindForTraversal for each of these classes. Tk_bindForTraversal takes any
number of arguments, each of which is a widget path name or widget class name. It sets
up bindings for all the named widgets and classes so that the menu traversal system will
be invoked when appropriate keystrokes are typed in those widgets or classes.

"Menu Traversal Bindings"

Once an application has made the three arrangements described above, menu traversal will
be available. At any given time, the only menus available for traversal are those associated
with the top-level window containing the input focus. Menu traversal is initiated by one of
the following actions:
[1] If <F'10> is typed, then the first menu button in the list for the top-level window is
posted and the first entry within that menu is selected.
[2] If <Alt-key> is pressed, then the menu button that has key as its underlined character
is posted and the first entry within that menu is selected. The comparison between key
and the underlined characters ignores case differences. If no menu button matches key
then the keystroke has no effect.

[3] Clicking mouse button 1 on a menu button posts that menu and selects its first
entry.

Once a menu has been posted, the input focus is switched to that menu and the following
actions are possible:

[1] Typing <ESC> or clicking mouse button 1 outside the menu button or its menu will
abort the menu traversal.

[2] If <Alt-key> is pressed, then the entry in the posted menu whose underlined character
is key is invoked. This causes the menu to be unposted, the entry’s action to be taken,
and the menu traversal to end. The comparison between key and underlined characters
ignores case differences. If no menu entry matches key then the keystroke is ignored.

100 No Title

[3] The arrow keys may be used to move among entries and menus. The left and right
arrow keys move circularly among the available menus and the up and down arrow keys
move circularly among the entries in the current menu.

[4] If <Return> is pressed, the selected entry in the posted menu is invoked, which
causes the menu to be unposted, the entry’s action to be taken, and the menu traversal
to end.

When a menu traversal completes, the input focus reverts to the window that contained
it when the traversal started.

Keywords

keyboard traversal, menu, menu bar, post

3.11 option

option \- Add/retrieve window options to/from the option database

Synopsis

option :add pattern value ?priority?
option :clear
option :get window name class

option :readfile fileName ?priority?

Description

The option command allows you to add entries to the Tk option database or to retrieve
options from the database. The add form of the command adds a new option to the
database. Pattern contains the option being specified, and consists of names and/or classes
separated by asterisks or dots, in the usual X format. Value contains a text string to
associate with pattern; this is the value that will be returned in calls to Tk_GetOption or
by invocations of the option :get command. If priority is specified, it indicates the priority
level for this option (see below for legal values); it defaults to interactive. This command
always returns an empty string.

The option :clear command clears the option database. Default options (in the RE-
SOURCE_MANAGER property or the .Xdefaults file) will be reloaded automatically the
next time an option is added to the database or removed from it. This command always
returns an empty string.

The option :get command returns the value of the option specified for window under
name and class. If several entries in the option database match window, name, and class,
then the command returns whichever was created with highest priority level. If there are
several matching entries at the same priority level, then it returns whichever entry was most
recently entered into the option database. If there are no matching entries, then the empty
string is returned.

Chapter 3: Control 101

The readfile form of the command reads fileName, which should have the standard
format for an X resource database such as .Xdefaults, and adds all the options specified
in that file to the option database. If priority is specified, it indicates the priority level at
which to enter the options; priority defaults to interactive.

The priority arguments to the option command are normally specified symbolically using
one of the following values:

widgetDefault
Level 20. Used for default values hard-coded into widgets.

startupFile
Level 40. Used for options specified in application-specific startup files.

userDefault
Level 60. Used for options specified in user-specific defaults files, such as .Xde-
faults, resource databases loaded into the X server, or user-specific startup files.

interactive
Level 80. Used for options specified interactively after the application starts
running. If priority isn’t specified, it defaults to this level.

Any of the above keywords may be abbreviated. In addition, priorities may be specified
numerically using integers between 0 and 100, inclusive. The numeric form is probably a
bad idea except for new priority levels other than the ones given above.

Keywords

database, option, priority, retrieve

3.12 options
options \- Standard options supported by widgets

Description

This manual entry describes the common configuration options supported by widgets in the
Tk toolkit. Every widget does not necessarily support every option (see the manual entries
for individual widgets for a list of the standard options supported by that widget), but if
a widget does support an option with one of the names listed below, then the option has
exactly the effect described below.

In the descriptions below, “Name” refers to the option’s name in the option database
(e.g. in .Xdefaults files). “Class” refers to the option’s class value in the option database.
“Command-Line Switch” refers to the switch used in widget-creation and configure widget
commands to set this value. For example, if an option’s command-line switch is :foreground
and there exists a widget .a.b.c, then the command

(.a.b.c :configure :foreground "black")

may be used to specify the value black for the option in the the widget .a.b.c. Command-
line switches may be abbreviated, as long as the abbreviation is unambiguous.

102

No Title

:activebackground

Name="activeBackground" Class="Foreground"

Specifies background color to use when drawing active elements. An element (a
widget or portion of a widget) is active if the mouse cursor is positioned over
the element and pressing a mouse button will cause some action to occur.

:activeborderwidth

Name="activeBorderWidth" Class="BorderWidth"

Specifies a non-negative value indicating the width of the 3-D border drawn
around active elements. See above for definition of active elements. The value
may have any of the forms acceptable to Tk_GetPixels. This option is typically
only available in widgets displaying more than one element at a time (e.g. menus
but not buttons).

:activeforeground

:anchor

Name="activeForeground" Class="Background"

Specifies foreground color to use when drawing active elements. See above for
definition of active elements.

Name="anchor" Class="Anchor"

Specifies how the information in a widget (e.g. text or a bitmap) is to be
displayed in the widget. Must be one of the values n, ne, e, se, s, sw, w, nw, or
center. For example, nw means display the information such that its top-left
corner is at the top-left corner of the widget.

:background or :bg

:bitmap

Name="background" Class="Background"

Specifies the normal background color to use when displaying the widget.

Name="bitmap" Class="Bitmap"

Specifies a bitmap to display in the widget, in any of the forms acceptable
to Tk_GetBitmap. The exact way in which the bitmap is displayed may be
affected by other options such as anchor or justify. Typically, if this option is
specified then it overrides other options that specify a textual value to display
in the widget; the bitmap option may be reset to an empty string to re-enable
a text display.

:borderwidth or :bd

Name="borderWidth" Class="BorderWidth"

Chapter 3: Control 103

cursor

Specifies a non-negative value indicating the width of the 3-D border to draw
around the outside of the widget (if such a border is being drawn; the relief
option typically determines this). The value may also be used when drawing
3-D effects in the interior of the widget. The value may have any of the forms
acceptable to Tk_GetPixels.

Name="cursor" Class="Cursor"

Specifies the mouse cursor to be used for the widget. The value may have any
of the forms acceptable to Tk_GetCursor.

:cursorbackground

Name="cursorBackground" Class="Foreground"

Specifies the color to use as background in the area covered by the insertion
cursor. This color will normally override either the normal background for the
widget (or the selection background if the insertion cursor happens to fall in
the selection). \fIThis option is obsolete and is gradually being replaced by the
insertBackground option.

:cursorborderwidth

Name="cursorBorderWidth" Class="BorderWidth"

Specifies a non-negative value indicating the width of the 3-D border to draw
around the insertion cursor. The value may have any of the forms acceptable
to Tk_GetPixels. \fIThis option is obsolete and is gradually being replaced by
the insertBorderWidth option.

:cursorofftime

Name="cursorOffTime" Class="OffTime"

Specifies a non-negative integer value indicating the number of milliseconds the
cursor should remain “off” in each blink cycle. If this option is zero then the
cursor doesn’t blink: it is on all the time. \fIThis option is obsolete and is
gradually being replaced by the insertOffTime option.

:cursorontime

Name="cursorOnTime" Class="OnTime"

Specifies a non-negative integer value indicating the number of milliseconds the
cursor should remain “on” in each blink cycle. \fIThis option is obsolete and
is gradually being replaced by the insertOnTime option.

:cursorwidth

Name="cursorWidth" Class="CursorWidth"

Specifies a value indicating the total width of the insertion cursor. The value
may have any of the forms acceptable to Tk_GetPixels. If a border has been

104

No Title

specified for the cursor (using the cursorBorderWidth option), the border will
be drawn inside the width specified by the cursorWidth option. \fIThis option
is obsolete and is gradually being replaced by the insert Width option.

:disabledforeground

Name="disabledForeground" Class="DisabledForeground"

Specifies foreground color to use when drawing a disabled element. If the option
is specified as an empty string (which is typically the case on monochrome
displays), disabled elements are drawn with the normal fooreground color but
they are dimmed by drawing them with a stippled fill pattern.

:exportselection

:font

Name="exportSelection" Class="ExportSelection"

Specifies whether or not a selection in the widget should also be the X selection.
The value may have any of the forms accepted by Tcl_GetBoolean, such as
true, false, 0, 1, yes, or no. If the selection is exported, then selecting in the
widget deselects the current X selection, selecting outside the widget deselects
any widget selection, and the widget will respond to selection retrieval requests
when it has a selection. The default is usually for widgets to export selections.

Name="font" Class="Font"

Specifies the font to use when drawing text inside the widget.

:foreground or :fg

:geometry

Name="foreground" Class="Foreground"

Specifies the normal foreground color to use when displaying the widget.

Name="geometry" Class="Geometry"

Specifies the desired geometry for the widget’s window, in the form
widthxheight, where width is the desired width of the window and height is
the desired height. The units for width and height depend on the particular
widget. For widgets displaying text the units are usually the size of the
characters in the font being displayed; for other widgets the units are usually
pixels.

:insertbackground

Name="insertBackground" Class="Foreground"

Specifies the color to use as background in the area covered by the insertion
cursor. This color will normally override either the normal background for the
widget (or the selection background if the insertion cursor happens to fall in
the selection).

Chapter 3: Control 105

:insertborderwidth
Name="insertBorderWidth" Class="BorderWidth"

Specifies a non-negative value indicating the width of the 3-D border to draw
around the insertion cursor. The value may have any of the forms acceptable
to Tk_GetPixels.

:insertofftime
Name="insertOffTime" Class="OffTime"

Specifies a non-negative integer value indicating the number of milliseconds the
insertion cursor should remain “off” in each blink cycle. If this option is zero
then the cursor doesn’t blink: it is on all the time.

:insertontime
Name="insertOnTime" Class="OnTime"

Specifies a non-negative integer value indicating the number of milliseconds the
insertion cursor should remain “on” in each blink cycle.

:insertwidth
Name="insertWidth" Class="InsertWidth"

Specifies a value indicating the total width of the insertion cursor. The value
may have any of the forms acceptable to Tk_GetPixels. If a border has been
specified for the insertion cursor (using the insertBorderWidth option), the
border will be drawn inside the width specified by the insertWidth option.

:orient

Name="orient" Class="Orient"

For widgets that can lay themselves out with either a horizontal or vertical
orientation, such as scrollbars, this option specifies which orientation should be
used. Must be either horizontal or vertical or an abbreviation of one of these.

:padx
Name="padX" Class="Pad"

Specifies a non-negative value indicating how much extra space to request for
the widget in the X-direction. The value may have any of the forms acceptable
to Tk_GetPixels. When computing how large a window it needs, the widget
will add this amount to the width it would normally need (as determined by
the width of the things displayed in the widget); if the geometry manager can
satisfy this request, the widget will end up with extra internal space to the left
and/or right of what it displays inside.

:pady
Name="padY" Class="Pad"

106

:relief

No Title

Specifies a non-negative value indicating how much extra space to request for
the widget in the Y-direction. The value may have any of the forms acceptable
to Tk_GetPixels. When computing how large a window it needs, the widget
will add this amount to the height it would normally need (as determined by
the height of the things displayed in the widget); if the geometry manager can
satisfy this request, the widget will end up with extra internal space above
and/or below what it displays inside.

Name="relief" Class="Relief"

Specifies the 3-D effect desired for the widget. Acceptable values are raised,
sunken, flat, ridge, and groove. The value indicates how the interior of the
widget should appear relative to its exterior; for example, raised means the
interior of the widget should appear to protrude from the screen, relative to the
exterior of the widget.

:repeatdelay

Name="repeatDelay" Class="RepeatDelay"

Specifies the number of milliseconds a button or key must be held down before
it begins to auto-repeat. Used, for example, on the up- and down-arrows in
scrollbars.

:repeatinterval

Name="repeatInterval" Class="RepeatInterval"

Used in conjunction with repeatDelay: once auto-repeat begins, this option
determines the number of milliseconds between auto-repeats.

:scrollcommand

Name="scrollCommand" Class="ScrollCommand"

Specifies the prefix for a command used to communicate with scrollbar wid-
gets. When the view in the widget’s window changes (or whenever anything
else occurs that could change the display in a scrollbar, such as a change in the
total size of the widget’s contents), the widget will generate a Tcl command by
concatenating the scroll command and four numbers. The four numbers are,
in order: the total size of the widget’s contents, in unspecified units (“unit”
is a widget-specific term; for widgets displaying text, the unit is a line); the
maximum number of units that may be displayed at once in the widget’s win-
dow, given its current size; the index of the top-most or left-most unit currently
visible in the window (index 0 corresponds to the first unit); and the index
of the bottom-most or right-most unit currently visible in the window. This
command is then passed to the Tcl interpreter for execution. Typically the
scrollCommand option consists of the path name of a scrollbar widget followed
by “set”, e.g. “.x.scrollbar set”: this will cause the scrollbar to be updated
whenever the view in the window changes. If this option is not specified, then
no command will be executed.

Chapter 3: Control 107

The scrollCommand option is used for widgets that support scrolling in only
one direction. For widgets that support scrolling in both directions, this option
is replaced with the xScrollCommand and yScrollCommand options.

:selectbackground
Name="selectBackground" Class="Foreground"

Specifies the background color to use when displaying selected items.

:selectborderwidth
Name="selectBorderWidth" Class="BorderWidth"

Specifies a non-negative value indicating the width of the 3-D border to draw
around selected items. The value may have any of the forms acceptable to
Tk_GetPixels.

:selectforeground
Name="selectForeground" Class="Background"

Specifies the foreground color to use when displaying selected items.

:setgrid
Name="setGrid" Class="SetGrid"

Specifies a boolean value that determines whether this widget controls the resiz-
ing grid for its top-level window. This option is typically used in text widgets,
where the information in the widget has a natural size (the size of a character)
and it makes sense for the window’s dimensions to be integral numbers of these
units. These natural window sizes form a grid. If the setGrid option is set to
true then the widget will communicate with the window manager so that when
the user interactively resizes the top-level window that contains the widget, the
dimensions of the window will be displayed to the user in grid units and the
window size will be constrained to integral numbers of grid units. See the sec-
tion GRIDDED GEOMETRY MANAGEMENT in the wm manual entry for
more details.

itext

Name="text" Class="Text"

Specifies a string to be displayed inside the widget. The way in which the string
is displayed depends on the particular widget and may be determined by other
options, such as anchor or justify.

:textvariable
Name="textVariable" Class="Variable"

Specifies the name of a variable. The value of the variable is a text string to
be displayed inside the widget; if the variable value changes then the widget

108

:underline

No Title

will automatically update itself to reflect the new value. The way in which the
string is displayed in the widget depends on the particular widget and may be
determined by other options, such as anchor or justify.

Name="underline" Class="Underline"

Specifies the integer index of a character to underline in the widget. This option
is typically used to indicate keyboard traversal characters in menu buttons and
menu entries. 0 corresponds to the first character of the text displayed in the
widget, 1 to the next character, and so on.

:xscrollcommand

Name="xScrollCommand" Class="ScrollCommand"

Specifies the prefix for a command used to communicate with horizontal scroll-
bars. This option is treated in the same way as the scrollCommand option,
except that it is used for horizontal scrollbars associated with widgets that
support both horizontal and vertical scrolling. See the description of scroll-
Command for complete details on how this option is used.

:yscrollcommand

Name="yScrollCommand" Class="ScrollCommand"

Specifies the prefix for a command used to communicate with vertical scrollbars.
This option is treated in the same way as the scrollCommand option, except
that it is used for vertical scrollbars associated with widgets that support both
horizontal and vertical scrolling. See the description of scrollCommand for
complete details on how this option is used.

Keywords

class, name,

standard option, switch

3.13 pack-old

pack \- Obsolete syntax for packer geometry manager

Synopsis

pack after sibling window options ?Twindow options ...7

pack append parent window options Twindow options ...7

pack before sibling window options Twindow options ...7

pack info parent

pack unpack window

Chapter 3: Control 109

Description

Note: this manual entry describes the syntax for the pack\fl command as it before Tk
version 3.3. Although this syntax continues to be supported for backward compatibility, it
is obsolete and should not be used anymore. At some point in the future it may cease to
be supported.

The packer is a geometry manager that arranges the children of a parent by packing
them in order around the edges of the parent. The first child is placed against one side
of the window, occupying the entire span of the window along that side. This reduces the
space remaining for other children as if the side had been moved in by the size of the first
child. Then the next child is placed against one side of the remaining cavity, and so on until
all children have been placed or there is no space left in the cavity.

The before, after, and append forms of the pack command are used to insert one or more
children into the packing order for their parent. The before form inserts the children before
window sibling in the order; all of the other windows must be siblings of sibling. The after
form inserts the windows after sibling, and the append form appends one or more windows
to the end of the packing order for parent. If a window named in any of these commands
is already packed in its parent, it is removed from its current position in the packing order
and repositioned as indicated by the command. All of these commands return an empty
string as result.

The unpack form of the pack command removes window from the packing order of its
parent and unmaps it. After the execution of this command the packer will no longer
manage window’s geometry.

The placement of each child is actually a four-step process; the options argument follow-
ing each window consists of a list of one or more fields that govern the placement of that
window. In the discussion below, the term cavity refers to the space left in a parent when
a particular child is placed (i.e. all the space that wasn’t claimed by earlier children in the
packing order). The term parcel refers to the space allocated to a particular child; this is
not necessarily the same as the child window’s final geometry.

The first step in placing a child is to determine which side of the cavity it will lie against.
Any one of the following options may be used to specify a side:

top Position the child’s parcel against the top of the cavity, occupying the full width
of the cavity.

bottom Position the child’s parcel against the bottom of the cavity, occupying the full
width of the cavity.

left Position the child’s parcel against the left side of the cavity, occupying the full
height of the cavity.

right Position the child’s parcel against the right side of the cavity, occupying the
full height of the cavity.

At most one of these options should be specified for any given window. If no side is
specified, then the default is top.

The second step is to decide on a parcel for the child. For top and bottom windows,
the desired parcel width is normally the cavity width and the desired parcel height is the
window’s requested height, as passed to Tk_GeometryRequest. For left and right windows,

110 No Title

the desired parcel height is normally the cavity height and the desired width is the window’s
requested width. However, extra space may be requested for the window using any of the
following options:

padx num Add num pixels to the window’s requested width before computing the parcel
size as described above.

pady num Add num pixels to the window’s requested height before computing the parcel
size as described above.

expand This option requests that the window’s parcel absorb any extra space left over
in the parent’s cavity after packing all the children. The amount of space left
over depends on the sizes requested by the other children, and may be zero. If
several windows have all specified expand then the extra width will be divided
equally among all the left and right windows that specified expand and the
extra height will be divided equally among all the top and bottom windows
that specified expand.

If the desired width or height for a parcel is larger than the corresponding dimension of
the cavity, then the cavity’s dimension is used instead.

The third step in placing the window is to decide on the window’s width and height.
The default is for the window to receive either its requested width and height or the those
of the parcel, whichever is smaller. If the parcel is larger than the window’s requested size,
then the following options may be used to expand the window to partially or completely fill
the parcel:

fill Set the window’s size to equal the parcel size.

fillx Increase the window’s width to equal the parcel’s width, but retain the window’s
requested height.

filly Increase the window’s height to equal the parcel’s height, but retain the win-
dow’s requested width.

The last step is to decide the window’s location within its parcel. If the window’s
size equals the parcel’s size, then the window simply fills the entire parcel. If
the parcel is larger than the window, then one of the following options may be
used to specify where the window should be positioned within its parcel:

frame center
Center the window in its parcel. This is the default if no framing option is
specified.

frame n Position the window with its top edge centered on the top edge of the parcel.

frame ne Position the window with its upper-right corner at the upper-right corner of
the parcel.

frame e Position the window with its right edge centered on the right edge of the parcel.

frame se Position the window with its lower-right corner at the lower-right corner of the
parcel.

frame s Position the window with its bottom edge centered on the bottom edge of the
parcel.

Chapter 3: Control 111

frame sw Position the window with its lower-left corner at the lower-left corner of the
parcel.

frame w Position the window with its left edge centered on the left edge of the parcel.
frame nw Position the window with its upper-left corner at the upper-left corner of the
parcel.

The pack info command may be used to retrieve information about the packing
order for a parent. It returns a list in the form

window options window optiomns ...
Each window is a name of a window packed in parent, and the following options
describes all of the options for that window, just as they would be typed to
pack append. The order of the list is the same as the packing order for parent.
The packer manages the mapped/unmapped state of all the packed children
windows. It automatically maps the windows when it packs them, and it un-
maps any windows for which there was no space left in the cavity.
The packer makes geometry requests on behalf of the parent windows it man-
ages. For each parent window it requests a size large enough to accommodate
all the options specified by all the packed children, such that zero space would
be leftover for expand options.

Keywords

geometry manager, location, packer, parcel, size

3.14 pack

pack \- Geometry manager that packs around edges of cavity

Synopsis

pack option arg Targ ...7

Description

The pack command is used to communicate with the packer, a geometry manager that
arranges the children of a parent by packing them in order around the edges of the parent.
The pack command can have any of several forms, depending on the option argument:

pack slave 7slave ...7 7options?
If the first argument to pack is a window name (any value starting with “.”),
then the command is processed in the same way as pack configure.

pack configure slave ?slave ...7 7options?
The arguments consist of the names of one or more slave windows followed by
pairs of arguments that specify how to manage the slaves. See “THE PACKER
ALGORITHM?” below for details on how the options are used by the packer.
The following options are supported:

:after other
Other must the name of another window. Use its master as the master for the
slaves, and insert the slaves just after other in the packing order.

112 No Title

:anchor anchor
Anchor must be a valid anchor position such as n or sw; it specifies where to
position each slave in its parcel. Defaults to center.

:before other
Other must the name of another window. Use its master as the master for the
slaves, and insert the slaves just before other in the packing order.

:expand boolean
Specifies whether the slaves should be expanded to consume extra space in their
master. Boolean may have any proper boolean value, such as 1 or no. Defaults
to 0.

Aill style If a slave’s parcel is larger than its requested dimensions, this option may be
used to stretch the slave. Style must have one of the following values:

none Give the slave its requested dimensions plus any internal padding
requested with :ipadx or :ipady. This is the default.

X Stretch the slave horizontally to fill the entire width of its parcel
(except leave external padding as specified by :padx).

y Stretch the slave vertically to fill the entire height of its parcel
(except leave external padding as specified by :pady).

both Stretch the slave both horizontally and vertically.

:@in other Insert the slave(s) at the end of the packing order for the master window given
by other.

dipadx amount
Amount specifies how much horizontal internal padding to leave on each side
of the slave(s). Amount must be a valid screen distance, such as 2 or .5c. It
defaults to 0.

:dipady amount
Amount specifies how much vertical internal padding to leave on each side of
the slave(s). Amount defaults to 0.

:padx amount
Amount specifies how much horizontal external padding to leave on each side
of the slave(s). Amount defaults to 0.

:pady amount
Amount specifies how much vertical external padding to leave on each side of
the slave(s). Amount defaults to 0.

:side side Specifies which side of the master the slave(s) will be packed against. Must be
left, right, top, or bottom. Defaults to top.

If no :in, :after or :before option is specified then each of the slaves will be inserted at
the end of the packing list for its parent unless it is already managed by the packer (in
which case it will be left where it is). If one of these options is specified then all the slaves
will be inserted at the specified point. If any of the slaves are already managed by the
geometry manager then any unspecified options for them retain their previous values rather
than receiving default values. .RE

Chapter 3: Control 113

pack :forget slave 7slave ...7
Removes each of the slaves from the packing order for its master and unmaps
their windows. The slaves will no longer be managed by the packer.

pack :newinfo slave
Returns a list whose elements are the current configuration state of the slave
given by slave in the same option-value form that might be specified to pack
configure. The first two elements of the list are “:in master” where master is
the slave’s master. Starting with Tk 4.0 this option will be renamed "pack
info".

pack :propagate master ?boolean?
If boolean has a true boolean value such as 1 or on then propagation is enabled
for master, which must be a window name (see “GEOMETRY PROPAGA-
TION” below). If boolean has a false boolean value then propagation is disabled
for master. In either of these cases an empty string is returned. If boolean is
omitted then the command returns 0 or 1 to indicate whether propagation is
currently enabled for master. Propagation is enabled by default.

pack :slaves master
Returns a list of all of the slaves in the packing order for master. The order of
the slaves in the list is the same as their order in the packing order. If master
has no slaves then an empty string is returned.

"The Packer Algorithm"

For each master the packer maintains an ordered list of slaves called the packing list. The
:iin, :after, and :before configuration options are used to specify the master for each slave
and the slave’s position in the packing list. If none of these options is given for a slave then
the slave is added to the end of the packing list for its parent.

The packer arranges the slaves for a master by scanning the packing list in order. At
the time it processes each slave, a rectangular area within the master is still unallocated.
This area is called the cavity; for the first slave it is the entire area of the master.

For each slave the packer carries out the following steps:

[1] The packer allocates a rectangular parcel for the slave along the side of the cavity
given by the slave’s :side option. If the side is top or bottom then the width of the
parcel is the width of the cavity and its height is the requested height of the slave plus
the :ipady and :pady options. For the left or right side the height of the parcel is the
height of the cavity and the width is the requested width of the slave plus the :ipadx
and :padx options. The parcel may be enlarged further because of the :expand option
(see “EXPANSION” below)

[2] The packer chooses the dimensions of the slave. The width will normally be the
slave’s requested width plus twice its :ipadx option and the height will normally be the
slave’s requested height plus twice its :ipady option. However, if the :fill option is x
or both then the width of the slave is expanded to fill the width of the parcel, minus
twice the :padx option. If the :fill option is y or both then the height of the slave is
expanded to fill the width of the parcel, minus twice the :pady option.

[3] The packer positions the slave over its parcel. If the slave is smaller than the parcel
then the :anchor option determines where in the parcel the slave will be placed. If

114 No Title

:padx or :pady is non-zero, then the given amount of external padding will always be
left between the slave and the edges of the parcel.

Once a given slave has been packed, the area of its parcel is subtracted from the cavity,
leaving a smaller rectangular cavity for the next slave. If a slave doesn’t use all of its parcel,
the unused space in the parcel will not be used by subsequent slaves. If the cavity should
become too small to meet the needs of a slave then the slave will be given whatever space is
left in the cavity. If the cavity shrinks to zero size, then all remaining slaves on the packing
list will be unmapped from the screen until the master window becomes large enough to
hold them again.

"Expansion"

If a master window is so large that there will be extra space left over after all of its slaves have
been packed, then the extra space is distributed uniformly among all of the slaves for which
the :expand option is set. Extra horizontal space is distributed among the expandable slaves
whose :side is left or right, and extra vertical space is distributed among the expandable
slaves whose :side is top or bottom.

"Geometry Propagation"

The packer normally computes how large a master must be to just exactly meet the needs
of its slaves, and it sets the requested width and height of the master to these dimensions.
This causes geometry information to propagate up through a window hierarchy to a top-
level window so that the entire sub-tree sizes itself to fit the needs of the leaf windows.
However, the pack propagate command may be used to turn off propagation for one or
more masters. If propagation is disabled then the packer will not set the requested width
and height of the packer. This may be useful if, for example, you wish for a master window
to have a fixed size that you specify.

"Restrictions On Master Windows"

The master for each slave must either be the slave’s parent (the default) or a descendant of
the slave’s parent. This restriction is necessary to guarantee that the slave can be placed
over any part of its master that is visible without danger of the slave being clipped by its
parent.

"Packing Order"

If the master for a slave is not its parent then you must make sure that the slave is higher
in the stacking order than the master. Otherwise the master will obscure the slave and
it will appear as if the slave hasn’t been packed correctly. The easiest way to make sure
the slave is higher than the master is to create the master window first: the most recently
created window will be highest in the stacking order. Or, you can use the raise and lower
commands to change the stacking order of either the master or the slave.

Keywords

geometry manager, location, packer, parcel, propagation, size

Chapter 3: Control 115

3.15 place

place \- Geometry manager for fixed or rubber-sheet placement

Synopsis

place window option value ?option value ...7
place configure window option value ?option value ...7
place forget window
place info window

place slaves window

Description

The placer is a geometry manager for Tk. It provides simple fixed placement of windows,
where you specify the exact size and location of one window, called the slave, within another
window, called the master. The placer also provides rubber-sheet placement, where you
specify the size and location of the slave in terms of the dimensions of the master, so that
the slave changes size and location in response to changes in the size of the master. Lastly,
the placer allows you to mix these styles of placement so that, for example, the slave has a
fixed width and height but is centered inside the master.

If the first argument to the place command is a window path name or configure then the
command arranges for the placer to manage the geometry of a slave whose path name is
window. The remaining arguments consist of one or more option:value pairs that specify the
way in which window’s geometry is managed. If the placer is already managing window, then
the option:value pairs modify the configuration for window. In this form the place command
returns an empty string as result. The following option:value pairs are supported:

:@in master Master specifes the path name of the window relative to which window is to be
placed. Master must either be window’s parent or a descendant of window’s
parent. In addition, master and window must both be descendants of the same
top-level window. These restrictions are necessary to guarantee that window is
visible whenever master is visible. If this option isn’t specified then the master
defaults to window’s parent.

:x location Location specifies the x-coordinate within the master window of the anchor
point for window. The location is specified in screen units (i.e. any of the forms
accepted by Tk_GetPixels) and need not lie within the bounds of the master
window.

:relx location
Location specifies the x-coordinate within the master window of the anchor
point for window. In this case the location is specified in a relative fashion as
a floating-point number: 0.0 corresponds to the left edge of the master and 1.0
corresponds to the right edge of the master. Location need not be in the range
0.0\-1.0.

116 No Title

ty location Location specifies the y-coordinate within the master window of the anchor
point for window. The location is specified in screen units (i.e. any of the forms
accepted by Tk_GetPixels) and need not lie within the bounds of the master
window.

:rely location
Location specifies the y-coordinate within the master window of the anchor
point for window. In this case the value is specified in a relative fashion as a
floating-point number: 0.0 corresponds to the top edge of the master and 1.0
corresponds to the bottom edge of the master. Location need not be in the
range 0.0\-1.0.

:anchor where
Where specifies which point of window is to be positioned at the (x,y) location
selected by the :x, :y, :relx, and :rely options. The anchor point is in terms
of the outer area of window including its border, if any. Thus if where is se
then the lower-right corner of window’s border will appear at the given (x,y)
location in the master. The anchor position defaults to nw.

:width size
Size specifies the width for window in screen units (i.e. any of the forms ac-
cepted by Tk_GetPixels). The width will be the outer width of window includ-
ing its border, if any. If size is an empty string, or if no :width or :relwidth
option is specified, then the width requested internally by the window will be
used.

;relwidth size
Size specifies the width for window. In this case the width is specified as a
floating-point number relative to the width of the master: 0.5 means window
will be half as wide as the master, 1.0 means window will have the same width
as the master, and so on.

:height size
Size specifies the height for window in screen units (i.e. any of the forms
accepted by Tk_GetPixels). The height will be the outer dimension of window
including its border, if any. If size is an empty string, or if no :height or
:relheight option is specified, then the height requested internally by the window
will be used.

:relheight size
Size specifies the height for window. In this case the height is specified as a
floating-point number relative to the height of the master: 0.5 means window
will be half as high as the master, 1.0 means window will have the same height
as the master, and so on.

:bordermode mode
Mode determines the degree to which borders within the master are used in
determining the placement of the slave. The default and most common value
is inside. In this case the placer considers the area of the master to be the
innermost area of the master, inside any border: an option of :x 0 corresponds
to an x-coordinate just inside the border and an option of :relwidth 1.0 means

Chapter 3: Control 117

window will fill the area inside the master’s border. If mode is outside then
the placer considers the area of the master to include its border; this mode is
typically used when placing window outside its master, as with the options :x 0
:y 0 :anchor ne. Lastly, mode may be specified as ignore, in which case borders
are ignored: the area of the master is considered to be its official X area, which
includes any internal border but no external border. A bordermode of ignore
is probably not very useful.

If the same value is specified separately with two different options, such as :x
and :relx, then the most recent option is used and the older one is ignored.

The place slaves command returns a list of all the slave windows for which
window is the master. If there are no slaves for window then an empty string
is returned.

The place forget command causes the placer to stop managing the geometry of
window. As a side effect of this command window will be unmapped so that it
doesn’t appear on the screen. If window isn’t currently managed by the placer
then the command has no effect. Place forget returns an empty string as result.

The place info command returns a list giving the current configuration of win-
dow. The list consists of option:value pairs in exactly the same form as might
be specified to the place configure command. If the configuration of a window
has been retrieved with place info, that configuration can be restored later by
first using place forget to erase any existing information for the window and
then invoking place configure with the saved information.

"Fine Points"

It is not necessary for the master window to be the parent of the slave window. This
feature is useful in at least two situations. First, for complex window layouts it means
you can create a hierarchy of subwindows whose only purpose is to assist in the layout of
the parent. The “real children” of the parent (i.e. the windows that are significant for the
application’s user interface) can be children of the parent yet be placed inside the windows of
the geometry-management hierarchy. This means that the path names of the “real children”
don’t reflect the geometry-management hierarchy and users can specify options for the real
children without being aware of the structure of the geometry-management hierarchy.

A second reason for having a master different than the slave’s parent is to tie two siblings
together. For example, the placer can be used to force a window always to be positioned
centered just below one of its siblings by specifying the configuration

:in sibling :relx 0.5 :rely 1.0 :anchor n :bordermode outside

Whenever the sibling is repositioned in the future, the slave will be repositioned as well.

Unlike many other geometry managers (such as the packer) the placer does not make
any attempt to manipulate the geometry of the master windows or the parents of slave
windows (i.e. it doesn’t set their requested sizes). To control the sizes of these windows,
make them windows like frames and canvases that provide configuration options for this
purpose.

Keywords

geometry manager, height, location, master, place, rubber sheet, slave, width

118 No Title

3.16 raise

raise \- Change a window’s position in the stacking order

Synopsis

raise window ?aboveThis?

Description

If the above This argument is omitted then the command raises window so that it is above all
of its siblings in the stacking order (it will not be obscured by any siblings and will obscure
any siblings that overlap it). If aboveThis is specified then it must be the path name of a
window that is either a sibling of window or the descendant of a sibling of window. In this
case the raise command will insert window into the stacking order just above above This (or
the ancestor of aboveThis that is a sibling of window); this could end up either raising or
lowering window.

Keywords

obscure, raise, stacking order

3.17 selection

selection \- Manipulate the X selection

Synopsis

selection option 7arg arg ...7

Description

This command provides a Tcl interface to the X selection mechanism and implements the full
selection functionality described in the X Inter-Client Communication Conventions Manual
(ICCCM), except that it supports only the primary selection.

The first argument to selection determines the format of the rest of the arguments and
the behavior of the command. The following forms are currently supported:

selection :clear window
If there is a selection anywhere on window’s display, clear it so that no window
owns the selection anymore. Returns an empty string.

selection :get 7type?
Retrieves the value of the primary selection and returns it as a result. Type
specifies the form in which the selection is to be returned (the desired “target”
for conversion, in ICCCM terminology), and should be an atom name such
as STRING or FILE_NAME; see the Inter-Client Communication Conventions
Manual for complete details. Type defaults to STRING. The selection :owner
may choose to return the selection in any of several different representation
formats, such as STRING, ATOM, INTEGER, etc. (this format is different
than the selection type; see the ICCCM for all the confusing details). If the
selection is returned in a non-string format, such as INTEGER or ATOM, the
selection command converts it to string format as a collection of fields separated

Chapter 3: Control 119

by spaces: atoms are converted to their textual names, and anything else is
converted to hexadecimal integers.

selection :handle window command ?type? 7 format?
Creates a handler for selection requests, such that command will be executed
whenever the primary selection is owned by window and someone attempts to
retrieve it in the form given by type (e.g. type is specified in the selection :get
command). Type defaults to STRING. If command is an empty string then any
existing handler for window and type is removed.

When the selection is requested and window is the selection :owner and type
is the requested type, command will be executed as a Tcl command with two
additional numbers appended to it (with space separators). The two additional
numbers are offset and maxBytes: offset specifies a starting character position
in the selection and mazBytes gives the maximum number of bytes to retrieve.
The command should return a value consisting of at most mazBytes of the
selection, starting at position offset. For very large selections (larger than
mazxBytes) the selection will be retrieved using several invocations of command
with increasing offset values. If command returns a string whose length is less
than mazBytes, the return value is assumed to include all of the remainder
of the selection; if the length of command’s result is equal to maxBytes then
command will be invoked again, until it eventually returns a result shorter than
mazxBytes. The value of mazxBytes will always be relatively large (thousands of
bytes).

If command returns an error then the selection retrieval is rejected just as if
the selection didn’t exist at all.

The format argument specifies the representation that should be used to trans-
mit the selection to the requester (the second column of Table 2 of the ICCCM),
and defaults to STRING. If format is STRING, the selection is transmitted as
8-bit ASCII characters (i.e. just in the form returned by command). If format
is ATOM, then the return value from command is divided into fields separated
by white space; each field is converted to its atom value, and the 32-bit atom
value is transmitted instead of the atom name. For any other format, the return
value from command is divided into fields separated by white space and each
field is converted to a 32-bit integer; an array of integers is transmitted to the
selection requester.

The format argument is needed only for compatibility with selection requesters
that don’t use Tk. If the Tk toolkit is being used to retrieve the selection
then the value is converted back to a string at the requesting end, so format is
irrelevant. .RE

selection :own ?window? ?command?
If window is specified, then it becomes the new selection :owner and the com-
mand returns an empty string as result. The existing owner, if any, is notified
that it has lost the selection. If command is specified, it is a Tecl script to
execute when some other window claims ownership of the selection away from
window. If neither window nor command is specified then the command returns

120 No Title

the path name of the window in this application that owns the selection, or an
empty string if no window in this application owns the selection.

Keywords

clear, format, handler, ICCCM, own, selection, target, type

3.18 send

send \- Execute a command in a different interpreter

Synopsis

send interp cmd Targ arg ...7

Description

This command arranges for emd (and args) to be executed in the interpreter named by
interp. It returns the result or error from that command execution. Interp must be the
name of an interpreter registered on the display associated with the interpreter in which
the command is invoked; it need not be within the same process or application. If no arg
arguments are present, then the command to be executed is contained entirely within the
cmd argument. If one or more args are present, they are concatenated to form the command
to be executed, just as for the eval Tcl command.

Security

The send command is potentially a serious security loophole, since any application that can
connect to your X server can send scripts to your applications. These incoming scripts can
use Tcl to read and write your files and invoke subprocesses under your name. Host-based
access control such as that provided by xhost is particularly insecure, since it allows anyone
with an account on particular hosts to connect to your server, and if disabled it allows
anyone anywhere to connect to your server. In order to provide at least a small amount
of security, Tk checks the access control being used by the server and rejects incoming
sends unless (a) xhost-style access control is enabled (i.e. only certain hosts can establish
connections) and (b) the list of enabled hosts is empty. This means that applications cannot
connect to your server unless they use some other form of authorization such as that provide
by xauth.

Keywords

interpreter, remote execution, security, send
3.19 tk
tk \- Manipulate Tk internal state

Synopsis

tk option ?arg arg ...7

Chapter 3: Control 121

Description

The tk command provides access to miscellaneous elements of Tk’s internal state. Most of
the information manipulated by this command pertains to the application as a whole, or
to a screen or display, rather than to a particular window. The command can take any of
a number of different forms depending on the option argument. The legal forms are:

tk :colormodel window ?newValue?
If newValue isn’t specified, this command returns the current color model in
use for window’s screen, which will be either color or monochrome. If new Value
is specified, then it must be either color or monochrome or an abbreviation of
one of them; the color model for window’s screen is set to this value.

The color model is used by Tk and its widgets to determine whether it should display
in black and white only or use colors. A single color model is shared by all of the windows
managed by one process on a given screen. The color model for a screen is set initially by
Tk to monochrome if the display has four or fewer bit planes and to color otherwise. The
color model will automatically be changed from color to monochrome if Tk fails to allocate
a color because all entries in the colormap were in use. An application can change its own
color model at any time (e.g. it might change the model to monochrome in order to conserve
colormap entries, or it might set the model to color to use color on a four-bit display in
special circumstances), but an application is not allowed to change the color model to color
unless the screen has at least two bit planes. .RE

Keywords

color model, internal state

3.20 tkerror

tkerror \- Command invoked to process background errors

Synopsis

tkerror message

Description

The tkerror command doesn’t exist as built-in part of Tk. Instead, individual applications
or users can define a tkerror command (e.g. as a Tcl procedure) if they wish to handle
background errors.

A background error is one that occurs in a command that didn’t originate with the
application. For example, if an error occurs while executing a command specified with a
bind of after command, then it is a background error. For a non-background error, the
error can simply be returned up through nested Tcl command evaluations until it reaches
the top-level code in the application; then the application can report the error in whatever
way it wishes. When a background error occurs, the unwinding ends in the Tk library and
there is no obvious way for Tk to report the error.

When Tk detects a background error, it invokes the tkerror command, passing it the
error message as its only argument. Tk assumes that the application has implemented the

122 No Title

tkerror command, and that the command will report the error in a way that makes sense
for the application. Tk will ignore any result returned by the tkerror command.

If another Tcl error occurs within the tkerror command then Tk reports the error itself
by writing a message to stderr.

The Tk script library includes a default tkerror procedure that posts a dialog box con-
taining the error message and offers the user a chance to see a stack trace that shows where
the error occurred.

Keywords

background error, reporting

3.21 tkvars
tkvars \- Variables used or set by Tk

Description
The following Tcl variables are either set or used by Tk at various times in its execution:

tk_library Tk sets this variable hold the name of a directory containing a library of Tcl
scripts related to Tk. These scripts include an initialization file that is normally
processed whenever a Tk application starts up, plus other files containing proce-
dures that implement default behaviors for widgets. The value of this variable
is taken from the TK_LIBRARY environment variable, if one exists, or else
from a default value compiled into Tk.

tk_patchLevel
Contains a decimal integer giving the current patch level for Tk. The patch
level is incremented for each new release or patch, and it uniquely identifies an
official version of Tk.

tk_priv This variable is an array containing several pieces of information that are private
to Tk. The elements of tk_priv are used by Tk library procedures and default
bindings. They should not be accessed by any code outside Tk.

tk_strictMotif
This variable is set to zero by default. If an application sets it to one, then Tk
attempts to adhere as closely as possible to Motif look-and-feel standards. For
example, active elements such as buttons and scrollbar sliders will not change
color when the pointer passes over them.

tk_version Tk sets this variable in the interpreter for each application. The variable holds
the current version number of the Tk library in the form major.minor. Major
and minor are integers. The major version number increases in any Tk release
that includes changes that are not backward compatible (i.e. whenever existing
Tk applications and scripts may have to change to work with the new release).
The minor version number increases with each new release of Tk, except that
it resets to zero whenever the major version number changes.

tkVersion Has the same value as tk_version. This variable is obsolete and will be deleted
Soo1.

Chapter 3: Control 123

Keywords

variables, version

3.22 tkwait

tkwait \- Wait for variable to change or window to be destroyed

Synopsis

tkwait :variable name

tkwait :visibility name
tkwait :window name

Description

The tkwait command waits for one of several things to happen, then it returns without
taking any other actions. The return value is always an empty string. If the first argument
is :variable (or any abbreviation of it) then the second argument is the name of a global
variable and the command waits for that variable to be modified. If the first argument is
:visibility (or any abbreviation of it) then the second argument is the name of a window and
the tkwait command waits for a change in its visibility state (as indicated by the arrival of
a VisibilityNotify event). This form is typically used to wait for a newly-created window
to appear on the screen before taking some action. If the first argument is :window (or
any abbreviation of it) then the second argument is the name of a window and the tkwait
command waits for that window to be destroyed. This form is typically used to wait for a
user to finish interacting with a dialog box before using the result of that interaction.

While the tkwait command is waiting it processes events in the normal fashion, so the
application will continue to respond to user interactions.
Keywords

variable, visibility, wait, window

3.23 update

update \- Process pending events and/or when-idle handlers

Synopsis
update 7:idletasks?

Description

This command is used to bring the entire application world “up to date.” It flushes all
pending output to the display, waits for the server to process that output and return errors
or events, handles all pending events of any sort (including when-idle handlers), and repeats
this set of operations until there are no pending events, no pending when-idle handlers, no
pending output to the server, and no operations still outstanding at the server.

124 No Title

If the idletasks keyword is specified as an argument to the command, then no new events
or errors are processed; only when-idle idlers are invoked. This causes operations that are
normally deferred, such as display updates and window layout calculations, to be performed
immediately.

The update :idletasks command is useful in scripts where changes have been made to
the application’s state and you want those changes to appear on the display immediately,
rather than waiting for the script to complete. The update command with no options is
useful in scripts where you are performing a long-running computation but you still want
the application to respond to user interactions; if you occasionally call update then user
input will be processed during the next call to update.

Keywords
event, flush, handler, idle, update

3.24 winfo

winfo \- Return window-related information

Synopsis

winfo option Targ arg ...7

Description

The winfo command is used to retrieve information about windows managed by Tk. It can
take any of a number of different forms, depending on the option argument. The legal forms
are:

winfo :atom name
Returns a decimal string giving the integer identifier for the atom whose name
is name. If no atom exists with the name name then a new one is created.

winfo :atomname id
Returns the textual name for the atom whose integer identifier is id. This
command is the inverse of the winfo :atom command. Generates an error if no
such atom exists.

winfo :cells window
Returns a decimal string giving the number of cells in the color map for window.

winfo :children window
Returns a list containing the path names of all the children of window. Top-level
windows are returned as children of their logical parents.

winfo :class window
Returns the class name for window.

winfo :containing rootX rootY
Returns the path name for the window containing the point given by rootX and
rootY. RootX and rootY are specified in screen units (i.e. any form acceptable
to Tk_GetPixels) in the coordinate system of the root window (if a virtual-
root window manager is in use then the coordinate system of the virtual root

Chapter 3: Control 125

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

window is used). If no window in this application contains the point then an
empty string is returned. In selecting the containing window, children are given
higher priority than parents and among siblings the highest one in the stacking
order is chosen.

:depth window

Returns a decimal string giving the depth of window (number of bits per pixel).

sexists window

Returns 1 if there exists a window named window, 0 if no such window exists.

fpixels window number

Returns a floating-point value giving the number of pixels in window corre-
sponding to the distance given by number. Number may be specified in any of
the forms acceptable to Tk_GetScreenMM, such as “2.0¢” or “1i”. The return
value may be fractional; for an integer value, use winfo :pixels.

:geometry window

Returns the geometry for window, in the form widthxheight+x+y. All dimen-
sions are in pixels.

:height window

Returns a decimal string giving window’s height in pixels. When a window is
first created its height will be 1 pixel; the height will eventually be changed
by a geometry manager to fulfill the window’s needs. If you need the true
height immediately after creating a widget, invoke update to force the geometry
manager to arrange it, or use winfo :reqheight to get the window’s requested
height instead of its actual height.

:id window

Returns a hexadecimal string indicating the X identifier for window.

:interps

Returns a list whose members are the names of all Tcl interpreters (e.g. all
Tk-based applications) currently registered for the display of the invoking ap-
plication.

dismapped window

Returns 1 if window is currently mapped, 0 otherwise.

:nmame window

Returns window’s name (i.e. its name within its parent, as opposed to its
full path name). The command winfo :name . will return the name of the
application.

:parent window

Returns the path name of window’s parent, or an empty string if window is the
main window of the application.

:pathname id

Returns the path name of the window whose X identifier is ¢d. Id must be a
decimal, hexadecimal, or octal integer and must correspond to a window in the
invoking application.

126

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

No Title

:pixels window number

Returns the number of pixels in window corresponding to the distance given
by number. Number may be specified in any of the forms acceptable to
Tk_GetPixels, such as “2.0c” or “1i”. The result is rounded to the nearest
integer value; for a fractional result, use winfo :fpixels.

:regheight window

Returns a decimal string giving window’s requested height, in pixels. This is
the value used by window’s geometry manager to compute its geometry.

:reqwidth window

Returns a decimal string giving window’s requested width, in pixels. This is
the value used by window’s geometry manager to compute its geometry.

:rgb window color

Returns a list containing three decimal values, which are the red, green, and
blue intensities that correspond to color in the window given by window. Color
may be specified in any of the forms acceptable for a color option.

:rootx window

Returns a decimal string giving the x-coordinate, in the root window of the
screen, of the upper-left corner of window’s border (or window if it has no
border).

:rooty window

Returns a decimal string giving the y-coordinate, in the root window of the
screen, of the upper-left corner of window’s border (or window if it has no
border).

:screen window

Returns the name of the screen associated with window, in the form display-
Name.screenIndezx.

:screencells window

Returns a decimal string giving the number of cells in the default color map for
window’s screen.

:screendepth window

Returns a decimal string giving the depth of the root window of window’s screen
(number of bits per pixel).

:screenheight window

Returns a decimal string giving the height of window’s screen, in pixels.

:screenmmbheight window

Returns a decimal string giving the height of window’s screen, in millimeters.

:screenmmwidth window

Returns a decimal string giving the width of window’s screen, in millimeters.

:screenvisual window

Returns one of the following strings to indicate the default visual type for
window’s screen: directcolor, grayscale, pseudocolor, staticcolor, staticgray, or
truecolor.

Chapter 3: Control 127

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

winfo

:screenwidth window
Returns a decimal string giving the width of window’s screen, in pixels.

:toplevel window
Returns the path name of the top-level window containing window.

:visual window
Returns one of the following strings to indicate the visual type for window:
directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor.

:vrootheight window
Returns the height of the virtual root window associated with window if there
is one; otherwise returns the height of window’s screen.

svrootwidth window
Returns the width of the virtual root window associated with window if there
is one; otherwise returns the width of window’s screen.

:vrootx window
Returns the x-offset of the virtual root window associated with window, relative
to the root window of its screen. This is normally either zero or negative.
Returns 0 if there is no virtual root window for window.

:vrooty window
Returns the y-offset of the virtual root window associated with window, relative
to the root window of its screen. This is normally either zero or negative.
Returns 0 if there is no virtual root window for window.

swidth window
Returns a decimal string giving window’s width in pixels. When a window is
first created its width will be 1 pixel; the width will eventually be changed
by a geometry manager to fulfill the window’s needs. If you need the true
width immediately after creating a widget, invoke update to force the geometry
manager to arrange it, or use winfo :reqwidth to get the window’s requested
width instead of its actual width.

X window
Returns a decimal string giving the x-coordinate, in window’s parent, of the
upper-left corner of window’s border (or window if it has no border).

iy window
Returns a decimal string giving the y-coordinate, in window’s parent, of the
upper-left corner of window’s border (or window if it has no border).

Keywords

atom,

children, class, geometry, height, identifier, information, interpreters, mapped, par-

ent, path name, screen, virtual root, width, window

3.25 wm

wm \-

Communicate with window manager

128

Synopsis

No Title

wm option window ?args?

Description

The wm command is used to interact with window managers in order to control such things
as the title for a window, its geometry, or the increments in terms of which it may be resized.
The wm command can take any of a number of different forms, depending on the option
argument. All of the forms expect at least one additional argument, window, which must

be the path

name of a top-level window.

The legal forms for the wm command are:

wm :aspect

window TminNumer minDenom maxNumer maxDenom?

If minNumer, minDenom, maxNumer, and maxDenom are all specified, then
they will be passed to the window manager and the window manager should
use them to enforce a range of acceptable aspect ratios for window. The as-
pect ratio of window (width/length) will be constrained to lie between min-
Numer /minDenom and mazNumer/maxDenom. If minNumer etc. are all
specified as empty strings, then any existing aspect ratio restrictions are re-
moved. If minNumer etc. are specified, then the command returns an empty
string. Otherwise, it returns a Tcl list containing four elements, which are the
current values of minNumer, minDenom, maxNumer, and mazxDenom (if no
aspect restrictions are in effect, then an empty string is returned).

wm :client window ?name?

If name is specified, this command stores name (which should be the
name of the host on which the application is executing) in window’s
WM_CLIENT_MACHINE property for use by the window manager or session
manager. The command returns an empty string in this case. If name isn’t
specified, the command returns the last name set in a wm :client command
for window. If name is specified as an empty string, the command deletes the
WM_CLIENT_MACHINE property from window.

wm :command window ?value?

If value is specified, this command stores value in window’s WM_COMMAND
property for use by the window manager or session manager and returns an
empty string. Value must have proper list structure; the elements should con-
tain the words of the command used to invoke the application. If value isn’t
specified then the command returns the last value set in a wm :command com-

mand for window. If value is specified as an empty string, the command deletes
the WM_COMMAND property from window.

wm :deiconify window

Arrange for window to be displayed in normal (non-iconified) form. This is
done by mapping the window. If the window has never been mapped then this
command will not map the window, but it will ensure that when the window is
first mapped it will be displayed in de-iconified form. Returns an empty string.

Chapter 3: Control 129

wm :focusmodel window 7active|passive?

If active or passive is supplied as an optional argument to the command, then
it specifies the focus model for window. In this case the command returns
an empty string. If no additional argument is supplied, then the command
returns the current focus model for window. An active focus model means that
window will claim the input focus for itself or its descendants, even at times
when the focus is currently in some other application. Passive means that
window will never claim the focus for itself: the window manager should give
the focus to window at appropriate times. However, once the focus has been
given to window or one of its descendants, the application may re-assign the
focus among window’s descendants. The focus model defaults to passive, and
Tk’s focus command assumes a passive model of focussing.

wm :frame window
If window has been reparented by the window manager into a decorative frame,
the command returns the X window identifier for the outermost frame that
contains window (the window whose parent is the root or virtual root). If
window hasn’t been reparented by the window manager then the command
returns the X window identifier for window.

wm :geometry window ?newGeometry?

If newGeometry is specified, then the geometry of window is changed and an
empty string is returned. Otherwise the current geometry for window is re-
turned (this is the most recent geometry specified either by manual resizing or
in a wm :geometry command). NewGeometry has the form =widthxheight\(+-
z\(+-y, where any of =, widthxheight, or \(+-z\(+-y may be omitted. Width
and height are positive integers specifying the desired dimensions of window.
If window is gridded (see GRIDDED GEOMETRY MANAGEMENT below)
then the dimensions are specified in grid units; otherwise they are specified in
pixel units. X and y specify the desired location of window on the screen, in
pixels. If x is preceded by +, it specifies the number of pixels between the left
edge of the screen and the left edge of window’s border; if preceded by - then
z specifies the number of pixels between the right edge of the screen and the
right edge of window’s border. If y is preceded by + then it specifies the number
of pixels between the top of the screen and the top of window’s border; if y is
preceded by - then it specifies the number of pixels between the bottom of win-
dow’s border and the bottom of the screen. If newGeometry is specified as an
empty string then any existing user-specified geometry for window is cancelled,
and the window will revert to the size requested internally by its widgets.

wm :grid window ?base Width baseHeight widthInc heightInc?
This command indicates that window is to be managed as a gridded window.
It also specifies the relationship between grid units and pixel units. Base Width
and baseHeight specify the number of grid units corresponding to the pixel
dimensions requested internally by window using Tk_GeometryRequest.
WidthInc and heightInc specify the number of pixels in each horizontal and
vertical grid unit. These four values determine a range of acceptable sizes for
window, corresponding to grid-based widths and heights that are non-negative
integers. Tk will pass this information to the window manager; during manual

130 No Title

resizing, the window manager will restrict the window’s size to one of these
acceptable sizes. Furthermore, during manual resizing the window manager
will display the window’s current size in terms of grid units rather than pixels.
If baseWidth etc. are all specified as empty strings, then window will no
longer be managed as a gridded window. If base Width etc. are specified then
the return value is an empty string. Otherwise the return value is a Tcl list
containing four elements corresponding to the current base Width, baseHeight,
widthInc, and heightInc; if window is not currently gridded, then an empty
string is returned. Note: this command should not be needed very often, since
the Tk_SetGrid library procedure and the setGrid option provide easier access
to the same functionality.

wm :group window ?pathName?

If pathName is specified, it gives the path name for the leader of a group of
related windows. The window manager may use this information, for example,
to unmap all of the windows in a group when the group’s leader is iconified.
PathName may be specified as an empty string to remove window from any
group association. If pathName is specified then the command returns an empty
string; otherwise it returns the path name of window’s current group leader, or
an empty string if window isn’t part of any group.

wm :iconbitmap window ?bitmap?

If bitmap is specified, then it names a bitmap in the standard forms accepted
by Tk (see the Tk_GetBitmap manual entry for details). This bitmap is passed
to the window manager to be displayed in window’s icon, and the command
returns an empty string. If an empty string is specified for bitmap, then any
current icon bitmap is cancelled for window. If bitmap is specified then the
command returns an empty string. Otherwise it returns the name of the current
icon bitmap associated with window, or an empty string if window has no icon
bitmap.

wm :iconify window
Arrange for window to be iconified. It window hasn’t yet been mapped for the
first time, this command will arrange for it to appear in the iconified state when
it is eventually mapped.

wm :iconmask window ?bitmap?

If bitmap is specified, then it names a bitmap in the standard forms accepted by
Tk (see the Tk_GetBitmap manual entry for details). This bitmap is passed to
the window manager to be used as a mask in conjunction with the iconbitmap
option: where the mask has zeroes no icon will be displayed; where it has ones,
the bits from the icon bitmap will be displayed. If an empty string is specified
for bitmap then any current icon mask is cancelled for window (this is equivalent
to specifying a bitmap of all ones). If bitmap is specified then the command
returns an empty string. Otherwise it returns the name of the current icon
mask associated with window, or an empty string if no mask is in effect.

wm :iconname window ?newName?
If newName is specified, then it is passed to the window manager; the window
manager should display newName inside the icon associated with window. In

Chapter 3: Control 131

this case an empty string is returned as result. If newName isn’t specified then
the command returns the current icon name for window, or an empty string if
no icon name has been specified (in this case the window manager will normally
display the window’s title, as specified with the wm :title command).

wm :iconposition window 7z y?
If x and y are specified, they are passed to the window manager as a hint about
where to position the icon for window. In this case an empty string is returned.
If and y are specified as empty strings then any existing icon position hint is
cancelled. If neither x nor y is specified, then the command returns a Tcl list
containing two values, which are the current icon position hints (if no hints are
in effect then an empty string is returned).

wm :iconwindow window ?pathName?

If pathName is specified, it is the path name for a window to use as icon for
window: when window is iconified then pathName should be mapped to serve as
icon, and when window is de-iconified then pathName will be unmapped again.
If pathName is specified as an empty string then any existing icon window
association for window will be cancelled. If the pathName argument is specified
then an empty string is returned. Otherwise the command returns the path
name of the current icon window for window, or an empty string if there is no
icon window currently specified for window. Note: not all window managers
support the notion of an icon window.

wm :maxsize window Twidth height?

If width and height are specified, then window becomes resizable and width
and height give its maximum permissible dimensions. For gridded windows
the dimensions are specified in grid units; otherwise they are specified in pixel
units. During manual sizing, the window manager should restrict the window’s
dimensions to be less than or equal to width and height. If width and height
are specified as empty strings, then the maximum size option is cancelled for
window. If width and height are specified, then the command returns an empty
string. Otherwise it returns a Tcl list with two elements, which are the max-
imum width and height currently in effect; if no maximum dimensions are in
effect for window then an empty string is returned. See the sections on geometry
management below for more information.

wm :minsize window ?width height?

If width and height are specified, then window becomes resizable and width
and height give its minimum permissible dimensions. For gridded windows
the dimensions are specified in grid units; otherwise they are specified in pixel
units. During manual sizing, the window manager should restrict the window’s
dimensions to be greater than or equal to width and height. If width and
height are specified as empty strings, then the minimum size option is cancelled
for window. If width and height are specified, then the command returns an
empty string. Otherwise it returns a Tcl list with two elements, which are
the minimum width and height currently in effect; if no minimum dimensions
are in effect for window then an empty string is returned. See the sections on
geometry management below for more information.

132 No Title

wm :overrideredirect window 7boolean?

If boolean is specified, it must have a proper boolean form and the override-
redirect flag for window is set to that value. If boolean is not specified then 1 or
0 is returned to indicate whether or not the override-redirect flag is currently
set for window. Setting the override-redirect flag for a window causes it to
be ignored by the window manager; among other things, this means that the
window will not be reparented from the root window into a decorative frame and
the user will not be able to manipulate the window using the normal window
manager mechanisms.

wm :positionfrom window Twho?
If who is specified, it must be either program or user, or an abbreviation of one
of these two. It indicates whether window’s current position was requested by
the program or by the user. Many window managers ignore program-requested
initial positions and ask the user to manually position the window; if user is
specified then the window manager should position the window at the given
place without asking the user for assistance. If who is specified as an empty
string, then the current position source is cancelled. If who is specified, then
the command returns an empty string. Otherwise it returns user or window to
indicate the source of the window’s current position, or an empty string if no
source has been specified yet. Most window managers interpret “no source” as
equivalent to program. Tk will automatically set the position source to user
when a wm :geometry command is invoked, unless the source has been set
explicitly to program.

wm :protocol window ?name? ?command?

This command is used to manage window manager protocols such as
WM_DELETE _WINDOW. Name is the name of an atom corresponding
to a window manager protocol, such as WM_DELETE_WINDOW or
WM_SAVE_YOURSELF or WM_TAKE_FOCUS. If both name and command
are specified, then command is associated with the protocol specified by name.
Name will be added to window’s WM_PROTOCOLS property to tell the
window manager that the application has a protocol handler for name, and
command will be invoked in the future whenever the window manager sends
a message to the client for that protocol. In this case the command returns
an empty string. If name is specified but command isn’t, then the current
command for name is returned, or an empty string if there is no handler
defined for name. If command is specified as an empty string then the current
handler for name is deleted and it is removed from the WM_PROTOCOLS
property on window; an empty string is returned. Lastly, if neither name
nor command is specified, the command returns a list of all the protocols for
which handlers are currently defined for window.

Tk always defines a protocol handler for WM_DELETE_WINDOW, even if you haven’t
asked for one with wm :protocol. If a WM_DELETE_WINDOW message arrives when you
haven’t defined a handler, then Tk handles the message by destroying the window for which
it was received. .RE

Chapter 3: Control 133

wm :sizefrom window ?who?

If who is specified, it must be either program or user, or an abbreviation of
one of these two. It indicates whether window’s current size was requested by
the program or by the user. Some window managers ignore program-requested
sizes and ask the user to manually size the window; if user is specified then
the window manager should give the window its specified size without asking
the user for assistance. If who is specified as an empty string, then the current
size source is cancelled. If who is specified, then the command returns an
empty string. Otherwise it returns user or window to indicate the source of the
window’s current size, or an empty string if no source has been specified yet.
Most window managers interpret “no source” as equivalent to program.

wm :state window
Returns the current state of window: either normal, iconic, or withdrawn.

wm :title window 7string?
If string is specified, then it will be passed to the window manager for use as the
title for window (the window manager should display this string in window’s
title bar). In this case the command returns an empty string. If string isn’t
specified then the command returns the current title for the window. The title
for a window defaults to its name.

wm :transient window ?master?

If master is specified, then the window manager is informed that window is a
transient window (e.g. pull-down menu) working on behalf of master (where
master is the path name for a top-level window). Some window managers will
use this information to manage window specially. If master is specified as an
empty string then window is marked as not being a transient window any more.
If master is specified, then the command returns an empty string. Otherwise
the command returns the path name of window’s current master, or an empty
string if window isn’t currently a transient window.

wm :withdraw window

Arranges for window to be withdrawn from the screen. This causes the window
to be unmapped and forgotten about by the window manager. If the window
has never been mapped, then this command causes the window to be mapped
in the withdrawn state. Not all window managers appear to know how to
handle windows that are mapped in the withdrawn state. Note: it sometimes
seems to be necessary to withdraw a window and then re-map it (e.g. with
wm :deiconify) to get some window managers to pay attention to changes in
window attributes such as group.

"Sources Of Geometry Information"

Size-related information for top-level windows can come from three sources. First, geometry
requests come from the widgets that are descendants of a top-level window. Each widget
requests a particular size for itself by calling Tk_GeometryRequest. This information is
passed to geometry managers, which then request large enough sizes for parent windows so
that they can layout the children properly. Geometry information passes upwards through
the window hierarchy until eventually a particular size is requested for each top-level win-

134 No Title

dow. These requests are called internal requests in the discussion below. The second source
of width and height information is through the wm :geometry command. Third, the user
can request a particular size for a window using the interactive facilities of the window
manager. The second and third types of geometry requests are called external requests in
the discussion below; Tk treats these two kinds of requests identically.

"Ungridded Geometry Management"

Tk allows the geometry of a top-level window to be managed in either of two general ways:
ungridded or gridded. The ungridded form occurs if no wm :grid command has been issued
for a top-level window. Ungridded management has several variants. In the simplest variant
of ungridded windows, no wm :geometry, wm :minsize, or wm :maxsize commands have
been invoked either. In this case, the window’s size is determined totally by the internal
requests emanating from the widgets inside the window: Tk will ask the window manager
not to permit the user to resize the window interactively.

If a wm :geometry command is invoked on an ungridded window, then the size in that
command overrides any size requested by the window’s widgets; from now on, the win-
dow’s size will be determined entirely by the most recent information from wm :geometry
commands. To go back to using the size requested by the window’s widgets, issue a wm
:geometry command with an empty geometry string.

To enable interactive resizing of an ungridded window, one or both of the wm :maxsize
and wm :minsize commands must be issued. The information from these commands will
be passed to the window manager, and size changes within the specified range will be
permitted. For ungridded windows the limits refer to the top-level window’s dimensions in
pixels. If only a wm :maxsize command is issued then the minimum dimensions default to 1;
if only a wm :minsize command is issued then the maximum dimensions default to the size
of the display. If the size of a window is changed interactively, it has the same effect as if
wm :geometry had been invoked: from now on, internal geometry requests will be ignored.
To return to internal control over the window’s size, issue a wm :geometry command with
an empty geometry argument. If a window has been manually resized or moved, the wm
:geometry command will return the geometry that was requested interactively.

"Gridded Geometry Management"

The second style of geometry management is called gridded. This approach occurs when one
of the widgets of an application supports a range of useful sizes. This occurs, for example,
in a text editor where the scrollbars, menus, and other adornments are fixed in size but the
edit widget can support any number of lines of text or characters per line. In this case, it
is usually desirable to let the user specify the number of lines or characters-per-line, either
with the wm :geometry command or by interactively resizing the window. In the case of
text, and in other interesting cases also, only discrete sizes of the window make sense, such
as integral numbers of lines and characters-per-line; arbitrary pixel sizes are not useful.

Gridded geometry management provides support for this kind of application. Tk (and
the window manager) assume that there is a grid of some sort within the application and
that the application should be resized in terms of grid units rather than pixels. Gridded
geometry management is typically invoked by turning on the setGrid option for a widget; it
can also be invoked with the wm :grid command or by calling Tk_SetGrid. In each of these
approaches the particular widget (or sometimes code in the application as a whole) specifies

Chapter 3: Control 135

the relationship between integral grid sizes for the window and pixel sizes. To return to
non-gridded geometry management, invoke wm :grid with empty argument strings.

When gridded geometry management is enabled then all the dimensions specified in
wm :minsize, wm :maxsize, and wm :geometry commands are treated as grid units rather
than pixel units. Interactive resizing is automatically enabled, and it will be carried out
in even numbers of grid units rather than pixels. By default there are no limits on the
minimum or maximum dimensions of a gridded window. As with ungridded windows,
interactive resizing has exactly the same effect as invoking the wm :geometry command.
For gridded windows, internally- and externally-requested dimensions work together: the
externally-specified width and height determine the size of the window in grid units, and
the information from the last wm :grid command maps from grid units to pixel units.

Bugs
The window manager interactions seem too complicated, especially for managing geometry.
Suggestions on how to simplify this would be greatly appreciated.

Most existing window managers appear to have bugs that affect the operation of the wm
command. For example, some changes won’t take effect if the window is already active: the
window will have to be withdrawn and de-iconified in order to make the change happen.

Keywords

aspect ratio, deiconify, focus model, geometry, grid, group, icon, iconify, increments, posi-
tion, size, title, top-level window, units, window manager

Short Contents

1 General . ..o
2 Widgets . o
3 Control ..o

Table of Contents

... 1
1 General......... ... 3
1.1 Introductiono 3
1.2 Getting Started 3
1.3 Common Features of Widgetso i, 4
1.4 Return Values. ... e 5
1.4.1 Widget Constructor Return Values........................ 5
1.4.2 Widget Return Values.............o, 5
1.4.3 Control Function Return Values........................ ... 6
1.5 Argument Lists ..o 6
1.5.1 Widget Functions i 6
1.5.2 Widget Constructor Argument Lists....................... 7
1.5.3 Concatenation Using ‘" in Argument List................. 7
1.6 Lisp Functions Invoked from Graphics......................... 7
1.7 Linked Variables i 9
1.8 tkecommnecto o 10
2 Widgets ... 13
2.1 bUbtOM . .o e 13
S TIOPSIS « ¢ ettt e 13
Standard Optionsttt 13
Arguments for Button....... 13
Description 14

A Button Widget’s Argumentsooiiiiiiiiiieii.... 14
"Default Bindings"o 15
Keywords 15
2.2 lStbOX . oo 15
810 0 P 15
Standard Options ... 15
Arguments for Listbox 16
Description 16

A Listbox’s Arguments.o.uiiiiiii 16
"Default Bindings"o 18
Keywordso 18
2.3 scaAle .. 18
SYTOPSIS .+« e ettt 19
Standard Optionsoiiii i 19
Arguments for Scale......... ... 19
Description e 20

A Scale’s" Argumentsommand" 21
Bindings . ..o 21

iii

No Title

Keywords . ..o 22
2.4 CATIVAS . ottt ettt e 22
SYTOPSIS « ¢ e ettt 22
Standard Options ... 22
Arguments for Canvas. 22
Introduction 23
Display List. ... 23
Ttem Ids And Tagsc.veii e 23
Coordinatesottt e 24
Transformations.o 24
Indices. ... 24
A Canvas Widget’s Arguments ..., 25
Overview Of Item Types ...t 34
Arc ThemS . o 34
Bitmap Items 35
Line Ttemsot 36
Oval Themso o 37
Polygon Ttems 38
Rectangle Ttems. ... 39
Text Ttems . . oo 40
Window Ttems 41
Application-Defined Item Types...........cooiiiiiiiii ... 42
Bindingso 42
Credits . ..o 42
Keywords 42
D278 5 T 41 Tc) 01 43
SYTIOPSIS .« « e ettt 43
Standard Options ... 43
Arguments for Menu........... . 43
Introductiono 43
Command Entries.o 44
Separator Entries e 44
Check-Button Entries ... 44
Radio-Button Entriesoo i 44
Cascade EnNtries. 45
A Menu Widget’s Arguments.ooviiiiiiiieninen.. 45
Default Bindings 49
Bugs. .o 49
Keywordso 49
2.6 SCrollbar 49
SYTOPSIS .+« e et 50
Standard Options 50
Arguments for Scrollbar....... 50
Description 50
A Scrollbar Widget’s Arguments ..o, 51
Bindingsoon 51
Keywordso 52

2.7 checkbutton. . ..ot 52

010 01 PP 52

Standard Optionsouiiii 52
Arguments for Checkbutton........... 52
Description 54
A Checkbutton Widget’s Arguments.cooiiiiia... 54
Bindings 56
Keywords 56
2.8 menubutton........ ..o 56
S TIOPSIS « e e ettt e 56
Standard Options 56
Arguments for Menubutton 56
Introduction 57
A Menubutton Widget’s Arguments............................. 58
"Default Bindings"o 58
Keywordso 59
2.0 BEX b et 59
SYTIOPSIS .+« e vttt 59
Standard Options 59
Arguments for Texto 59
Description 60
IndiCes . . v 60
0 P 62
MaATKS e 63
WINAOWS . o e 64
The Selectiono 64
The Insertion Cursor.ovueieeiiie i, 64
A Text Widget’s Arguments. ..., 64
Bindings . ..o 70
"Performance [ssues" 70
Keywordso 71
210 enbry .o 71
SYTOPSIS « « e vttt 71
Standard Options 71
Arguments for Entry 71
Description 71
A Entry Widget’s Arguments. ..., 72
"Default Bindings" 74
Keywordso 75
2,11 IESSAZE. o ettt 75
Sy TIOPSIS + v v e ettt e e e e 75
Standard Optionsouiiiii i 75
Arguments for Message. ... 75
Description e 76
A Message Widget’s Argumentst ... 76
"Default Bindings" 77
BUgS . o 7
Keywordso 77

212 T . oot 77

vi

3

010 01 PP 7
Standard Optionsouiiii 77
Arguments for Frame 77
Description e 78

A Frame Widget’s Arguments ..., 78
Bindings 78
Keywordso 78
2.13 label. ... 79
S TIOPSIS « « e ettt e 79
Standard Options 79
Arguments for Label 79
Description 79

A Label Widget’s Arguments............ooiiiiiiiiieiin ... 79
Bindings 80
Keywordso 80
2.14 radiobutton........ 80
SYTOPSIS « .« ettt 80
Standard Optionsoiii i 80
Arguments for Radiobutton L. 80
Description 82

A Radiobutton Widget’s Arguments..................oooiia... 82
Bindingso 83
Keywordso 83
2.15 toplevel. 84
SYTIOPSIS « ¢ ettt e 84
Standard Optionsouiiiii i 84
Arguments for Toplevel 84
Description 84

A Toplevel Widget’s Arguments 84
Bindings . ..o 85
Keywordso 85
Control........ 87
3.1 after. ..o 87
S TIOPSIS « t ettt e 87
Description 87
Keywords . ..o 87
3.2 DI .. 87
810 0 AP 87
Description e 87
Keywordso 92
3.3 deStrOy .. vv i 92
SYTOPSIS « ¢ e ettt 92
Description 93
Keywordso 93
3.4 thk-dialogo 93
SYTOPSIS .+« e ettt 93

Description 93

No Title

Keywordso 93
R 28 T o v 94
SYTOPSIS « « e ettt 94
Description 94
Keywordsooo 94
3.6 fOCUS. .o 94
SYTOPSIS « .« e et 94
Description 94
"Focus Events" 95
Keywordso 95
3.7 grab 96
SYTOPSIS .+« e et 96
Description 96
Bugs. .o 97
Keywordso 97
3.8 tk-listbox-single-select.........o i 97
SYTIOPSIS .+« e vttt 97
Description e 97
Keywordso 98
3.9 JOWeT . 98
SYTOPSIS .+« ettt 98
Description 98
Keywordso 98
3.10 tk-menu-bar 98
S TIOPSIS « ¢ ettt e 98
Description 98
"Menu Traversal Bindings".............oo i i 99
Keywordso 100
311 OpbION . o oot 100
S TIOPSIS .+« vttt e 100
Description 100
Keywords. .. .o 101
312 OPLIONS . v v 101
Description 101
Keywords 108
3.13 pack-old 108
SYTOPSIS « « v e et e 108
Description 109
Keywords e 111
314 paCK . 111
SYTOPSIS « vttt 111
Description 111
"The Packer Algorithm" i, 113
X PANSION " . . 114
"Geometry Propagation"....... i i i 114
"Restrictions On Master Windows"o, 114
"Packing Order" e 114

Keywords 114

vii

viii

315 place .o 115
SYTIOPSIS « vttt 115
Description 115
"Fine Points" 117
Keywords. . ..o 117

316 TAISE . .ttt 118
SYTOPSIS « vttt 118
Description 118
Keywordso 118

317 selection.o 118
SYNOPSIS « vttt 118
Descriptiont 118
Keywords. .. .o 120

318 send .. 120
SYTOPSIS « ettt et e 120
Description 120
SECUTTEY vttt 120
Keywordso 120

310tk 120
S TIOPSIS « ettt et e 120
Description 121
Keywords. . ..o 121

3.20 tKRETTOT. . . 121
S TIOPSIS « ettt et e 121
Description e 121
Keywords. .. oo 122

321 BRVATS . oo 122
Description 122
Keywordso 123

3.22 tRwalb ... 123
SYTOPSIS « v et e 123
Descriptiont 123
Keywordso 123

3.23 update 123
S TIOPSIS « « vttt e 123
Description 123
Keywords.o 124

3.24 winfo. ..o 124
10 05 T P 124
Description 124
Keywords. . ..o 127

3220 WL oot 127
10 05 T P 128
Description 128
"Sources Of Geometry Information"............................ 133
"Ungridded Geometry Management" 134
"Gridded Geometry Management", 134

No Title

Keywords

X

