
Nautilus – Inside the Shell

Alexander Larsson - Red Hat, Inc

alexl@redhat.com

Nautilus – Inside the shell Alexander Larsson

Table of Contents
1 Introduction...3
2 The basic modules...3

2.1 Gnome-vfs...3
2.2 Bonobo..3
2.3 EEL..4
2.4 Nautilus..4

3 Source Tree Layout...4
3.1 EEL..4
3.2 Nautilus..5

4 The Nautilus Window exposed..7
4.1 NautilusWindow...7
4.2 The NautilusView lifecycle..8
4.3 The standard directory views...8

5 The Nautilus I/O Model..9
5.1 NautilusFile...9
5.2 NautilusDirectory..9
5.3 Caching data..10

6 Ways to plug in code to Nautilus...10
6.1 VFS module..10
6.2 NautilusView...10
6.3 Context menu item..10
6.4 Property page..11
6.5 Side bar view...11
6.6 Mime handler..11

7 Various Objects/subsystems...11
7.1 NautilusIconFactory...11
7.2 NautilusIconContainer...12
7.3 NautilusVolumeManager...12
7.4 Thumbnailing..13
7.5 Metadata..13
7.6 Trash..13
7.7 Preferences..14

Page 2

Nautilus – Inside the shell Alexander Larsson

1 Introduction
Nautilus is the official file manager and desktop shell for the GNOME desktop. This paper
will give an overview of the design and implementation of Nautilus and some parts of the
GNOME platform that it relies on. I will also give concrete pointers to interesting parts of the
sources for developers who wish to hack on Nautilus, or just learn more about it.

This paper requires a basic understanding of how Nautilus works from the user side, and
basic knowledge of GNOME programming.

2 The basic modules
Nautilus depends on most of the GNOME development platform, but there are some modules
that are particularly important. This chapter will describe these modules and how they relate
to Nautilus.

2.1 Gnome-vfs
Gnome-vfs is the basic I/O abstraction layer in GNOME. It implements a posix-like file API
(open, read, write, close, readdir etc) that works on URIs instead of pathnames. The library is
modular, so by writing modules that handle new types of URIs the number of protocols that
gnome-vfs supports can be extended. Gnome-vfs ships with a few modules, including local
files, ftp, http and ssh. Gnome-vfs-extras contains the popular smb method that allows you to
read windows network shares.

The gnome-vfs file operations come in two flavours, synchronous and asynchronous. The
synchronous versions work much like the normal posix calls, the call blocks while waiting
for the result, which is then returned. The asynchronous versions are a bit different. Using
these you register the operation you want to execute, and a function callback that you want
called when the I/O has finished. Gnome-vfs then assigns the operations to a set of worker
threads that execute the I/O, and wake up the main thread when done. In order to be able to
respond to user input quickly and to never block the user interface Nautilus uses only
asynchronous operations.

Gnome-vfs also includes the GNOME mimetype system. It contains code that can detect the
mimetype of files, and a database that lets you map from mimetypes to the application that
can handle it. It also allows for per-user overrides of this database so that the user can
configure his own preferred application for different types of files.

2.2 Bonobo
Bonobo is the GNOME component model. Components in general are a way to declare
public interfaces for well specified operations, so that objects implementing these can be
found at runtime. This means you can update or even switch implementations of some
services, without changing any code.

Bonobo in the GNOME 2 platform consists of three parts, bonobo-activation, libbonobo and
libbonoboui. bonobo-activation is a database of installed components that allows you to write
queries asking for components that satisfy some requirements. libbonobo is the user interface
independent part of the component framework. libbonoboui contains user interface specific

Page 3

Nautilus – Inside the shell Alexander Larsson

parts of the framework, in particular the BonoboControl interface that allows you to
embed a user interface object in an application. Controls use an xml-based description of the
menus and toolbars of an application so that menu items and toolbar buttons from different
components can be merged into the same set of menus.

Nautilus mainly uses Bonobo for the BonoboControl interface, in order to embed file and
directory views into the Nautilus window. However, the metadata handling does use the user
interface independent parts of bonobo.

2.3 EEL
EEL stands for “Eazel Extension Library”, and is really a part of Nautilus that has been split
out as a separate module. It was originally part of Nautilus and called libnautilus-internal, but
at some point in the development it was split out and renamed. This library contains utility
functions and widgets that are useful to have when writing Nautilus, but that aren't really
dependent on the environment of the Nautilus application.

This library is not in general meant to be used by other applications. It gives no backwards or
forward compatibility guarantees and has no version management. It is meant to be upgraded
in lockstep with Nautilus. However, sometimes code from EEL is moved to parts of the
GNOME platform that other applications use. This happens when the code in question has
shown itself stable and useful.

2.4 Nautilus
Nautilus itself is made up of several parts. Apart from the main executable there are
executables and libraries for some of the components, and the libnautilus-private library that
contains common functionality for the executables. There is also the public library libnautilus
and its headers. It is used by third parties that want to implement nautilus extensions.

3 Source Tree Layout

3.1 EEL
All the code in EEL is in the eel subdirectory. Here is a description of some important files
there:

eel-accessibility.c:
Utilities to help writing code for accessibility support.

eel-art-extensions.c, eel-art-gtk-extensions.c, eel-glib-
extensions.c, eel-gnome-extensions.c, eel-dateedit-
extensions.c, eel-gconf-extensions.c, eel-gdk-extensions.c,
eel-gdk-pixbuf-extensions.c, eel-gtk-extensions.c, eel-pango-
extensions.c, eel-vfs-extensions.c, eel-xml-extensions.c:
These contains helper functions that extend the API of some gnome platform libraries.

eel-canvas.c, eel-canvas-rect-ellipse.c, eel-canvas-util.c:
These are imported from the foocanvas module, which is a faster and simpler version of the
Gnome canvas. It is used by the Nautilus icon view.

Page 4

Nautilus – Inside the shell Alexander Larsson

eel-background-box.c, eel-background.c:
Code to handle nice backgrounds with colors, images or gradients. This is used in places in
Nautilus where the user can configure the background.

eel-editable-label.c:
A widget that allows editing of a multi-line single paragraph string. This is used when
renaming files in the icon view.

eel-ellipsizing-label.c:
A version of label widget that ellipsizes the text. Ellipsizing means replacing part of the string
with “...” in order to make it fit in the available area.

eel-preferences.c, eel-preferences-glade.c, eel-enumeration.c:
Functions for implementing preferences and preference dialogs.

eel-i18n.c:
Functions for string translation.

eel-stock-dialogs.c:
Functions to show some standard types of dialogs that Nautilus uses. Includes error and
warning dialogs, timed dialogs (show up after a timeout and lets you cancel the operation)
and helper functions to generate more general dialogs.

eel-string.c:
Some string helper functions

eel-string-list.c
A list of strings container, with lots of functionality.

3.2 Nautilus
The Nautilus code is split up into many directories. Here is an overview of what the different
directories contain:

libnautilus-private/:
This is a library that is internal to Nautilus. It contains much of the core Nautilus
functionality, such as metadata handling, volume management, trash handling, file
operations, the icon container widget and drag and drop handling.

libnautilus/:
Contains the public library libnautilus, its headers and idl files. It is used by all Nautilus
components, and it handles how views are connected to the Nautilus window and how
components get integrated with the Nautilus menus and toolbars. The basic Nautilus
component interfaces (Nautilus::View and Nautilus::ViewFrame) are described
in the nautilus-view-component.idl file. The standard Nautilus menu and toolbar
paths are listed in the nautilus-bonobo-ui.h file

src/
This is where the main application lives. Here is nautilus-main.c where execution
starts, and here are important files like nautilus-application.c and nautilus-
window.c. Much of the code here is about handling the various dialogs and windows that
Nautilus show, and managing the menus and toolbars. Here we also have the code that selects
and manages views when they are embedded in Nautilus windows (nautilus-window-
manage-views.c).

Page 5

Nautilus – Inside the shell Alexander Larsson

src/file-manager/
Here lives the implementation of the default directory views, the icon view (fm-icon-
view.c) and the list view (fm-list-view.c). These both inherit from a common class
defined in fm-directory-view.c. The file fm-properties-window.c
implements the file properties dialog.

libnautilus-adapter/
This library lets nautilus wrap ordinary bonobo controls as Nautilus views.

components/
This directory contains subdirectories for the components shipped with Nautilus. There are
the components that implement sidebar tabs: emblem, history, notes and tree. text
is the default view for text files. throbber contains the throbber used in the toolbar to show
that Nautilus is working. image_properties contains a property page for image files.
The code in adapter is used by libnautilus-adapter. sample contains a sample
NautilusView that can be used as a starting point for new views. loser contains a test
component that can be instructed to fail in various ways.

cut-n-paste-code/libegg
This directory contains code from the libegg library. The update-from-egg.sh script
can be used to update the code to the latest version from libegg in cvs. Currently used code
from libegg is: recent files, treeview multiple file dnd and per-screen help and exec functions
(for multihead).

cut-n-paste-code/widgets/gimphwrapbox
The GtkWrapBox widget, copied from the Gimp.

libbackground/
This is really a separate cvs module, inherited into Nautilus using cvs magic. Its used to
handle the desktop background settings.

Page 6

Nautilus – Inside the shell Alexander Larsson

4 The Nautilus Window exposed

4.1 NautilusWindow
The main Nautilus window class is NautilusWindow. It derives from BonoboWindow in
order to allow it to use the Bonobo menu and toolbar merging code. A typical window looks
like this:

standard toplevel menus and toolbars, including some operations like cut and paste,
bookmarks, history and navigation. The user interface for this is specified in the
src/nautilus-shell-ui.xml file.

The main purpose of the shell is to handle navigation between locations and to activate and
manage the components used to show the current location. In order to actually show the
current location the shell must locate and instantiate an appropriate component, and the
component must communicate with the shell.

The interface used for this is defined in libnautilus/nautilus-view-
component.idl and consists of two parts: NautilusView, and
NautilusViewFrame. NautilusView is the interface the component implements. Its
very simple, it just has a way to tell the component to start or stop loading a URI.
NautilusViewFrame is the interface the shell implements. Every view must be placed in
a view frame, and the component can use this interface to communicate with the shell.

In addition to this interface components use the libbonoboui interfaces to specify menus,
toolbars and actions that are merged into the shell. This is how location specific operations
are added to the shell, such as the ones related to file management.

In addition to the main view in the window there is a sidebar. The sidebar consists of a set of
NautilusViewFrames that load sidebar components. These components are activated
when the window is created and the currently visible component can be selected with a menu
at the top of the sidebar.

Page 7

Nautilus – Inside the shell Alexander Larsson

The desktop window is really just a normal window with everything but the main
NautilusView hidden.

4.2 The NautilusView lifecycle
When a user tells the shell to load a new location, for example by entering something in the
location bar, the shell must figure out how to display this location. Here are the steps that
happen in this case: (Most of this happens in nautilus-window.c, nautilus-
window-manage-views.c and nautilus-applicable-views.c)

1. The NautilusLocationBar fires the location_changed signal and the signal handler
calls nautilus_window_go_to, passing it the URI to be opened.

2. The UI is set up for a load (stop enabled, throbber on) and the attributes for the target URI
are requested using gnome-vfs.

3. The attributes of the file are used to figure out the default component to use for the URI.
This is done by constructing a bonobo-activation query. Components are matched in the
following order: component specified in the metadata for the location (set if the user
visited the location with a non-default component before), default gnome-vfs component
for the mimetype, gnome-vfs short list of components for the mimetype, components that
lists the mimetype or the super-mimetype (e.g. image/*) in the
bonobo:supported_mime_types attribute.

4. If the component selected is different than the currently loaded component the new
component is loaded.

5. All views (main view and sidebar views) are told to load the location.

6. The view reports that loading is underway, and if we loaded a new main view component
the old component is replaced by the new one.

7. The views periodically report their status, and then finally report that they are done.

8. The UI is set into a non-loading state. (Throbber disabled, stop disabled.)

When the view component is loading it will typically first merge in the specific menu and
toolbar items that it supports, then it will schedule asynchronous gnome-vfs calls to load the
file or directory, and then either wait until the file is loaded to display it, or incrementally
display information while the data is being loaded.

4.3 The standard directory views
In order to act as a file manager the shell needs a view for directories. Nautilus ships with two
views for directories, the icon view (FMIconView) and the list view (FMListView). The
code for these views are in src/file-manager.

Both of these views inherit from FMDirectoryView, which has a lot of common code for
handling directories. It merges in the nautilus-directory-view-ui.xml UI
description, which contains all generic file operations like open, delete, rename, etc.

This directory also contains FMPropertiesWindow, which is the file properties window
that both directory views can present, and FMDesktopIconView which is derived from
the icon view adding support for desktop icons (trash, home, mounted volumes) and their

Page 8

Nautilus – Inside the shell Alexander Larsson

operations.

FMIconView merges some icon specific menu entries, and implements directory display as
a set of icons with labels. The icon drawing is handled by the FMIconContainer class
which is a subclass of NautilusIconContainer from libnautilus-private that just fills
out the details related to file I/O and sorting.

FMListView implements a directory view as a list of icons, file names and file attributes.
The widget itself is a GtkTreeView with a custom tree model for files (FMListModel).

5 The Nautilus I/O Model

5.1 NautilusFile
As explained above Nautilus uses asynchronous gnome-vfs operations in order to avoid
blocking the main thread, causing an unresponsive user interface. It is not allowed to wait for
a piece of information being read from a file without returning to the main loop to handle
user input while waiting.

In order to make this easier the NautilusFile object has been introduced. Each
NautilusFile object contains all the known information about a specific file, and when
you want information about a file you just ask for the NautilusFile for it. Initially very
little information is known about the file, just the name, and if you ask for some information
about the object it will just return “I don't know”. This happens because NautilusFile
isn't allowed to start a synchronous I/O request to read the information. Instead you have to
request the information you need to be read.

There are two ways to request information about a file. If you just want to get the current
information about a file, and don't care about future changes, you can call
nautilus_file_call_when_ready with a NautilusFileAttributes bitmask
stating the attributes you are interested in. The callback you supply will be called when the
information you wanted is available in the NautilusFile. You just use the normal
accessor functions to get the information. If the information is already known the callback
will be called immediately, otherwise asynchronous I/O operations are scheduled to read it.

If you want to constantly show information about a file you instead use the
nautilus_file_monitor_add call, stating the attributes you are interested in. You can
then connect to the changed signal on the NautilusFile, which will be emitted every
time some file information changes. Changes to files done from Nautilus will always be
noticed, since all file operations in Nautilus are done through NautilusFile. If FAM is
supported on the system modifications from the outside will also be noticed.

5.2 NautilusDirectory
Similarly to NautilusFile the NautilusDirectory object lets you handle directories
of files. These work much like NautilusFile, you can add monitors to them, and the
files_changed signal will be emitted whenever some file in the directory changes. You
can also add a callback which will be called with a list of files when the directory has finished
loading.

Page 9

Nautilus – Inside the shell Alexander Larsson

5.3 Caching data
The NautilusFile is the way Nautilus caches data about files. The information stored in
the objects are kept until the last reference to the object is dropped. This means that the exact
behaviour of Nautilus depends on whether someone keeps around a reference to the
NautilusFile or not. Typically only the files in a directory visible in a Nautilus window are
loaded in memory. If you really must have the latest information about a file you have to call
nautilus_file_invalidate_attributes or
nautilus_file_invalidate_all_attributes on the file to force Nautilus to
forget the state of the file. If FAM is active this is generally not as big a problem, but
remember that FAM doesn't work on all filesystems and different gnome-vfs methods.

6 Ways to plug in code to Nautilus
There are several ways to extend the capabilities of Nautilus without directly modifying the
code. This way you can implement new functionality or integrate other applications with
Nautilus.

6.1 VFS module
The most low-level way to extend Nautilus is by writing a new gnome-vfs module. This
extends the set of protocols and filesystems that Nautilus and other GNOME applications can
read files from. When doing this you can't really implement specific user interface for your
extension, because gnome-vfs is just a filesystem API. However, all GNOME applications
can immediately use your module to load and save files.

6.2 NautilusView
The most generic way to extend Nautilus is to write a new NautilusView. The view can
specify what mimetypes it supports, and what URI schemes it supports. This way you can
write both viewers for particular types of files and for directories. The directory viewers can
even be set up to be used only when there are files of a particular type in the directory.

To implement a new NautilusView is quite a lot of work, since the view has to do
everything related to I/O and widget rendering. Views distributed outside Nautilus cannot use
libnautilus-private, and therefore not e.g. NautilusFile, since this is private unstable
API. However, the complexity of writing a NautilusView can pay of since you can
present the information you want in exactly the way you want.

6.3 Context menu item
If you want to integrate an application with the file manager you can install a context menu
component for a particular file type. This will add a menu item in the context menu for files
in the icon and list views that lets you launch your application on the file(s). The name of the
menu item can be translated.

This works by installing a component in bonobo-activation that has a boolean attribute called
nautilus:context_menu_handler set, and optionally a
nautilus:can_handle_multiple_files attribute. When the other normal
attributes of the component (bonobo:supported_mime_types,

Page 10

Nautilus – Inside the shell Alexander Larsson

bonobo:supported_uri_schemes, etc) matches the files selected when the context
menu is showed, all the attributes starting with nautilusverb: are read and put into the
context menu.

The attributes can look like this: (the attributes with underscores will be translated by
intltool): <oaf_attribute name="nautilusverb:DoExtract"
type="string" _value="Extract To..."/>

When the context menu item is selected the component will be activated, and the
Bonobo::Listener::event() method will be called with a sequence of the selected
URIs as arguments.

Examples of how to implement context menu plugins are available in file-roller, nautilus-cd-
burner and fontilus.

6.4 Property page
Applications can install custom notebook pages for the file properties dialog. These can show
and/or edit properties of files in a way that are more appropriate for some specific type. This
is done by installing a component that implements BonoboControl with the string
attribute nautilus:property_page_name specified. The string is used as the name of
the tab, and can be translated. The normal Bonobo attributes like
bonobo:supported_mime_types are used to specify what files the page should be
used for.

The Nautilus source contains the image properties component which is a good example of
how to write property pages. It is located in components/image_properties.

6.5 Side bar view
Just like you can implement main NautilusViews you can also implement custom views
for the sidebar. These are normal NautilusViews that has the
nautilus:sidebar_panel_name property set. The value of this property is the name
used in the sidebar menu.

In addition to the normal NautilusView interface the component can also set the
tab_image property on the BonoboControl property bag in order to show an icon in the
sidebar. See the notes sidebar in the Nautilus code for an example of this.

6.6 Mime handler
The easiest way to integrate with Nautilus is to just install gnome-vfs mime data files so that
the files of the type you handle are recognized by GNOME as handled by your application.

7 Various Objects/subsystems
This section will describe various important subsystems in Nautilus that are used internally.
They are all in libnautilus-private, so only Nautilus code can use them, and the APIs are
subject to regular changes.

Page 11

Nautilus – Inside the shell Alexander Larsson

7.1 NautilusIconFactory
The icon factory is the icon lookup and cache system in Nautilus. It works in two steps, first
it maps from a NautilusFile to an icon name, then it uses the current icon theme to look
up the image file.

The mapping is done using nautilus_icon_factory_get_icon_for_file()
which looks at the type and state of the file to generate the icon. If there is a thumbnail stored
for the file or a specific icon stored in the file metadata the absolute filename to this file is
returned instead of the icon name.

The second step is to get a pixbuf representing the icon. This is accomplished by calling
nautilus_icon_factory_get_pixbuf_for_icon() which returns a reference to
a pixbuf which is also stored in the icon cache. It also returns various information about the
icon, like where to embed text in it and where to position emblems.

There are also convenience functions to do both steps in one go, and some functions to
support emblem icons.

Under the covers all the mapping, thumbnail handling and icon theme support is done by
calls to libgnomeui, so other applications can use these to get the same icons for files that
Nautilus does. The icon factory is just a convenient wrapper and cache for these that fit well
in the NautilusFile system.

7.2 NautilusIconContainer
NautilusIconContainer and NautilusIconCanvasItem make up the widget that
the icon view uses to render the view. It is derived from EelCanvas which is an imported
copy of the FooCanvas module. This is a simplified, faster version of the gnome canvas.

The container is abstracted out from the I/O model, and you need to derive from it to add the
functionality needed to show file data. This is done by the FMIconContainer class in
Nautilus.

The container implements all the functionality needed by the icon view, such as icon scaling,
renaming, text embedding in icons, different forms of icon layout, drag and drop, and
zooming.

7.3 NautilusVolumeManager
The NautilusVolumeManager object (there is only one) is what keeps track of the
mounted filesystems in the system, and the available removable media volumes. It
periodically looks for changes in the system mtab and updates its internal tables. If you are
interested in changes to the mounts you can connect to the volume_mounted and
volume_unmounted signals.

Mountpoints in the system are exposed using the NautilusVolume type, which allow you
to quickly look at the type of the mount, mount path, device path and other information. You
can also get a list of all the removable media volumes in the system, enumerate all the
currently mounted volumes and mount/unmount/eject removable volumes.

Page 12

Nautilus – Inside the shell Alexander Larsson

One issue to be wary of in the volume monitor is that the NautilusVolume objects are not
persistent between reads of the mtab file, so you can't keep around references to them.

7.4 Thumbnailing
The Nautilus thumbnail system consists of a priority queue where NautilusFile objects
that should be thumbnailed are stored and a separate thread that keeps generating thumbnails
for the first file in the queue. When the thumbnail is finished the changed signal on the
NautilusFile is emitted and the views note that the icon must be redrawn. When the icon
for the file is looked up again, the icon factory will notice the newly generated thumbnail and
use that.

There are functions to move thumbnails to the top of the priority queue and to remove them
from the queue. The views uses these in order to prioritize the icons currently visible on the
screen, and to avoid thumbnailing files no longer in an active window.

7.5 Metadata
Nautilus can store metadata information about files. This information is stored as an xml file
per directory in $HOME/.nautilus/metafiles. At some point we hope to migrate the
metadata system to gnome-vfs, but currently it can only be used by Nautilus.

The metadata system is implemented as a Bonobo server that handles all accesses to the
metadata files. This server lives inside the first Nautilus process that is started by the user
(unless it exits with no other users), and all other Nautilus processes talks to it. This means
metadata is always synchronized between different instances of Nautilus and out of process
components. Changes to metadata are sent to all objects that monitor the metadata for the
directory.

When using metadata inside Nautilus all you have to do is use the NautilusFile API
related to metadata. It allows you to get and set metadata of various types, and if you monitor
the file, changes to metadata will cause the changed signal to be emitted on the file, and the
files_changed signal on the directory.

7.6 Trash
Nautilus uses the gnome-vfs trash system. It works by creating a trash directory for each
mount point, when it can. The directory is called .Trash-username and stored in the top
directory of the mount. For files on the same device as the user homedir $HOME/.Trash is
used instead.

In order to make all these directories understandable for the user Nautilus introduces the fake
URI trash:, which contains the merged information from all the trash directories. The trash
directories are managed by the NautilusTrashMonitor object. When new trash
directories are discovered it emits the check_trash_directory_added signal. These
signals are caught by a special type of NautilusDirectory called
NautilusTrashDirectory. This object handles the merging of the real
NautilusDirectory objects for the trash directories, and corresponds to the trash:
location.

The trash monitor also emits the trash_state_changed signal whenever the trash state

Page 13

Nautilus – Inside the shell Alexander Larsson

changes from empty to full or back. This is used to pick the right icon for the trash desktop
icon.

7.7 Preferences
Nautilus uses GConf to store its preferences, but in order to make handling preferences easier
there are some utilities in EEL to define and use application preferences. There are functions
to make it easier to write preferences dialogs, and to connect preferences to glade files.

The file libnautilus-private/nautilus-global-preferences.h lists all the
application preferences in Nautilus, and to read them you just have to call
eel_preferences_get() or a similar function.

There are also support for automatic preferences. You just give the name of the preference
and a location to store it in, typically a static global variable. EEL will then update the
variable whenever the preference value changes, so you can just access the global variable in
the code.

Page 14

