~ubuntu-branches/ubuntu/wily/apparmor/wily

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
/*
 * regexp.y -- Regular Expression Matcher Generator
 * (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
 *
 * Implementation based on the Lexical Analysis chapter of:
 *   Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman:
 *   Compilers: Principles, Techniques, and Tools (The "Dragon Book"),
 *   Addison-Wesley, 1986.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 as
 *  published by the Free Software Foundation.
 *
 *  See http://www.gnu.org for more details.
 */

%{
    /* #define DEBUG_TREE */

    #include <list>
    #include <vector>
    #include <stack>
    #include <set>
    #include <map>
    #include <ostream>
    #include <iostream>
    #include <fstream>

    using namespace std;

    typedef unsigned char uchar;
    typedef set<uchar> Chars;

    ostream& operator<<(ostream& os, uchar c);

    /* Compute the union of two sets. */
    template<class T>
    set<T> operator+(const set<T>& a, const set<T>& b)
    {
	set<T> c(a);
	c.insert(b.begin(), b.end());
	return c;
    }

    /**
     * When creating DFAs from regex trees, a DFA state is constructed from
     * a set of important nodes in the syntax tree. This includes AcceptNodes,
     * which indicate that when a match ends in a particular state, the
     * regular expressions that the AcceptNode belongs to match.
     */
    class ImportantNode;
    typedef set <ImportantNode *> NodeSet;

    /**
     * Out-edges from a state to another: we store the follow-set of Nodes
     * for each input character that is not a default match in
     * cases (i.e., following a CharNode or CharSetNode), and default
     * matches in otherwise as well as in all matching explicit cases
     * (i.e., following an AnyCharNode or NotCharSetNode). This avoids
     * enumerating all the explicit tranitions for default matches.
     */
    typedef struct NodeCases {
	typedef map<uchar, NodeSet *>::iterator iterator;
	iterator begin() { return cases.begin(); }
	iterator end() { return cases.end(); }

	NodeCases() : otherwise(0) { }
	map<uchar, NodeSet *> cases;
	NodeSet *otherwise;
    } NodeCases;


    /* An abstract node in the syntax tree. */
    class Node {
    public:
	Node() :
	    nullable(false) { child[0] = child[1] = 0; }
	Node(Node *left) :
	    nullable(false) { child[0] = left; child[1] = 0; }
	Node(Node *left, Node *right) :
	    nullable(false) { child[0] = left; child[1] = right; }
	virtual ~Node()
	{
	    if (child[0])
		    child[0]->release();
	    if (child[1])
		    child[1]->release();
	}

	/**
	 * See the "Dragon Book" for an explanation of nullable, firstpos,
	 * lastpos, and followpos.
	 */
	virtual void compute_nullable() { }
	virtual void compute_firstpos() = 0;
	virtual void compute_lastpos() = 0;
	virtual void compute_followpos() { }
	virtual int eq(Node *other) = 0;
	virtual ostream& dump(ostream& os) = 0;

	bool nullable;
	NodeSet firstpos, lastpos, followpos;
	/* child 0 is left, child 1 is right */
	Node *child[2];

	unsigned int label;	/* unique number for debug etc */
	/**
	 * We indirectly release Nodes through a virtual function because
	 * accept and Eps Nodes are shared, and must be treated specially.
	 * We could use full reference counting here but the indirect release
	 * is sufficient and has less overhead
	 */
	virtual void release(void) {
	    delete this;
	}
    };

    class InnerNode : public Node {
    public:
        InnerNode() : Node() { };
        InnerNode(Node *left) : Node(left) {};
        InnerNode(Node *left, Node *right) : Node(left, right) { };
    };

    class OneChildNode : public InnerNode {
    public:
        OneChildNode(Node *left) : InnerNode(left) { };
    };

    class TwoChildNode : public InnerNode {
    public:
        TwoChildNode(Node *left, Node *right) :  InnerNode(left, right) { };
    };

    class LeafNode : public Node {
    public:
        LeafNode() : Node() { };

    };

    /* Match nothing (//). */
    class EpsNode : public LeafNode {
    public:
    EpsNode() : LeafNode()
	{
	    nullable = true;
	    label = 0;
	}
	void release(void)
	{
	  /* don't delete Eps nodes because there is a single static instance
	   * shared by all trees.  Look for epsnode in the code
	   */
	}

	void compute_firstpos()
	{
	}
	void compute_lastpos()
	{
	}
	int eq(Node *other) {
		if (dynamic_cast<EpsNode *>(other))
			return 1;
		return 0;
	}
	ostream& dump(ostream& os)
	{
	    return os << "[]";
	}
    };

    /**
     * Leaf nodes in the syntax tree are important to us: they describe the
     * characters that the regular expression matches. We also consider
     * AcceptNodes import: they indicate when a regular expression matches.
     */
    class ImportantNode : public LeafNode {
    public:
        ImportantNode() : LeafNode() { }
	void compute_firstpos()
	{
	    firstpos.insert(this);
	}
	void compute_lastpos() {
	    lastpos.insert(this);
	}
	virtual void follow(NodeCases& cases) = 0;
    };

    /* common base class for all the different classes that contain
     * character information.
     */
    class CNode : public ImportantNode {
    public:
        CNode() : ImportantNode() { }

    };

    /* Match one specific character (/c/). */
    class CharNode : public CNode {
    public:
	CharNode(uchar c) : c(c) { }
	void follow(NodeCases& cases)
	{
	    NodeSet **x = &cases.cases[c];
	    if (!*x) {
		if (cases.otherwise)
		    *x = new NodeSet(*cases.otherwise);
		else
		    *x = new NodeSet;
	    }
	    (*x)->insert(followpos.begin(), followpos.end());
	}
	int eq(Node *other) {
		CharNode *o = dynamic_cast<CharNode *>(other);
		if (o) {
			return c == o->c;
		}
		return 0;
	}
	ostream& dump(ostream& os)
	{
	    return os << c;
	}

	uchar c;
    };

    /* Match a set of characters (/[abc]/). */
    class CharSetNode : public CNode {
    public:
	CharSetNode(Chars& chars) : chars(chars) { }
	void follow(NodeCases& cases)
	{
	    for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
		NodeSet **x = &cases.cases[*i];
		if (!*x) {
		    if (cases.otherwise)
			*x = new NodeSet(*cases.otherwise);
		    else
			*x = new NodeSet;
		}
		(*x)->insert(followpos.begin(), followpos.end());
	    }
	}
	int eq(Node *other) {
		CharSetNode *o = dynamic_cast<CharSetNode *>(other);
		if (!o || chars.size() != o->chars.size())
			return 0;

		for (Chars::iterator i = chars.begin(), j = o->chars.begin();
		     i != chars.end() && j != o->chars.end();
		     i++, j++) {
			if (*i != *j)
				return 0;
		}
		return 1;
	}
	ostream& dump(ostream& os)
	{
	    os << '[';
	    for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
		os << *i;
	    return os << ']';
	}

	Chars chars;
    };

    /* Match all except one character (/[^abc]/). */
    class NotCharSetNode : public CNode {
    public:
	NotCharSetNode(Chars& chars) : chars(chars) { }
	void follow(NodeCases& cases)
	{
	    if (!cases.otherwise)
		cases.otherwise = new NodeSet;
	    for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
		NodeSet **x = &cases.cases[*j];
		if (!*x)
		    *x = new NodeSet(*cases.otherwise);
	    }
	    /**
	     * Note: Add to the nonmatching characters after copying away the
	     * old otherwise state for the matching characters.
	     */
	    cases.otherwise->insert(followpos.begin(), followpos.end());
	    for (NodeCases::iterator i = cases.begin(); i != cases.end(); i++) {
		if (chars.find(i->first) == chars.end())
		    i->second->insert(followpos.begin(), followpos.end());
	    }
	}
	int eq(Node *other) {
		NotCharSetNode *o = dynamic_cast<NotCharSetNode *>(other);
		if (!o || chars.size() != o->chars.size())
			return 0;

		for (Chars::iterator i = chars.begin(), j = o->chars.begin();
		     i != chars.end() && j != o->chars.end();
		     i++, j++) {
			if (*i != *j)
				return 0;
		}
		return 1;
	}
	ostream& dump(ostream& os)
	{
	    os << "[^";
	    for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
		os << *i;
	    return os << ']';
	}

	Chars chars;
    };

    /* Match any character (/./). */
    class AnyCharNode : public CNode {
    public:
	AnyCharNode() { }
	void follow(NodeCases& cases)
	{
	    if (!cases.otherwise)
		cases.otherwise = new NodeSet;
	    cases.otherwise->insert(followpos.begin(), followpos.end());
	    for (NodeCases::iterator i = cases.begin(); i != cases.end(); i++)
		i->second->insert(followpos.begin(), followpos.end());
	}
	int eq(Node *other) {
		if (dynamic_cast<AnyCharNode *>(other))
			return 1;
		return 0;
	}
	ostream& dump(ostream& os) {
	    return os << ".";
	}
    };

    /**
     * Indicate that a regular expression matches. An AcceptNode itself
     * doesn't match anything, so it will never generate any transitions.
     */
    class AcceptNode : public ImportantNode {
    public:
	AcceptNode() {}
	void release(void)
	{
	  /* don't delete AcceptNode via release as they are shared,
	   * and will be deleted when the table the are stored in is deleted
	   */
	}

	void follow(NodeCases& cases __attribute__((unused)))
	{
	    /* Nothing to follow. */
	}
	/* requires accept nodes to be common by pointer */
	int eq(Node *other) {
		if (dynamic_cast<AcceptNode *>(other))
			return (this == other);
		return 0;
	}
    };

    /* Match a node zero or more times. (This is a unary operator.) */
    class StarNode : public OneChildNode {
    public:
	StarNode(Node *left) :
	    OneChildNode(left)
	{
	    nullable = true;
	}
	void compute_firstpos()
	{
	    firstpos = child[0]->firstpos;
	}
	void compute_lastpos()
	{
	    lastpos = child[0]->lastpos;
	}
	void compute_followpos()
	{
	    NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
	    for(NodeSet::iterator i = from.begin(); i != from.end(); i++) {
		(*i)->followpos.insert(to.begin(), to.end());
	    }
	}
	int eq(Node *other) {
		if (dynamic_cast<StarNode *>(other))
			return child[0]->eq(other->child[0]);
		return 0;
	}
	ostream& dump(ostream& os)
	{
	    os << '(';
	    child[0]->dump(os);
	    return os << ")*";
	}
    };

    /* Match a node one or more times. (This is a unary operator.) */
    class PlusNode : public OneChildNode {
    public:
	PlusNode(Node *left) :
	    OneChildNode(left) { }
	void compute_nullable()
	{
	    nullable = child[0]->nullable;
	}
	void compute_firstpos()
	{
	    firstpos = child[0]->firstpos;
	}
	void compute_lastpos()
	{
	    lastpos = child[0]->lastpos;
	}
	void compute_followpos()
	{
	    NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
	    for(NodeSet::iterator i = from.begin(); i != from.end(); i++) {
		(*i)->followpos.insert(to.begin(), to.end());
	    }
	}
	int eq(Node *other) {
		if (dynamic_cast<PlusNode *>(other))
			return child[0]->eq(other->child[0]);
		return 0;
	}
	ostream& dump(ostream& os)
	{
	    os << '(';
	    child[0]->dump(os);
	    return os << ")+";
	}
    };

    /* Match a pair of consecutive nodes. */
    class CatNode : public TwoChildNode {
    public:
	CatNode(Node *left, Node *right) :
	    TwoChildNode(left, right) { }
	void compute_nullable()
	{
	    nullable = child[0]->nullable && child[1]->nullable;
	}
	void compute_firstpos()
	{
	    if (child[0]->nullable)
		firstpos = child[0]->firstpos + child[1]->firstpos;
	    else
		firstpos = child[0]->firstpos;
	}
	void compute_lastpos()
	{
	    if (child[1]->nullable)
		lastpos = child[0]->lastpos + child[1]->lastpos;
	    else
		lastpos = child[1]->lastpos;
	}
	void compute_followpos()
	{
	    NodeSet from = child[0]->lastpos, to = child[1]->firstpos;
	    for(NodeSet::iterator i = from.begin(); i != from.end(); i++) {
		(*i)->followpos.insert(to.begin(), to.end());
	    }
	}
	int eq(Node *other) {
		if (dynamic_cast<CatNode *>(other)) {
			if (!child[0]->eq(other->child[0]))
				return 0;
			return child[1]->eq(other->child[1]);
		}
		return 0;
	}
	ostream& dump(ostream& os)
	{
	    child[0]->dump(os);
	    child[1]->dump(os);
	    return os;
	    //return os << ' ';
	}
    };

    /* Match one of two alternative nodes. */
    class AltNode : public TwoChildNode {
    public:
	AltNode(Node *left, Node *right) :
	    TwoChildNode(left, right) { }
	void compute_nullable()
	{
	    nullable = child[0]->nullable || child[1]->nullable;
	}
	void compute_lastpos()
	{
	    lastpos = child[0]->lastpos + child[1]->lastpos;
	}
	void compute_firstpos()
	{
	    firstpos = child[0]->firstpos + child[1]->firstpos;
	}
	int eq(Node *other) {
		if (dynamic_cast<AltNode *>(other)) {
			if (!child[0]->eq(other->child[0]))
				return 0;
			return child[1]->eq(other->child[1]);
		}
		return 0;
	}
	ostream& dump(ostream& os)
	{
	    os << '(';
	    child[0]->dump(os);
	    os << '|';
	    child[1]->dump(os);
	    os << ')';
	    return os;
	}
    };

/* Use a single static EpsNode as it carries no node specific information */
static EpsNode epsnode;

/*
 * Normalize the regex parse tree for factoring and cancelations. Normalization
 * reorganizes internal (alt and cat) nodes into a fixed "normalized" form that
 * simplifies factoring code, in that it produces a canonicalized form for
 * the direction being normalized so that the factoring code does not have
 * to consider as many cases.
 *
 * left normalization (dir == 0) uses these rules
 * (E | a) -> (a | E)
 * (a | b) | c -> a | (b | c)
 * (ab)c -> a(bc)
 *
 * right normalization (dir == 1) uses the same rules but reversed
 * (a | E) -> (E | a)
 * a | (b | c) -> (a | b) | c
 * a(bc) -> (ab)c
 *
 * Note: This is written iteratively for a given node (the top node stays
 *       fixed and the children are rotated) instead of recursively.
 *       For a given node under examination rotate over nodes from
 *       dir to !dir.   Until no dir direction node meets the criterial.
 *       Then recurse to the children (which will have a different node type)
 *       to make sure they are normalized.
 *       Normalization of a child node is guarenteed to not affect the
 *       normalization of the parent.
 *
 *       For cat nodes the depth first traverse order is guarenteed to be
 *       maintained.  This is not necessary for altnodes.
 *
 * Eg. For left normalization
 *
 *              |1               |1
 *             / \              / \
 *            |2  T     ->     a   |2
 *           / \                  / \
 *          |3  c                b   |3
 *         / \                      / \
 *        a   b                    c   T
 *
 */
static void rotate_node(Node *t, int dir) {
	// (a | b) | c -> a | (b | c)
	// (ab)c -> a(bc)
	Node *left = t->child[dir];
	t->child[dir] = left->child[dir];
	left->child[dir] = left->child[!dir];
	left->child[!dir] = t->child[!dir];
	t->child[!dir] = left;
}

void normalize_tree(Node *t, int dir)
{
	if (dynamic_cast<LeafNode *>(t))
		return;

	for (;;) {
		if ((&epsnode == t->child[dir]) &&
		    (&epsnode != t->child[!dir]) &&
		     dynamic_cast<TwoChildNode *>(t)) {
			// (E | a) -> (a | E)
			// Ea -> aE
			Node *c = t->child[dir];
			t->child[dir] = t->child[!dir];
			t->child[!dir] = c;
			// Don't break here as 'a' may be a tree that
			// can be pulled up.
		} else if ((dynamic_cast<AltNode *>(t) &&
			    dynamic_cast<AltNode *>(t->child[dir])) ||
			   (dynamic_cast<CatNode *>(t) &&
			    dynamic_cast<CatNode *>(t->child[dir]))) {
			// (a | b) | c -> a | (b | c)
			// (ab)c -> a(bc)
			rotate_node(t, dir);
		} else if (dynamic_cast<AltNode *>(t) &&
			   dynamic_cast<CharSetNode *>(t->child[dir]) &&
			   dynamic_cast<CharNode *>(t->child[!dir])) {
			// [a] | b  ->  b | [a]
			Node *c = t->child[dir];
			t->child[dir] = t->child[!dir];
			t->child[!dir] = c;
		} else {
			break;
		}
	}
	if (t->child[dir])
		normalize_tree(t->child[dir], dir);
	if (t->child[!dir])
		normalize_tree(t->child[!dir], dir);
}

//charset conversion is disabled for now,
//it hinders tree optimization in some cases, so it need to be either
//done post optimization, or have extra factoring rules added
#if 0
static Node *merge_charset(Node *a, Node *b)
{
	if (dynamic_cast<CharNode *>(a) &&
	    dynamic_cast<CharNode *>(b)) {
		Chars chars;
		chars.insert(dynamic_cast<CharNode *>(a)->c);
		chars.insert(dynamic_cast<CharNode *>(b)->c);
		CharSetNode *n = new CharSetNode(chars);
		return n;
	} else if (dynamic_cast<CharNode *>(a) &&
		   dynamic_cast<CharSetNode *>(b)) {
		Chars *chars = &dynamic_cast<CharSetNode *>(b)->chars;
		chars->insert(dynamic_cast<CharNode *>(a)->c);
		return b;
	} else if (dynamic_cast<CharSetNode *>(a) &&
		   dynamic_cast<CharSetNode *>(b)) {
		Chars *from = &dynamic_cast<CharSetNode *>(a)->chars;
		Chars *to = &dynamic_cast<CharSetNode *>(b)->chars;
		for (Chars::iterator i = from->begin(); i != from->end(); i++)
			to->insert(*i);
		return b;
	}

	//return ???;
}

static Node *alt_to_charsets(Node *t, int dir)
{
/*
	Node *first = NULL;
	Node *p = t;
	Node *i = t;
	for (;dynamic_cast<AltNode *>(i);) {
		if (dynamic_cast<CharNode *>(i->child[dir]) ||
		    dynamic_cast<CharNodeSet *>(i->child[dir])) {
			if (!first) {
				first = i;
				p = i;
				i = i->child[!dir];
			} else {
				first->child[dir] = merge_charset(first->child[dir],
						      i->child[dir]);
				p->child[!dir] = i->child[!dir];
				Node *tmp = i;
				i = tmp->child[!dir];
				tmp->child[!dir] = NULL;
				tmp->release();
			}
		} else {
			p = i;
			i = i->child[!dir];
		}
	}
	// last altnode of chain check other dir as well
	if (first && (dynamic_cast<charNode *>(i) ||
		      dynamic_cast<charNodeSet *>(i))) {
		
	}
*/

/*
		if (dynamic_cast<CharNode *>(t->child[dir]) ||
		    dynamic_cast<CharSetNode *>(t->child[dir]))
		    char_test = true;
			    (char_test &&
			     (dynamic_cast<CharNode *>(i->child[dir]) ||
			      dynamic_cast<CharSetNode *>(i->child[dir])))) {
*/
	return t;
}
#endif

static Node *basic_alt_factor(Node *t, int dir)
{
	if (!dynamic_cast<AltNode *>(t))
		return t;

	if (t->child[dir]->eq(t->child[!dir])) {
		// (a | a) -> a
		Node *tmp = t->child[dir];
		t->child[dir] = NULL;
		t->release();
		return tmp;
	}

	// (ab) | (ac) -> a(b|c)
	if (dynamic_cast<CatNode *>(t->child[dir]) &&
	    dynamic_cast<CatNode *>(t->child[!dir]) &&
	    t->child[dir]->child[dir]->eq(t->child[!dir]->child[dir])) {
		// (ab) | (ac) -> a(b|c)
		Node *left = t->child[dir];
		Node *right = t->child[!dir];
		t->child[dir] = left->child[!dir];
		t->child[!dir] = right->child[!dir];
		right->child[!dir] = NULL;
		right->release();
		left->child[!dir] = t;
		return left;
	}

	// a | (ab) -> a (E | b) -> a (b | E)
	if (dynamic_cast<CatNode *>(t->child[!dir]) &&
	    t->child[dir]->eq(t->child[!dir]->child[dir])) {
		Node *c = t->child[!dir];
		t->child[dir]->release();
		t->child[dir] = c->child[!dir];
		t->child[!dir] = &epsnode;
		c->child[!dir] = t;
		return c;
	}

	// ab | (a) -> a (b | E)
	if (dynamic_cast<CatNode *>(t->child[dir]) &&
	    t->child[dir]->child[dir]->eq(t->child[!dir])) {
		Node *c = t->child[dir];
		t->child[!dir]->release();
		t->child[dir] = c->child[!dir];
		t->child[!dir] = &epsnode;
		c->child[!dir] = t;
		return c;
	}

	return t;
}

static Node *basic_simplify(Node *t, int dir)
{
	if (dynamic_cast<CatNode *>(t) &&
	    &epsnode == t->child[!dir]) {
		// aE -> a
		Node *tmp = t->child[dir];
		t->child[dir] = NULL;
		t->release();
		return tmp;
	}

	return basic_alt_factor(t, dir);
}

/*
 * assumes a normalized tree.  reductions shown for left normalization
 * aE -> a
 * (a | a) -> a
 ** factoring patterns
 * a | (a | b) -> (a | b)
 * a | (ab) -> a (E | b) -> a (b | E)
 * (ab) | (ac) -> a(b|c)
 *
 * returns t - if no simplifications were made
 *         a new root node - if simplifications were made
 */
Node *simplify_tree_base(Node *t, int dir, bool &mod)
{
	if (dynamic_cast<ImportantNode *>(t))
		return t;

	for (int i=0; i < 2; i++) {
		if (t->child[i]) {
			Node *c = simplify_tree_base(t->child[i], dir, mod);
			if (c != t->child[i]) {
				t->child[i] = c;
				mod = true;
			}
		}
	}

	// only iterate on loop if modification made
	for (;; mod = true) {

		Node *tmp = basic_simplify(t, dir);
		if (tmp != t) {
			t = tmp;
			continue;
		}


		/* all tests after this must meet 2 alt node condition */
		if (!dynamic_cast<AltNode *>(t) ||
		    !dynamic_cast<AltNode *>(t->child[!dir]))
			break;

		// a | (a | b) -> (a | b)
		// a | (b | (c | a)) -> (b | (c | a))
		Node *p = t;
		Node *i = t->child[!dir];
		for (;dynamic_cast<AltNode *>(i); p = i, i = i->child[!dir]) {
			if (t->child[dir]->eq(i->child[dir])) {
				Node *tmp = t->child[!dir];
				t->child[!dir] = NULL;
				t->release();
				t = tmp;
				continue;
			}
		}
		// last altnode of chain check other dir as well
		if (t->child[dir]->eq(p->child[!dir])) {
			Node *tmp = t->child[!dir];
			t->child[!dir] = NULL;
			t->release();
			t = tmp;
			continue;
		}

		//exact match didn't work, try factoring front
		//a | (ac | (ad | () -> (a (E | c)) | (...)
		//ab | (ac | (...)) -> (a (b | c)) | (...)
		//ab | (a | (...)) -> (a (b | E)) | (...)
		Node *pp;
		int count = 0;
		Node *subject = t->child[dir];
		Node *a = subject;
		if (dynamic_cast<CatNode *>(subject))
		    a = subject->child[dir];

		for (pp = p = t, i = t->child[!dir];
		     dynamic_cast<AltNode *>(i); ) {
			if ((dynamic_cast<CatNode *>(i->child[dir]) &&
			     a->eq(i->child[dir]->child[dir])) ||
			    (a->eq(i->child[dir]))) {
				// extract matching alt node
				p->child[!dir] = i->child[!dir];
				i->child[!dir] = subject;
				subject = basic_simplify(i, dir);
				if (dynamic_cast<CatNode *>(subject))
					a = subject->child[dir];
				else
					a = subject;

				i = p->child[!dir];
				count++;
			} else {
				pp = p; p = i; i = i->child[!dir];
			}
		}

		// last altnode in chain check other dir as well
		if ((dynamic_cast<CatNode *>(i) &&
		     a->eq(i->child[dir])) ||
		    (a->eq(i))) {
			count++;
			if (t == p) {
				t->child[dir] = subject;
				t = basic_simplify(t, dir);
			} else {
				t->child[dir] = p->child[dir];
				p->child[dir] = subject;
				pp->child[!dir] = basic_simplify(p, dir);
			}
		} else {
			t->child[dir] = i;
			p->child[!dir] = subject;
		}

		if (count == 0)
			break;
	}
	return t;
}

int debug_tree(Node *t)
{
	int nodes = 1;

	if (!dynamic_cast<ImportantNode *>(t)) {
		if (t->child[0])
			nodes += debug_tree(t->child[0]);
		if (t->child[1])
			nodes += debug_tree(t->child[1]);
	}
	return nodes;
}

struct node_counts {
	int charnode;
	int charset;
	int notcharset;
	int alt;
	int plus;
	int star;
	int any;
	int cat;
};


static void count_tree_nodes(Node *t, struct node_counts *counts)
{
	if (dynamic_cast<AltNode *>(t)) {
		counts->alt++;
		count_tree_nodes(t->child[0], counts);
		count_tree_nodes(t->child[1], counts);
	} else if (dynamic_cast<CatNode *>(t)) {
		counts->cat++;
		count_tree_nodes(t->child[0], counts);
		count_tree_nodes(t->child[1], counts);
	} else if (dynamic_cast<PlusNode *>(t)) {
		counts->plus++;
		count_tree_nodes(t->child[0], counts);
	} else if (dynamic_cast<StarNode *>(t)) {
		counts->star++;
		count_tree_nodes(t->child[0], counts);
	} else if (dynamic_cast<CharNode *>(t)) {
		counts->charnode++;
	} else if (dynamic_cast<AnyCharNode *>(t)) {
		counts->any++;
	} else if (dynamic_cast<CharSetNode *>(t)) {
		counts->charset++;
	} else if (dynamic_cast<NotCharSetNode *>(t)) {
		counts->notcharset++;
	}
}

#include "stdio.h"
#include "stdint.h"
#include "apparmor_re.h"

Node *simplify_tree(Node *t, dfaflags_t flags)
{
	bool update;

	if (flags & DFA_DUMP_TREE_STATS) {
		struct node_counts counts = { 0, 0, 0, 0, 0, 0, 0, 0 };
		count_tree_nodes(t, &counts);
		fprintf(stderr, "expr tree: c %d, [] %d, [^] %d, | %d, + %d, * %d, . %d, cat %d\n", counts.charnode, counts.charset, counts.notcharset, counts.alt, counts.plus, counts.star, counts.any, counts.cat);
	}
	do {
		update = false;
		//default to right normalize first as this reduces the number
		//of trailing nodes which might follow an internal *
		//or **, which is where state explosion can happen
		//eg. in one test this makes the difference between
		//    the dfa having about 7 thousands states,
		//    and it having about  1.25 million states
		int dir = 1;
		if (flags & DFA_CONTROL_TREE_LEFT)
			dir = 0;
		for (int count = 0; count < 2; count++) {
			bool modified;
			do {
			    modified = false;
			    if (flags & DFA_CONTROL_TREE_NORMAL)
				normalize_tree(t, dir);
			    t = simplify_tree_base(t, dir, modified);
			    if (modified)
				update = true;
			} while (modified);
			if (flags & DFA_CONTROL_TREE_LEFT)
				dir++;
			else
				dir--;
		}
	} while(update);
	if (flags & DFA_DUMP_TREE_STATS) {
		struct node_counts counts = { 0, 0, 0, 0, 0, 0, 0, 0 };
		count_tree_nodes(t, &counts);
		fprintf(stderr, "simplified expr tree: c %d, [] %d, [^] %d, | %d, + %d, * %d, . %d, cat %d\n", counts.charnode, counts.charset, counts.notcharset, counts.alt, counts.plus, counts.star, counts.any, counts.cat);
	}
	return t;
}


%}

%union {
    char c;
    Node *node;
    Chars *cset;
}

%{
    void regexp_error(Node **, const char *, const char *);
#   define YYLEX_PARAM &text
    int regexp_lex(YYSTYPE *, const char **);

    static inline Chars*
    insert_char(Chars* cset, uchar a)
    {
	cset->insert(a);
	return cset;
    }

    static inline Chars*
    insert_char_range(Chars* cset, uchar a, uchar b)
    {
	if (a > b)
	    swap(a, b);
	for (uchar i = a; i <= b; i++)
	    cset->insert(i);
	return cset;
    }
%}

%pure-parser
/* %error-verbose */
%parse-param {Node **root}
%parse-param {const char *text}
%name-prefix = "regexp_"

%token <c> CHAR
%type <c> regex_char cset_char1 cset_char cset_charN
%type <cset> charset cset_chars
%type <node> regexp expr terms0 terms qterm term

/**
 * Note: destroy all nodes upon failure, but *not* the start symbol once
 * parsing succeeds!
 */
%destructor { $$->release(); } expr terms0 terms qterm term

%%

/* FIXME: Does not parse "[--]", "[---]", "[^^-x]". I don't actually know
          which precise grammer Perl regexps use, and rediscovering that
	  is proving to be painful. */

regexp	    : /* empty */	{ *root = $$ = &epsnode; }
	    | expr		{ *root = $$ = $1; }
	    ;

expr	    : terms
	    | expr '|' terms0	{ $$ = new AltNode($1, $3); }
	    | '|' terms0	{ $$ = new AltNode(&epsnode, $2); }
	    ;

terms0	    : /* empty */	{ $$ = &epsnode; }
	    | terms
	    ;

terms	    : qterm
	    | terms qterm	{ $$ = new CatNode($1, $2); }
	    ;

qterm	    : term
	    | term '*'		{ $$ = new StarNode($1); }
	    | term '+'		{ $$ = new PlusNode($1); }
	    ;

term	    : '.'		{ $$ = new AnyCharNode; }
	    | regex_char	{ $$ = new CharNode($1); }
	    | '[' charset ']'	{ $$ = new CharSetNode(*$2);
				  delete $2; }
	    | '[' '^' charset ']'
				{ $$ = new NotCharSetNode(*$3);
				  delete $3; }
	    | '[' '^' '^' cset_chars ']'
				{ $4->insert('^');
				  $$ = new NotCharSetNode(*$4);
				  delete $4; }
	    | '(' regexp ')'	{ $$ = $2; }
	    ;

regex_char  : CHAR
	    | '^'		{ $$ = '^'; }
	    | '-'		{ $$ = '-'; }
	    | ']'		{ $$ = ']'; }
	    ;

charset	    : cset_char1 cset_chars
				{ $$ = insert_char($2, $1); }
	    | cset_char1 '-' cset_charN cset_chars
				{ $$ = insert_char_range($4, $1, $3); }
	    ;

cset_chars  : /* nothing */	{ $$ = new Chars; }
	    | cset_chars cset_charN
				{ $$ = insert_char($1, $2); }
	    | cset_chars cset_charN '-' cset_charN
				{ $$ = insert_char_range($1, $2, $4); }
	    ;

cset_char1  : cset_char
	    | ']'		{ $$ = ']'; }
	    | '-'		{ $$ = '-'; }
	    ;

cset_charN  : cset_char
	    | '^'		{ $$ = '^'; }
	    ;

cset_char   : CHAR
	    | '['		{ $$ = '['; }
	    | '*'		{ $$ = '*'; }
	    | '+'		{ $$ = '+'; }
	    | '.'		{ $$ = '.'; }
	    | '|'		{ $$ = '|'; }
	    | '('		{ $$ = '('; }
	    | ')'		{ $$ = ')'; }
	    ;

%%

#include <string.h>
#include <getopt.h>
#include <assert.h>
#include <arpa/inet.h>

#include <iostream>
#include <fstream>

#include "../immunix.h"

/* Traverse the syntax tree depth-first in an iterator-like manner. */
class depth_first_traversal {
    stack<Node *> pos;
    void push_left(Node *node)
    {
	pos.push(node);

        while (dynamic_cast<InnerNode *>(node)) {
            pos.push(node->child[0]);
            node = node->child[0];
        }
    }

public:
    depth_first_traversal(Node *node) {
	push_left(node);
    }
    Node *operator*()
    {
        return pos.top();
    }
    Node* operator->()
    {
	return pos.top();
    }
    operator bool()
    {
        return !pos.empty();
    }
    void operator++(int)
    {
        Node *last = pos.top();
        pos.pop();

        if (!pos.empty()) {
            /* no need to dynamic cast, as we just popped a node so the top node
             * must be an inner node */
            InnerNode *node = (InnerNode *)(pos.top());

            if (node->child[1] && node->child[1] != last) {
                push_left(node->child[1]);
	    }
	}
    }
};

ostream& operator<<(ostream& os, Node& node)
{
    node.dump(os);
    return os;
}

ostream& operator<<(ostream& os, uchar c)
{
    const char *search = "\a\033\f\n\r\t|*+[](). ",
	       *replace = "aefnrt|*+[](). ", *s;

    if ((s = strchr(search, c)) && *s != '\0')
	os << '\\' << replace[s - search];
    else if (c < 32 || c >= 127)
	os << '\\' << '0' << char('0' + (c >> 6))
	   << char('0' + ((c >> 3) & 7)) << char('0' + (c & 7));
    else
	os << (char)c;
    return os;
}

int
octdigit(char c)
{
    if (c >= '0' && c <= '7')
	return c - '0';
    return -1;
}

int
hexdigit(char c)
{
    if (c >= '0' && c <= '9')
	return c - '0';
    else if (c >= 'A' && c <= 'F')
	return 10 + c - 'A';
    else if (c >= 'a' && c <= 'f')
	return 10 + c - 'A';
    else
	return -1;
}

int
regexp_lex(YYSTYPE *val, const char **pos)
{
    int c;

    val->c = **pos;
    switch(*(*pos)++) {
	case '\0':
	    (*pos)--;
	    return 0;

	case '*': case '+': case '.': case '|': case '^': case '-':
	case '[': case ']': case '(' : case ')':
	    return *(*pos - 1);

	case '\\':
	    val->c = **pos;
	    switch(*(*pos)++) {
		case '\0':
		    (*pos)--;
		    /* fall through */
		case '\\':
		    val->c = '\\';
		    break;

		case '0':
		    val->c = 0;
		    if ((c = octdigit(**pos)) >= 0) {
			val->c = c;
			(*pos)++;
		    }
		    if ((c = octdigit(**pos)) >= 0) {
			val->c = (val->c << 3) + c;
			(*pos)++;
		    }
		    if ((c = octdigit(**pos)) >= 0) {
			val->c = (val->c << 3) + c;
			(*pos)++;
		    }
		    break;

		case 'x':
		    val->c = 0;
		    if ((c = hexdigit(**pos)) >= 0) {
			val->c = c;
			(*pos)++;
		    }
		    if ((c = hexdigit(**pos)) >= 0) {
			val->c = (val->c << 4) + c;
			(*pos)++;
		    }
		    break;

		case 'a':
		    val->c = '\a';
		    break;

		case 'e':
		    val->c = 033  /* ESC */;
		    break;

		case 'f':
		    val->c = '\f';
		    break;

		case 'n':
		    val->c = '\n';
		    break;

		case 'r':
		    val->c = '\r';
		    break;

		case 't':
		    val->c = '\t';
		    break;
	    }
    }
    return CHAR;
}

void
regexp_error(Node ** __attribute__((unused)),
	     const char *text __attribute__((unused)),
	     const char *error __attribute__((unused)))
{
    /* We don't want the library to print error messages. */
}

/**
 * Assign a consecutive number to each node. This is only needed for
 * pretty-printing the debug output.
 *
 * The epsnode is labeled 0.  Start labeling at 1
 */
void label_nodes(Node *root)
{
    int nodes = 1;
    for (depth_first_traversal i(root); i; i++)
       i->label = nodes++;
}

/**
 * Text-dump a state (for debugging).
 */
ostream& operator<<(ostream& os, const NodeSet& state)
{
    os << '{';
    if (!state.empty()) {
	NodeSet::iterator i = state.begin();
	for(;;) {
	   os << (*i)->label;
	    if (++i == state.end())
		break;
	    os << ',';
	}
    }
    os << '}';
    return os;
}

/**
 * Text-dump the syntax tree (for debugging).
 */
void dump_syntax_tree(ostream& os, Node *node) {
    for (depth_first_traversal i(node); i; i++) {
	os << i->label << '\t';
	if ((*i)->child[0] == 0)
	    os << **i << '\t' << (*i)->followpos << endl;
	else {
	    if ((*i)->child[1] == 0)
		os << (*i)->child[0]->label << **i;
	    else
		os << (*i)->child[0]->label << **i
		   << (*i)->child[1]->label;
	    os << '\t' << (*i)->firstpos
		       << (*i)->lastpos << endl;
	}
    }
    os << endl;
}

/* Comparison operator for sets of <NodeSet *>.
 * Compare set hashes, and if the sets have the same hash
 * do compare pointer comparison on set of <Node *>, the pointer comparison
 * allows us to determine which Sets of <Node *> we have seen already from
 * new ones when constructing the DFA.
 */
struct deref_less_than {
  bool operator()(pair <unsigned long, NodeSet *> const & lhs, pair <unsigned long, NodeSet *> const & rhs) const
  {
	  if (lhs.first == rhs.first)
		  return *(lhs.second) < *(rhs.second);
	  else
		  return lhs.first < rhs.first;
  }
};

unsigned long hash_NodeSet(const NodeSet *ns)
{
        unsigned long hash = 5381;

	for (NodeSet::iterator i = ns->begin(); i != ns->end(); i++) {
	  hash = ((hash << 5) + hash) + (unsigned long) *i;
	}

        return hash;
}

class State;
/**
 * State cases are identical to NodesCases except they map to State *
 * instead of NodeSet.
 * Out-edges from a state to another: we store the follow State
 * for each input character that is not a default match in  cases and
 * default matches in otherwise as well as in all matching explicit cases
 * This avoids enumerating all the explicit tranitions for default matches.
 */
typedef struct Cases {
	typedef map<uchar, State *>::iterator iterator;
	iterator begin() { return cases.begin(); }
	iterator end() { return cases.end(); }

	Cases() : otherwise(0) { }
	map<uchar, State *> cases;
	State *otherwise;
} Cases;

typedef list<State *> Partition;

uint32_t accept_perms(NodeSet *state, uint32_t *audit_ctl, int *error);

/*
 * State - DFA individual state information
 * label: a unique label to identify the state used for pretty printing
 *        the non-matching state is setup to have label == 0 and
 *        the start state is setup to have label == 1
 * audit: the audit permission mask for the state
 * accept: the accept permissions for the state
 * cases: set of transitions from this state
 * parition: Is a temporary work variable used during dfa minimization.
 *           it can be replaced with a map, but that is slower and uses more
 *           memory.
 * nodes: Is a temporary work variable used during dfa creation.  It can
 *        be replaced by using the nodemap, but that is slower
 */
class State {
public:
	State() : label (0), audit(0), accept(0), cases(), nodes(NULL) { };
	State(int l): label (l), audit(0), accept(0), cases(), nodes(NULL) { };
	State(int l, NodeSet *n) throw (int):
		label(l), audit(0), accept(0), cases(), nodes(n)
	{
		int error;

		/* Compute permissions associated with the State. */
		accept = accept_perms(nodes, &audit, &error);
		if (error) {
cerr << "Failing on accept perms " << error << "\n";
			throw error;
		}
	};

	int label;
	uint32_t audit, accept;
	Cases cases;
	union {
		Partition *partition;
		NodeSet *nodes;
	};
};

ostream& operator<<(ostream& os, const State& state)
{
	/* dump the state label */
	os << '{';
	os << state.label;
	os << '}';
	return os;
}

typedef map<pair<unsigned long, NodeSet *>, State *, deref_less_than > NodeMap;
/* Transitions in the DFA. */

/* dfa_stats - structure to group various stats about dfa creation
 * duplicates - how many duplicate NodeSets where encountered and discarded
 * proto_max - maximum length of a NodeSet encountered during dfa construction
 * proto_sum - sum of NodeSet length during dfa construction.  Used to find
 *             average length.
 */
typedef struct dfa_stats {
	unsigned int duplicates, proto_max, proto_sum;
} dfa_stats_t;

class DFA {
    void dump_node_to_dfa(void);
    State* add_new_state(NodeMap &nodemap, pair <unsigned long, NodeSet *> index, NodeSet *nodes, dfa_stats_t &stats);
    void update_state_transitions(NodeMap &nodemap, list <State *> &work_queue, State *state, dfa_stats_t &stats);
    State *find_target_state(NodeMap &nodemap, list <State *> &work_queue,
			     NodeSet *nodes, dfa_stats_t &stats);
public:
    DFA(Node *root, dfaflags_t flags);
    virtual ~DFA();
    void remove_unreachable(dfaflags_t flags);
    bool same_mappings(State *s1, State *s2);
    size_t hash_trans(State *s);
    void minimize(dfaflags_t flags);
    void dump(ostream& os);
    void dump_dot_graph(ostream& os);
    void dump_uniq_perms(const char *s);
    map<uchar, uchar> equivalence_classes(dfaflags_t flags);
    void apply_equivalence_classes(map<uchar, uchar>& eq);
    Node *root;
    State *nonmatching, *start;
    Partition states;
};

State* DFA::add_new_state(NodeMap &nodemap, pair <unsigned long, NodeSet *> index, NodeSet *nodes, dfa_stats_t &stats)
{
	State *state = new State(nodemap.size(), nodes);
	states.push_back(state);
	nodemap.insert(make_pair(index, state));
	stats.proto_sum += nodes->size();
	if (nodes->size() > stats.proto_max)
		stats.proto_max = nodes->size();
	return state;
}

State *DFA::find_target_state(NodeMap &nodemap, list <State *> &work_queue,
			      NodeSet *nodes, dfa_stats_t &stats)
{
	State *target;

	pair <unsigned long, NodeSet *> index = make_pair(hash_NodeSet(nodes), nodes);

	map<pair <unsigned long, NodeSet *>, State *, deref_less_than>::iterator x = nodemap.find(index);

	if (x == nodemap.end()) {
		/* set of nodes isn't known so create new state, and nodes to
		 * state mapping
		 */
		target = add_new_state(nodemap, index, nodes, stats);
		work_queue.push_back(target);
	} else {
		/* set of nodes already has a mapping so free this one */
		stats.duplicates++;
		delete (nodes);
		target = x->second;
	}

	return target;
}

void DFA::update_state_transitions(NodeMap &nodemap,
				   list <State *> &work_queue, State *state,
				   dfa_stats_t &stats)
{
	/* Compute possible transitions for state->nodes.  This is done by
	 * iterating over all the nodes in state->nodes and combining the
	 * transitions.
	 *
	 * The resultant transition set is a mapping of characters to
	 * sets of nodes.
	 */
	NodeCases cases;
	for (NodeSet::iterator i = state->nodes->begin(); i != state->nodes->end(); i++)
		(*i)->follow(cases);

	/* Now for each set of nodes in the computed transitions, make
	 * sure that there is a state that maps to it, and add the
	 * matching case to the state.
	 */

	/* check the default transition first */
	if (cases.otherwise)
		state->cases.otherwise = find_target_state(nodemap, work_queue,
							   cases.otherwise,
							   stats);;

	/* For each transition from *from, check if the set of nodes it
	 * transitions to already has been mapped to a state
	 */
	for (NodeCases::iterator j = cases.begin(); j != cases.end(); j++) {
		State *target;
		target = find_target_state(nodemap, work_queue, j->second,
					   stats);

		/* Don't insert transition that the default transition
		 * already covers
		 */
		if (target != state->cases.otherwise)
			state->cases.cases[j->first] = target;
	}
}


/* WARNING: This routine can only be called from within DFA creation as
 * the nodes value is only valid during dfa construction.
 */
void DFA::dump_node_to_dfa(void)
{
	cerr << "Mapping of States to expr nodes\n"
		"  State  <=   Nodes\n"
		"-------------------\n";
	for (Partition::iterator i = states.begin(); i != states.end(); i++)
		cerr << "  " << (*i)->label << " <= " << *(*i)->nodes << "\n";
}

/**
 * Construct a DFA from a syntax tree.
 */
DFA::DFA(Node *root, dfaflags_t flags) : root(root)
{
	dfa_stats_t stats = { 0, 0, 0 };
	int i = 0;

	if (flags & DFA_DUMP_PROGRESS)
		fprintf(stderr, "Creating dfa:\r");

	for (depth_first_traversal i(root); i; i++) {
		(*i)->compute_nullable();
		(*i)->compute_firstpos();
		(*i)->compute_lastpos();
	}

	if (flags & DFA_DUMP_PROGRESS)
		fprintf(stderr, "Creating dfa: followpos\r");
	for (depth_first_traversal i(root); i; i++) {
		(*i)->compute_followpos();
	}

	NodeMap nodemap;
	NodeSet *emptynode = new NodeSet;
	nonmatching = add_new_state(nodemap,
				  make_pair(hash_NodeSet(emptynode), emptynode),
				    emptynode, stats);

	NodeSet *first = new NodeSet(root->firstpos);
	start = add_new_state(nodemap, make_pair(hash_NodeSet(first), first),
			      first, stats);

	/* the work_queue contains the states that need to have their
	 * transitions computed.  This could be done with a recursive
	 * algorithm instead of a work_queue, but it would be slightly slower
	 * and consume more memory.
	 *
	 * TODO: currently the work_queue is treated in a breadth first
	 *       search manner.  Test using the work_queue in a depth first
	 *       manner, this may help reduce the number of entries on the
	 *       work_queue at any given time, thus reducing peak memory use.
	 */
	list<State *> work_queue;
	work_queue.push_back(start);

	while (!work_queue.empty()) {
		if (i % 1000 == 0 && (flags & DFA_DUMP_PROGRESS))
			fprintf(stderr, "\033[2KCreating dfa: queue %ld\tstates %ld\teliminated duplicates %d\r", work_queue.size(), states.size(), stats.duplicates);
		i++;

		State *from = work_queue.front();
		work_queue.pop_front();

		/* Update 'from's transitions, and if it transitions to any
		 * unknown State create it and add it to the work_queue
		 */
		update_state_transitions(nodemap, work_queue, from, stats);

	} /* for (NodeSet *nodes ... */

	/* cleanup Sets of nodes used computing the DFA as they are no longer
	 * needed.
	 */
	for (depth_first_traversal i(root); i; i++) {
		(*i)->firstpos.clear();
		(*i)->lastpos.clear();
		(*i)->followpos.clear();
	}

	if (flags & DFA_DUMP_NODE_TO_DFA)
		dump_node_to_dfa();

	for (NodeMap::iterator i = nodemap.begin(); i != nodemap.end(); i++)
		delete i->first.second;
	nodemap.clear();

	if (flags & (DFA_DUMP_STATS))
	  fprintf(stderr, "\033[2KCreated dfa: states %ld,\teliminated duplicates %d,\tprotostate sets: longest %u, avg %u\n", states.size(), stats.duplicates, stats.proto_max, (unsigned int) (stats.proto_sum/states.size()));

}


DFA::~DFA()
{
    for (Partition::iterator i = states.begin(); i != states.end(); i++)
	delete *i;
}

class MatchFlag : public AcceptNode {
public:
MatchFlag(uint32_t flag, uint32_t audit) : flag(flag), audit(audit) {}
    ostream& dump(ostream& os)
    {
	return os << '<' << flag << '>';
    }

    uint32_t flag;
    uint32_t audit;
 };

class ExactMatchFlag : public MatchFlag {
public:
    ExactMatchFlag(uint32_t flag, uint32_t audit) : MatchFlag(flag, audit) {}
};

class DenyMatchFlag : public MatchFlag {
public:
    DenyMatchFlag(uint32_t flag, uint32_t quiet) : MatchFlag(flag, quiet) {}
};


void DFA::dump_uniq_perms(const char *s)
{
	set < pair<uint32_t, uint32_t> > uniq;
	for (Partition::iterator i = states.begin(); i != states.end(); i++)
		uniq.insert(make_pair((*i)->accept, (*i)->audit));

	cerr << "Unique Permission sets: " << s << " (" << uniq.size() << ")\n";
	cerr << "----------------------\n";
	for (set< pair<uint32_t, uint32_t> >::iterator i = uniq.begin();
	     i != uniq.end(); i++) {
		cerr << "  " << hex << i->first << " " << i->second << dec <<"\n";
	}
}


/* Remove dead or unreachable states */
void DFA::remove_unreachable(dfaflags_t flags)
{
	set <State *> reachable;
	list <State *> work_queue;

	/* find the set of reachable states */
	reachable.insert(nonmatching);
	work_queue.push_back(start);
	while (!work_queue.empty()) {
		State *from = work_queue.front();
		work_queue.pop_front();
		reachable.insert(from);

		if (from->cases.otherwise &&
		    (reachable.find(from->cases.otherwise) == reachable.end()))
			work_queue.push_back(from->cases.otherwise);

		for (Cases::iterator j = from->cases.begin();
		     j != from->cases.end(); j++) {
			if (reachable.find(j->second) == reachable.end())
				work_queue.push_back(j->second);
		}
	}

	/* walk the set of states and remove any that aren't reachable */
	if (reachable.size() < states.size()) {
		int count = 0;
		Partition::iterator i;
		Partition::iterator next;
		for (i = states.begin(); i != states.end(); i = next) {
			next = i;
			next++;
			if (reachable.find(*i) == reachable.end()) {
				if (flags & DFA_DUMP_UNREACHABLE) {
					cerr << "unreachable: "<< **i;
					if (*i == start)
						cerr << " <==";
					if ((*i)->accept) {
						cerr << " (0x" << hex << (*i)->accept
						     << " " << (*i)->audit << dec << ')';
					}
					cerr << endl;
				}
				State *current = *i;
				states.erase(i);
				delete(current);
				count++;
			}
		}

		if (count && (flags & DFA_DUMP_STATS))
			cerr << "DFA: states " << states.size() << " removed "
			     << count << " unreachable states\n";
	}
}

/* test if two states have the same transitions under partition_map */
bool DFA::same_mappings(State *s1, State *s2)
{
	if (s1->cases.otherwise && s1->cases.otherwise != nonmatching) {
		if (!s2->cases.otherwise || s2->cases.otherwise == nonmatching)
			return false;
		Partition *p1 = s1->cases.otherwise->partition;
		Partition *p2 = s2->cases.otherwise->partition;
		if (p1 != p2)
			return false;
	} else if (s2->cases.otherwise && s2->cases.otherwise != nonmatching) {
		return false;
	}

	if (s1->cases.cases.size() != s2->cases.cases.size())
		return false;
	for (Cases::iterator j1 = s1->cases.begin(); j1 != s1->cases.end();
	     j1++){
		Cases::iterator j2 = s2->cases.cases.find(j1->first);
		if (j2 == s2->cases.end())
			return false;
		Partition *p1 = j1->second->partition;
		Partition *p2 = j2->second->partition;
		if (p1 != p2)
			return false;
	}

	return true;
}

/* Do simple djb2 hashing against a States transition cases
 * this provides a rough initial guess at state equivalence as if a state
 * has a different number of transitions or has transitions on different
 * cases they will never be equivalent.
 * Note: this only hashes based off of the alphabet (not destination)
 * as different destinations could end up being equiv
 */
size_t DFA::hash_trans(State *s)
{
        unsigned long hash = 5381;

	for (Cases::iterator j = s->cases.begin(); j != s->cases.end(); j++){
		hash = ((hash << 5) + hash) + j->first;
		State *k = j->second;
		hash = ((hash << 5) + hash) + k->cases.cases.size();
	}

	if (s->cases.otherwise && s->cases.otherwise != nonmatching) {
		hash = ((hash << 5) + hash) + 5381;
		State *k = s->cases.otherwise;
		hash = ((hash << 5) + hash) + k->cases.cases.size();
	}

	hash = (hash << 8) | s->cases.cases.size();
        return hash;
}

/* minimize the number of dfa states */
void DFA::minimize(dfaflags_t flags)
{
	map <pair <uint64_t, size_t>, Partition *> perm_map;
	list <Partition *> partitions;
	
	/* Set up the initial partitions
	 * minimium of - 1 non accepting, and 1 accepting
	 * if trans hashing is used the accepting and non-accepting partitions
	 * can be further split based on the number and type of transitions
	 * a state makes.
	 * If permission hashing is enabled the accepting partitions can
	 * be further divided by permissions.  This can result in not
	 * obtaining a truely minimized dfa but comes close, and can speedup
	 * minimization.
	 */
	int accept_count = 0;
	int final_accept = 0;
	for (Partition::iterator i = states.begin(); i != states.end(); i++) {
		uint64_t perm_hash = 0;
		if (flags & DFA_CONTROL_MINIMIZE_HASH_PERMS) {
			/* make every unique perm create a new partition */
			perm_hash = ((uint64_t)(*i)->audit)<<32 |
				(uint64_t)(*i)->accept;
		} else if ((*i)->audit || (*i)->accept) {
			/* combine all perms together into a single parition */
			perm_hash = 1;
		} /* else not an accept state so 0 for perm_hash */

		size_t trans_hash = 0;
		if (flags & DFA_CONTROL_MINIMIZE_HASH_TRANS)
			trans_hash = hash_trans(*i);
		pair <uint64_t, size_t> group = make_pair(perm_hash, trans_hash);
		map <pair <uint64_t, size_t>, Partition *>::iterator p = perm_map.find(group);
		if (p == perm_map.end()) {
			Partition *part = new Partition();
			part->push_back(*i);
			perm_map.insert(make_pair(group, part));
			partitions.push_back(part);
			(*i)->partition = part;
			if (perm_hash)
				accept_count++;
		} else {
			(*i)->partition = p->second;
			p->second->push_back(*i);
		}

		if ((flags & DFA_DUMP_PROGRESS) &&
		    (partitions.size() % 1000 == 0))
			cerr << "\033[2KMinimize dfa: partitions " << partitions.size() << "\tinit " << partitions.size() << " (accept " << accept_count << ")\r";
	}

	/* perm_map is no longer needed so free the memory it is using.
	 * Don't remove - doing it manually here helps reduce peak memory usage.
	 */
	perm_map.clear();

	int init_count = partitions.size();
	if (flags & DFA_DUMP_PROGRESS)
		cerr << "\033[2KMinimize dfa: partitions " << partitions.size() << "\tinit " << init_count << " (accept " << accept_count << ")\r";

	/* Now do repartitioning until each partition contains the set of
	 * states that are the same.  This will happen when the partition
	 * splitting stables.  With a worse case of 1 state per partition
	 * ie. already minimized.
	 */
	Partition *new_part;
	int new_part_count;
	do {
		new_part_count = 0;
		for (list <Partition *>::iterator p = partitions.begin();
		     p != partitions.end(); p++) {
			new_part = NULL;
			State *rep = *((*p)->begin());
			Partition::iterator next;
			for (Partition::iterator s = ++(*p)->begin();
			     s != (*p)->end(); ) {
				if (same_mappings(rep, *s)) {
					++s;
					continue;
				}
				if (!new_part) {
					new_part = new Partition;
					list <Partition *>::iterator tmp = p;
					partitions.insert(++tmp, new_part);
					new_part_count++;
				}
				new_part->push_back(*s);
				s = (*p)->erase(s);
			}
			/* remapping partition_map for new_part entries
			 * Do not do this above as it messes up same_mappings
			 */
			if (new_part) {
				for (Partition::iterator m = new_part->begin();
				     m != new_part->end(); m++) {
					(*m)->partition = new_part;
				}
			}
		if ((flags & DFA_DUMP_PROGRESS) &&
		    (partitions.size() % 100 == 0))
			cerr << "\033[2KMinimize dfa: partitions " << partitions.size() << "\tinit " << init_count << " (accept " << accept_count << ")\r";
		}
	} while(new_part_count);

	if (partitions.size() == states.size()) {
		if (flags & DFA_DUMP_STATS)
			cerr << "\033[2KDfa minimization no states removed: partitions " << partitions.size() << "\tinit " << init_count << " (accept " << accept_count << ")\n";


		goto out;
	}

	/* Remap the dfa so it uses the representative states
	 * Use the first state of a partition as the representative state
	 * At this point all states with in a partion have transitions
	 * to states within the same partitions, however this can slow
	 * down compressed dfa compression as there are more states,
	 */
       	for (list <Partition *>::iterator p = partitions.begin();
	     p != partitions.end(); p++) {
		/* representative state for this partition */
		State *rep = *((*p)->begin());

		/* update representative state's transitions */
		if (rep->cases.otherwise) {
			Partition *partition = rep->cases.otherwise->partition;
			rep->cases.otherwise = *partition->begin();
		}
		for (Cases::iterator c = rep->cases.begin();
		     c != rep->cases.end(); c++) {
			Partition *partition = c->second->partition;
			c->second = *partition->begin();
		}

//if ((*p)->size() > 1)
//cerr << rep->label << ": ";
		/* clear the state label for all non representative states,
		 * and accumulate permissions */
		for (Partition::iterator i = ++(*p)->begin(); i != (*p)->end(); i++) {
//cerr << " " << (*i)->label;
			(*i)->label = -1;
			rep->accept |= (*i)->accept;
			rep->audit |= (*i)->audit;
		}
		if (rep->accept || rep->audit)
			final_accept++;
//if ((*p)->size() > 1)
//cerr << "\n";
	}
	if (flags & DFA_DUMP_STATS)
		cerr << "\033[2KMinimized dfa: final partitions " << partitions.size() << " (accept " << final_accept << ")" << "\tinit " << init_count << " (accept " << accept_count << ")\n";



	/* make sure nonmatching and start state are up to date with the
	 * mappings */
	{
		Partition *partition = nonmatching->partition;
		if (*partition->begin() != nonmatching) {
			nonmatching = *partition->begin();
		}

		partition = start->partition;
		if (*partition->begin() != start) {
			start = *partition->begin();
		}
	}

	/* Now that the states have been remapped, remove all states
	 * that are not the representive states for their partition, they
	 * will have a label == -1
	 */
	for (Partition::iterator i = states.begin(); i != states.end(); ) {
		if ((*i)->label == -1) {
			State *s = *i;
			i = states.erase(i);
			delete(s);
		} else
			i++;
	}

out:
	/* Cleanup */
	while (!partitions.empty()) {
		Partition *p = partitions.front();
		partitions.pop_front();
		delete(p);
	}
}

/**
 * text-dump the DFA (for debugging).
 */
void DFA::dump(ostream& os)
{
    for (Partition::iterator i = states.begin(); i != states.end(); i++) {
	    if (*i == start || (*i)->accept) {
	    os << **i;
	    if (*i == start)
		os << " <==";
	    if ((*i)->accept) {
		    os << " (0x" << hex << (*i)->accept << " " << (*i)->audit << dec << ')';
	    }
	    os << endl;
	}
    }
    os << endl;

    for (Partition::iterator i = states.begin(); i != states.end(); i++) {
	    if ((*i)->cases.otherwise)
	      os << **i << " -> " << (*i)->cases.otherwise << endl;
	    for (Cases::iterator j = (*i)->cases.begin(); j != (*i)->cases.end(); j++) {
	    os << **i << " -> " << j->second << ":  " << j->first << endl;
	}
    }
    os << endl;
}

/**
 * Create a dot (graphviz) graph from the DFA (for debugging).
 */
void DFA::dump_dot_graph(ostream& os)
{
    os << "digraph \"dfa\" {" << endl;

    for (Partition::iterator i = states.begin(); i != states.end(); i++) {
	if (*i == nonmatching)
	    continue;

	os << "\t\"" << **i << "\" [" << endl;
	if (*i == start) {
	    os << "\t\tstyle=bold" << endl;
	}
	uint32_t perms = (*i)->accept;
	if (perms) {
	    os << "\t\tlabel=\"" << **i << "\\n("
	       << perms << ")\"" << endl;
	}
	os << "\t]" << endl;
    }
    for (Partition::iterator i = states.begin(); i != states.end(); i++) {
	    Cases& cases = (*i)->cases;
	Chars excluded;

	for (Cases::iterator j = cases.begin(); j != cases.end(); j++) {
	    if (j->second == nonmatching)
		excluded.insert(j->first);
	    else {
		    os << "\t\"" << **i << "\" -> \"";
		    os << j->second << "\" [" << endl;
		    os << "\t\tlabel=\"" << j->first << "\"" << endl;
		    os << "\t]" << endl;
	    }
	}
	if (cases.otherwise && cases.otherwise != nonmatching) {
		os << "\t\"" << **i << "\" -> \"" << cases.otherwise
	       << "\" [" << endl;
	    if (!excluded.empty()) {
		os << "\t\tlabel=\"[^";
		for (Chars::iterator i = excluded.begin();
		     i != excluded.end();
		     i++) {
		    os << *i;
		}
		os << "]\"" << endl;
	    }
	    os << "\t]" << endl;
	}
    }
    os << '}' << endl;
}

/**
 * Compute character equivalence classes in the DFA to save space in the
 * transition table.
 */
map<uchar, uchar> DFA::equivalence_classes(dfaflags_t flags)
{
    map<uchar, uchar> classes;
    uchar next_class = 1;

    for (Partition::iterator i = states.begin(); i != states.end(); i++) {
	    Cases& cases = (*i)->cases;

	/* Group edges to the same next state together */
	map<const State *, Chars> node_sets;
	for (Cases::iterator j = cases.begin(); j != cases.end(); j++)
	    node_sets[j->second].insert(j->first);

	for (map<const State *, Chars>::iterator j = node_sets.begin();
	     j != node_sets.end();
	     j++) {
	    /* Group edges to the same next state together by class */
	    map<uchar, Chars> node_classes;
	    bool class_used = false;
	    for (Chars::iterator k = j->second.begin();
		 k != j->second.end();
		 k++) {
		pair<map<uchar, uchar>::iterator, bool> x =
		    classes.insert(make_pair(*k, next_class));
		if (x.second)
		    class_used = true;
		pair<map<uchar, Chars>::iterator, bool> y =
		    node_classes.insert(make_pair(x.first->second, Chars()));
		y.first->second.insert(*k);
	    }
	    if (class_used) {
		next_class++;
		class_used = false;
	    }
	    for (map<uchar, Chars>::iterator k = node_classes.begin();
		 k != node_classes.end();
		 k++) {
		/**
		 * If any other characters are in the same class, move
		 * the characters in this class into their own new class
		 */
		map<uchar, uchar>::iterator l;
		for (l = classes.begin(); l != classes.end(); l++) {
		    if (l->second == k->first &&
			k->second.find(l->first) == k->second.end()) {
			class_used = true;
			break;
		    }
		}
		if (class_used) {
		    for (Chars::iterator l = k->second.begin();
			 l != k->second.end();
			 l++) {
			classes[*l]  = next_class;
		    }
		    next_class++;
		    class_used = false;
		}
	    }
	}
    }

    if (flags & DFA_DUMP_EQUIV_STATS)
	fprintf(stderr, "Equiv class reduces to %d classes\n", next_class - 1);
    return classes;
}

/**
 * Text-dump the equivalence classes (for debugging).
 */
void dump_equivalence_classes(ostream& os, map<uchar, uchar>& eq)
{
    map<uchar, Chars> rev;

    for (map<uchar, uchar>::iterator i = eq.begin(); i != eq.end(); i++) {
	Chars& chars = rev.insert(make_pair(i->second,
				      Chars())).first->second;
	chars.insert(i->first);
    }
    os << "(eq):" << endl;
    for (map<uchar, Chars>::iterator i = rev.begin(); i != rev.end(); i++) {
	os << (int)i->first << ':';
	Chars& chars = i->second;
	for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
	    os << ' ' << *j;
	}
	os << endl;
    }
}

/**
 * Replace characters with classes (which are also represented as
 * characters) in the DFA transition table.
 */
void DFA::apply_equivalence_classes(map<uchar, uchar>& eq)
{
    /**
     * Note: We only transform the transition table; the nodes continue to
     * contain the original characters.
     */
    for (Partition::iterator i = states.begin(); i != states.end(); i++) {
	map<uchar, State *> tmp;
	tmp.swap((*i)->cases.cases);
	for (Cases::iterator j = tmp.begin(); j != tmp.end(); j++)
		(*i)->cases.cases.insert(make_pair(eq[j->first], j->second));
    }
}

/**
 * Flip the children of all cat nodes. This causes strings to be matched
 * back-forth.
 */
void flip_tree(Node *node)
{
    for (depth_first_traversal i(node); i; i++) {
	if (CatNode *cat = dynamic_cast<CatNode *>(*i)) {
	    swap(cat->child[0], cat->child[1]);
	}
    }
}

class TransitionTable {
    typedef vector<pair<const State *, size_t> > DefaultBase;
    typedef vector<pair<const State *, const State *> > NextCheck;
public:
    TransitionTable(DFA& dfa, map<uchar, uchar>& eq, dfaflags_t flags);
    void dump(ostream& os);
    void flex_table(ostream& os, const char *name);
    void init_free_list(vector <pair<size_t, size_t> > &free_list, size_t prev, size_t start);
    bool fits_in(vector <pair<size_t, size_t> > &free_list,
		 size_t base, Cases& cases);
    void insert_state(vector <pair<size_t, size_t> > &free_list,
		      State *state, DFA& dfa);

private:
    vector<uint32_t> accept;
    vector<uint32_t> accept2;
    DefaultBase default_base;
    NextCheck next_check;
    map<const State *, size_t> num;
    map<uchar, uchar>& eq;
    uchar max_eq;
    size_t first_free;
};


void TransitionTable::init_free_list(vector <pair<size_t, size_t> > &free_list,
				     size_t prev, size_t start) {
	for (size_t i = start; i < free_list.size(); i++) {
		if (prev)
			free_list[prev].second = i;
		free_list[i].first = prev;
		prev = i;
	}
	free_list[free_list.size() -1].second = 0;
}

/**
 * new Construct the transition table.
 */
TransitionTable::TransitionTable(DFA& dfa, map<uchar, uchar>& eq,
				 dfaflags_t flags)
    : eq(eq)
{

	if (flags & DFA_DUMP_TRANS_PROGRESS)
		fprintf(stderr, "Compressing trans table:\r");


	if (eq.empty())
		max_eq = 255;
	else {
		max_eq = 0;
		for(map<uchar, uchar>::iterator i = eq.begin(); i != eq.end(); i++) {
			if (i->second > max_eq)
				max_eq = i->second;
		}
	}

	/* Do initial setup adding up all the transitions and sorting by
	 * transition count.
	 */
	size_t optimal = 2;
	multimap <size_t, State *> order;
	vector <pair<size_t, size_t> > free_list;

	for (Partition::iterator i = dfa.states.begin(); i != dfa.states.end(); i++) {
		if (*i == dfa.start || *i == dfa.nonmatching)
			continue;
		optimal += (*i)->cases.cases.size();
		if (flags & DFA_CONTROL_TRANS_HIGH) {
			size_t range = 0;
			if ((*i)->cases.cases.size())
				range = (*i)->cases.cases.rbegin()->first - (*i)->cases.begin()->first;
			size_t ord = ((256 - (*i)->cases.cases.size()) << 8) |
				(256 - range);
			/* reverse sort by entry count, most entries first */
			order.insert(make_pair(ord, *i));
		}
	}

	/* Insert the dummy nonmatching transition by hand */
	next_check.push_back(make_pair(dfa.nonmatching, dfa.nonmatching));
	default_base.push_back(make_pair(dfa.nonmatching, 0));
	num.insert(make_pair(dfa.nonmatching, num.size()));

	accept.resize(dfa.states.size());
	accept2.resize(dfa.states.size());
	next_check.resize(optimal);
	free_list.resize(optimal);

	accept[0] = 0;
	accept2[0] = 0;
	first_free = 1;
	init_free_list(free_list, 0, 1);

	insert_state(free_list, dfa.start, dfa);
	accept[1] = 0;
	accept2[1] = 0;
	num.insert(make_pair(dfa.start, num.size()));

	int count = 2;

	if (!(flags & DFA_CONTROL_TRANS_HIGH)) {
		for (Partition::iterator i = dfa.states.begin(); i != dfa.states.end();
		     i++) {
			if (*i != dfa.nonmatching && *i != dfa.start) {
				insert_state(free_list, *i, dfa);
				accept[num.size()] = (*i)->accept;
				accept2[num.size()] = (*i)->audit;
				num.insert(make_pair(*i, num.size()));
			}
			if (flags & (DFA_DUMP_TRANS_PROGRESS)) {
				count++;
				if (count % 100 == 0)
					fprintf(stderr, "\033[2KCompressing trans table: insert state: %d/%ld\r", count, dfa.states.size());
			}
		}
	} else {
		for (multimap <size_t, State *>::iterator i = order.begin();
		     i != order.end(); i++) {
			if (i->second != dfa.nonmatching && i->second != dfa.start) {
				insert_state(free_list, i->second, dfa);
				accept[num.size()] = i->second->accept;
				accept2[num.size()] = i->second->audit;
				num.insert(make_pair(i->second, num.size()));
			}
			if (flags & (DFA_DUMP_TRANS_PROGRESS)) {
				count++;
				if (count % 100 == 0)
					fprintf(stderr, "\033[2KCompressing trans table: insert state: %d/%ld\r", count, dfa.states.size());
			}
		}
	}

	if (flags & (DFA_DUMP_TRANS_STATS | DFA_DUMP_TRANS_PROGRESS)) {
		ssize_t size = 4 * next_check.size() + 6 * dfa.states.size();
		fprintf(stderr, "\033[2KCompressed trans table: states %ld, next/check %ld, optimal next/check %ld avg/state %.2f, compression %ld/%ld = %.2f %%\n", dfa.states.size(), next_check.size(), optimal, (float)next_check.size()/(float)dfa.states.size(), size, 512 * dfa.states.size(), 100.0 - ((float) size * 100.0 / (float)(512 * dfa.states.size())));
	}
}


/**
 * Does <cases> fit into position <base> of the transition table?
 */
bool TransitionTable::fits_in(vector <pair<size_t, size_t> > &free_list __attribute__((unused)),
			      size_t pos, Cases& cases)
{
	size_t c, base = pos - cases.begin()->first;
	for (Cases::iterator i = cases.begin(); i != cases.end(); i++) {
		c = base + i->first;
		/* if it overflows the next_check array it fits in as we will
		 * resize */
		if (c >= next_check.size())
			return true;
		if (next_check[c].second)
			return false;
	}

	return true;
}

/**
 * Insert <state> of <dfa> into the transition table.
 */
void TransitionTable::insert_state(vector <pair<size_t, size_t> > &free_list,
				   State *from, DFA& dfa)
{
	State *default_state = dfa.nonmatching;
	size_t base = 0;
	int resize;

	Cases& cases = from->cases;
	size_t c = cases.begin()->first;
	size_t prev = 0;
	size_t x = first_free;

	if (cases.otherwise)
		default_state = cases.otherwise;
	if (cases.cases.empty())
		goto do_insert;

repeat:
	resize = 0;
	/* get the first free entry that won't underflow */
	while (x && (x < c)) {
		prev = x;
		x = free_list[x].second;
	}

	/* try inserting until we succeed. */
	while (x && !fits_in(free_list, x, cases)) {
		prev = x;
		x = free_list[x].second;
	}
	if (!x) {
		resize = 256 - cases.begin()->first;
		x = free_list.size();
		/* set prev to last free */
	} else if (x + 255 - cases.begin()->first >= next_check.size()) {
		resize = (255 - cases.begin()->first - (next_check.size() - 1 - x));
		for (size_t y = x; y; y = free_list[y].second)
			prev = y;
	}
	if (resize) {
		/* expand next_check and free_list */
	        size_t old_size = free_list.size();
		next_check.resize(next_check.size() + resize);
		free_list.resize(free_list.size() + resize);
		init_free_list(free_list, prev, old_size);
		if (!first_free)
			first_free = old_size;;
		if (x == old_size)
			goto repeat;
	}

	base = x - c;
	for (Cases::iterator j = cases.begin(); j != cases.end(); j++) {
	    next_check[base + j->first] = make_pair(j->second, from);
	    size_t prev = free_list[base + j->first].first;
	    size_t next = free_list[base + j->first].second;
	    if (prev)
		    free_list[prev].second = next;
	    if (next)
		    free_list[next].first = prev;
	    if (base + j->first == first_free)
		    first_free = next;
	}

do_insert:
	default_base.push_back(make_pair(default_state, base));
}

/**
 * Text-dump the transition table (for debugging).
 */
void TransitionTable::dump(ostream& os)
{
    map<size_t, const State *> st;
    for (map<const State *, size_t>::iterator i = num.begin();
	 i != num.end();
	 i++) {
	st.insert(make_pair(i->second, i->first));
    }

    os << "size=" << default_base.size() << " (accept, default, base):  {state} -> {default state}" << endl;
    for (size_t i = 0; i < default_base.size(); i++) {
        os << i << ": ";
	os << "(" << accept[i] << ", "
	   << num[default_base[i].first] << ", "
	   << default_base[i].second << ")";
	if (st[i])
	    os << " " << *st[i];
	if (default_base[i].first)
	    os << " -> " << *default_base[i].first;
	os << endl;
    }

    os << "size=" << next_check.size() << " (next, check): {check state} -> {next state} : offset from base" << endl;
    for (size_t i = 0; i < next_check.size(); i++) {
	if (!next_check[i].second)
	    continue;

	os << i << ": ";
	if (next_check[i].second) {
	    os << "(" << num[next_check[i].first] << ", "
	       << num[next_check[i].second] << ")" << " "
	       << *next_check[i].second << " -> "
	       << *next_check[i].first << ": ";

	    size_t offs = i - default_base[num[next_check[i].second]].second;
	    if (eq.size())
		os << offs;
	    else
		os << (uchar)offs;
	}
	os << endl;
    }
}

#if 0
template<class Iter>
class FirstIterator {
public:
    FirstIterator(Iter pos) : pos(pos)  { }
    typename Iter::value_type::first_type operator*()  { return pos->first; }
    bool operator!=(FirstIterator<Iter>& i)  { return pos != i.pos; }
    void operator++()  { ++pos; }
    ssize_t operator-(FirstIterator<Iter> i)  { return pos - i.pos; }
private:
    Iter pos;
};

template<class Iter>
FirstIterator<Iter> first_iterator(Iter iter)
{
    return FirstIterator<Iter>(iter);
}

template<class Iter>
class SecondIterator {
public:
    SecondIterator(Iter pos) : pos(pos)  { }
    typename Iter::value_type::second_type operator*()  { return pos->second; }
    bool operator!=(SecondIterator<Iter>& i)  { return pos != i.pos; }
    void operator++()  { ++pos; }
    ssize_t operator-(SecondIterator<Iter> i)  { return pos - i.pos; }
private:
    Iter pos;
};

template<class Iter>
SecondIterator<Iter> second_iterator(Iter iter)
{
    return SecondIterator<Iter>(iter);
}
#endif

/**
 * Create a flex-style binary dump of the DFA tables. The table format
 * was partly reverse engineered from the flex sources and from
 * examining the tables that flex creates with its --tables-file option.
 * (Only the -Cf and -Ce formats are currently supported.)
 */

#include "flex-tables.h"
#include "regexp.h"

static inline size_t pad64(size_t i)
{
    return (i + (size_t)7) & ~(size_t)7;
}

string fill64(size_t i)
{
    const char zeroes[8] = { };
    string fill(zeroes, (i & 7) ? 8 - (i & 7) : 0);
    return fill;
}

template<class Iter>
size_t flex_table_size(Iter pos, Iter end)
{
    return pad64(sizeof(struct table_header) + sizeof(*pos) * (end - pos));
}

template<class Iter>
void write_flex_table(ostream& os, int id, Iter pos, Iter end)
{
    struct table_header td = { 0, 0, 0, 0 };
    size_t size = end - pos;

    td.td_id = htons(id);
    td.td_flags = htons(sizeof(*pos));
    td.td_lolen = htonl(size);
    os.write((char *)&td, sizeof(td));

    for (; pos != end; ++pos) {
	switch(sizeof(*pos)) {
	    case 4:
		os.put((char)(*pos >> 24));
		os.put((char)(*pos >> 16));
	    case 2:
		os.put((char)(*pos >> 8));
	    case 1:
		os.put((char)*pos);
	}
    }

    os << fill64(sizeof(td) + sizeof(*pos) * size);
}

void TransitionTable::flex_table(ostream& os, const char *name)
{
    const char th_version[] = "notflex";
    struct table_set_header th = { 0, 0, 0, 0 };

    /**
     * Change the following two data types to adjust the maximum flex
     * table size.
     */
    typedef uint16_t state_t;
    typedef uint32_t trans_t;

    if (default_base.size() >= (state_t)-1) {
	cerr << "Too many states (" << default_base.size() << ") for "
		"type state_t" << endl;
	exit(1);
    }
    if (next_check.size() >= (trans_t)-1) {
	cerr << "Too many transitions (" << next_check.size() << ") for "
	        "type trans_t" << endl;
	exit(1);
    }

    /**
     * Create copies of the data structures so that we can dump the tables
     * using the generic write_flex_table() routine.
     */
    vector<uint8_t> equiv_vec;
    if (eq.size()) {
	equiv_vec.resize(256);
	for (map<uchar, uchar>::iterator i = eq.begin(); i != eq.end(); i++) {
	    equiv_vec[i->first] = i->second;
	}
    }

    vector<state_t> default_vec;
    vector<trans_t> base_vec;
    for (DefaultBase::iterator i = default_base.begin();
	 i != default_base.end();
	 i++) {
	default_vec.push_back(num[i->first]);
	base_vec.push_back(i->second);
    }

    vector<state_t> next_vec;
    vector<state_t> check_vec;
    for (NextCheck::iterator i = next_check.begin();
	 i != next_check.end();
	 i++) {
	next_vec.push_back(num[i->first]);
	check_vec.push_back(num[i->second]);
    }

    /* Write the actual flex parser table. */

    size_t hsize = pad64(sizeof(th) + sizeof(th_version) + strlen(name) + 1);
    th.th_magic = htonl(YYTH_REGEXP_MAGIC);
    th.th_hsize = htonl(hsize);
    th.th_ssize = htonl(hsize +
	    flex_table_size(accept.begin(), accept.end()) +
	    flex_table_size(accept2.begin(), accept2.end()) +
	    (eq.size() ?
		flex_table_size(equiv_vec.begin(), equiv_vec.end()) : 0) +
	    flex_table_size(base_vec.begin(), base_vec.end()) +
	    flex_table_size(default_vec.begin(), default_vec.end()) +
	    flex_table_size(next_vec.begin(), next_vec.end()) +
	    flex_table_size(check_vec.begin(), check_vec.end()));
    os.write((char *)&th, sizeof(th));
    os << th_version << (char)0 << name << (char)0;
    os << fill64(sizeof(th) + sizeof(th_version) + strlen(name) + 1);


    write_flex_table(os, YYTD_ID_ACCEPT, accept.begin(), accept.end());
    write_flex_table(os, YYTD_ID_ACCEPT2, accept2.begin(), accept2.end());
    if (eq.size())
	write_flex_table(os, YYTD_ID_EC, equiv_vec.begin(), equiv_vec.end());
    write_flex_table(os, YYTD_ID_BASE, base_vec.begin(), base_vec.end());
    write_flex_table(os, YYTD_ID_DEF, default_vec.begin(), default_vec.end());
    write_flex_table(os, YYTD_ID_NXT, next_vec.begin(), next_vec.end());
    write_flex_table(os, YYTD_ID_CHK, check_vec.begin(), check_vec.end());
}

#if 0
typedef set<ImportantNode *> AcceptNodes;
map<ImportantNode *, AcceptNodes> dominance(DFA& dfa)
{
    map<ImportantNode *, AcceptNodes> is_dominated;

    for (States::iterator i = dfa.states.begin(); i != dfa.states.end(); i++) {
	AcceptNodes set1;
	for (State::iterator j = (*i)->begin(); j != (*i)->end(); j++) {
	    if (AcceptNode *accept = dynamic_cast<AcceptNode *>(*j))
		set1.insert(accept);
	}
	for (AcceptNodes::iterator j = set1.begin(); j != set1.end(); j++) {
	    pair<map<ImportantNode *, AcceptNodes>::iterator, bool> x =
		is_dominated.insert(make_pair(*j, set1));
	    if (!x.second) {
		AcceptNodes &set2(x.first->second), set3;
		for (AcceptNodes::iterator l = set2.begin();
		     l != set2.end();
		     l++) {
		    if (set1.find(*l) != set1.end())
			set3.insert(*l);
		}
		set3.swap(set2);
	    }
	}
    }
    return is_dominated;
}
#endif

void dump_regexp_rec(ostream& os, Node *tree)
{
    if (tree->child[0])
	dump_regexp_rec(os, tree->child[0]);
    os << *tree;
    if (tree->child[1])
	dump_regexp_rec(os, tree->child[1]);
}

void dump_regexp(ostream& os, Node *tree)
{
    dump_regexp_rec(os, tree);
    os << endl;
}

#include <sstream>
#include <ext/stdio_filebuf.h>

struct aare_ruleset {
    int reverse;
    Node *root;
};

extern "C" aare_ruleset_t *aare_new_ruleset(int reverse)
{
    aare_ruleset_t *container = (aare_ruleset_t *) malloc(sizeof(aare_ruleset_t));
    if (!container)
	return NULL;

    container->root = NULL;
    container->reverse = reverse;

    return container;
}

extern "C" void aare_delete_ruleset(aare_ruleset_t *rules)
{
    if (rules) {
	if (rules->root)
	    rules->root->release();
	free(rules);
    }
}

static inline int diff_qualifiers(uint32_t perm1, uint32_t perm2)
{
	return ((perm1 & AA_EXEC_TYPE) && (perm2 & AA_EXEC_TYPE) &&
		(perm1 & AA_EXEC_TYPE) != (perm2 & AA_EXEC_TYPE));
}

/**
 * Compute the permission flags that this state corresponds to. If we
 * have any exact matches, then they override the execute and safe
 * execute flags.
 */
uint32_t accept_perms(NodeSet *state, uint32_t *audit_ctl, int *error)
{
    uint32_t perms = 0, exact_match_perms = 0, audit = 0, exact_audit = 0,
	    quiet = 0, deny = 0;

    if (error)
	    *error = 0;
    for (NodeSet::iterator i = state->begin(); i != state->end(); i++) {
	    MatchFlag *match;
	    if (!(match= dynamic_cast<MatchFlag *>(*i)))
		continue;
	    if (dynamic_cast<ExactMatchFlag *>(match)) {
		    /* exact match only ever happens with x */
		    if (!is_merged_x_consistent(exact_match_perms,
						match->flag) && error)
			    *error = 1;;
		    exact_match_perms |= match->flag;
		    exact_audit |= match->audit;
	    } else if (dynamic_cast<DenyMatchFlag *>(match)) {
		    deny |= match->flag;
		    quiet |= match->audit;
	    } else {
		    if (!is_merged_x_consistent(perms, match->flag) && error)
			    *error = 1;
		    perms |= match->flag;
		    audit |= match->audit;
	    }
    }

//if (audit || quiet)
//fprintf(stderr, "perms: 0x%x, audit: 0x%x exact: 0x%x eaud: 0x%x deny: 0x%x quiet: 0x%x\n", perms, audit, exact_match_perms, exact_audit, deny, quiet);

    perms |= exact_match_perms &
	    ~(AA_USER_EXEC_TYPE | AA_OTHER_EXEC_TYPE);

    if (exact_match_perms & AA_USER_EXEC_TYPE) {
	    perms = (exact_match_perms & AA_USER_EXEC_TYPE) |
		    (perms & ~AA_USER_EXEC_TYPE);
	    audit = (exact_audit & AA_USER_EXEC_TYPE) |
		    (audit & ~ AA_USER_EXEC_TYPE);
    }
    if (exact_match_perms & AA_OTHER_EXEC_TYPE) {
	    perms = (exact_match_perms & AA_OTHER_EXEC_TYPE) |
		    (perms & ~AA_OTHER_EXEC_TYPE);
	    audit = (exact_audit & AA_OTHER_EXEC_TYPE) |
		    (audit & ~AA_OTHER_EXEC_TYPE);
    }
    if (perms & AA_USER_EXEC & deny)
	    perms &= ~AA_USER_EXEC_TYPE;

    if (perms & AA_OTHER_EXEC & deny)
	    perms &= ~AA_OTHER_EXEC_TYPE;

    perms &= ~deny;

    if (audit_ctl)
	    *audit_ctl = PACK_AUDIT_CTL(audit, quiet & deny);

// if (perms & AA_ERROR_BIT) {
//     fprintf(stderr, "error bit 0x%x\n", perms);
//     exit(255);
//}

 //if (perms & AA_EXEC_BITS)
 //fprintf(stderr, "accept perm: 0x%x\n", perms);
 /*
     if (perms & ~AA_VALID_PERMS)
 	yyerror(_("Internal error accumulated invalid perm 0x%llx\n"), perms);
 */

//if (perms & AA_CHANGE_HAT)
//     fprintf(stderr, "change_hat 0x%x\n", perms);

    if (*error)
	    fprintf(stderr, "profile has merged rule with conflicting x modifiers\n");

    return perms;
}

extern "C" int aare_add_rule(aare_ruleset_t *rules, char *rule, int deny,
			     uint32_t perms, uint32_t audit,  dfaflags_t flags)
{
	return aare_add_rule_vec(rules, deny, perms, audit, 1, &rule, flags);
}

#define FLAGS_WIDTH 2
#define MATCH_FLAGS_SIZE (sizeof(uint32_t) * 8 - 1)
MatchFlag *match_flags[FLAGS_WIDTH][MATCH_FLAGS_SIZE];
DenyMatchFlag *deny_flags[FLAGS_WIDTH][MATCH_FLAGS_SIZE];
#define EXEC_MATCH_FLAGS_SIZE (AA_EXEC_COUNT *2 * 2 * 2)	/* double for each of ix pux, unsafe x bits * u::o */
MatchFlag *exec_match_flags[FLAGS_WIDTH][EXEC_MATCH_FLAGS_SIZE];	/* mods + unsafe + ix + pux * u::o*/
ExactMatchFlag *exact_match_flags[FLAGS_WIDTH][EXEC_MATCH_FLAGS_SIZE];/* mods + unsafe + ix + pux *u::o*/

extern "C" void aare_reset_matchflags(void)
{
	uint32_t i, j;
#define RESET_FLAGS(group, size) { \
	for (i = 0; i < FLAGS_WIDTH; i++) { \
		for (j = 0; j < size; j++) { \
		    if ((group)[i][j]) delete (group)[i][j];	\
			(group)[i][j] = NULL; \
		} \
	} \
}
	RESET_FLAGS(match_flags,MATCH_FLAGS_SIZE);
	RESET_FLAGS(deny_flags,MATCH_FLAGS_SIZE);
	RESET_FLAGS(exec_match_flags,EXEC_MATCH_FLAGS_SIZE);
	RESET_FLAGS(exact_match_flags,EXEC_MATCH_FLAGS_SIZE);
#undef RESET_FLAGS
}

extern "C" int aare_add_rule_vec(aare_ruleset_t *rules, int deny,
				 uint32_t perms, uint32_t audit,
				 int count, char **rulev,
				 dfaflags_t flags)
{
    Node *tree = NULL, *accept;
    int exact_match;

    assert(perms != 0);

    if (regexp_parse(&tree, rulev[0]))
	return 0;
    for (int i = 1; i < count; i++) {
	    Node *subtree = NULL;
	    Node *node = new CharNode(0);
	    if (!node)
		return 0;
	    tree = new CatNode(tree, node);
	    if (regexp_parse(&subtree, rulev[i]))
		return 0;
	    tree = new CatNode(tree, subtree);
    }

    /*
     * Check if we have an expression with or without wildcards. This
     * determines how exec modifiers are merged in accept_perms() based
     * on how we split permission bitmasks here.
     */
    exact_match = 1;
    for (depth_first_traversal i(tree); i; i++) {
	if (dynamic_cast<StarNode *>(*i) ||
	    dynamic_cast<PlusNode *>(*i) ||
	    dynamic_cast<AnyCharNode *>(*i) ||
	    dynamic_cast<CharSetNode *>(*i) ||
	    dynamic_cast<NotCharSetNode *>(*i))
		exact_match = 0;
    }

    if (rules->reverse)
	flip_tree(tree);


/* 0x7f == 4 bits x mods + 1 bit unsafe mask + 1 bit ix, + 1 pux after shift */
#define EXTRACT_X_INDEX(perm, shift) (((perm) >> (shift + 7)) & 0x7f)

//if (perms & ALL_AA_EXEC_TYPE && (!perms & AA_EXEC_BITS))
//	fprintf(stderr, "adding X rule without MAY_EXEC: 0x%x %s\n", perms, rulev[0]);

//if (perms & ALL_EXEC_TYPE)
//    fprintf(stderr, "adding X rule %s 0x%x\n", rulev[0], perms);

//if (audit)
//fprintf(stderr, "adding rule with audit bits set: 0x%x %s\n", audit, rulev[0]);

//if (perms & AA_CHANGE_HAT)
//    fprintf(stderr, "adding change_hat rule %s\n", rulev[0]);

/* the permissions set is assumed to be non-empty if any audit
 * bits are specified */
    accept = NULL;
    for (unsigned int n = 0; perms && n < (sizeof(perms) * 8) ; n++) {
	uint32_t mask = 1 << n;

	if (perms & mask) {
	    int ai = audit & mask ? 1 : 0;
	    perms &= ~mask;

	    Node *flag;
	    if (mask & ALL_AA_EXEC_TYPE)
		    /* these cases are covered by EXEC_BITS */
		    continue;
	    if (deny) {
		    if (deny_flags[ai][n]) {
			    flag = deny_flags[ai][n];
		    } else {
//fprintf(stderr, "Adding deny ai %d mask 0x%x audit 0x%x\n", ai, mask, audit & mask);
			    deny_flags[ai][n] = new DenyMatchFlag(mask, audit&mask);
			    flag = deny_flags[ai][n];
		    }
	    } else if (mask & AA_EXEC_BITS) {
		    uint32_t eperm = 0;
		    uint32_t index = 0;
		    if (mask & AA_USER_EXEC) {
			    eperm = mask | (perms & AA_USER_EXEC_TYPE);
			    index = EXTRACT_X_INDEX(eperm, AA_USER_SHIFT);
		    } else {
			    eperm = mask | (perms & AA_OTHER_EXEC_TYPE);
			    index = EXTRACT_X_INDEX(eperm, AA_OTHER_SHIFT) + (AA_EXEC_COUNT << 2);
		    }
//fprintf(stderr, "index %d eperm 0x%x\n", index, eperm);
		    if (exact_match) {
			    if (exact_match_flags[ai][index]) {
				    flag = exact_match_flags[ai][index];
			    } else {
				    exact_match_flags[ai][index] = new ExactMatchFlag(eperm, audit&mask);
				    flag = exact_match_flags[ai][index];
			    }
		    } else {
			    if (exec_match_flags[ai][index]) {
				    flag = exec_match_flags[ai][index];
			    } else {
				    exec_match_flags[ai][index] = new MatchFlag(eperm, audit&mask);
				    flag = exec_match_flags[ai][index];
			    }
		    }
	    } else {
		    if (match_flags[ai][n]) {
		        flag = match_flags[ai][n];
		    } else {
			    match_flags[ai][n] = new MatchFlag(mask, audit&mask);
			    flag = match_flags[ai][n];
		    }
	    }
	    if (accept)
		    accept = new AltNode(accept, flag);
	    else
		    accept = flag;
	}
    }

    if (flags & DFA_DUMP_RULE_EXPR) {
	    cerr << "rule: ";
	    cerr << rulev[0];
	    for (int i = 1; i < count; i++) {
		    cerr << "\\x00";
		    cerr << rulev[i];
	    }
	    cerr << "  ->  ";
	    tree->dump(cerr);
	    cerr << "\n\n";
    }

    if (rules->root)
	rules->root = new AltNode(rules->root, new CatNode(tree, accept));
    else
	rules->root = new CatNode(tree, accept);

    return 1;

}

/* create a dfa from the ruleset
 * returns: buffer contain dfa tables, @size set to the size of the tables
 *          else NULL on failure
 */
extern "C" void *aare_create_dfa(aare_ruleset_t *rules, size_t *size, dfaflags_t flags)
{
    char *buffer = NULL;

    label_nodes(rules->root);
    if (flags & DFA_DUMP_TREE) {
	    cerr << "\nDFA: Expression Tree\n";
	    rules->root->dump(cerr);
	    cerr << "\n\n";
    }

    if (flags & DFA_CONTROL_TREE_SIMPLE) {
	    rules->root = simplify_tree(rules->root, flags);

	    if (flags & DFA_DUMP_SIMPLE_TREE) {
		    cerr << "\nDFA: Simplified Expression Tree\n";
		    rules->root->dump(cerr);
		    cerr << "\n\n";
	    }
    }

    stringstream stream;
    try {
	    DFA dfa(rules->root, flags);
	    if (flags & DFA_DUMP_UNIQ_PERMS)
		    dfa.dump_uniq_perms("dfa");

	    if (flags & DFA_CONTROL_MINIMIZE) {
		    dfa.minimize(flags);

		    if (flags & DFA_DUMP_MIN_UNIQ_PERMS)
			    dfa.dump_uniq_perms("minimized dfa");
	    }
	    if (flags & DFA_CONTROL_REMOVE_UNREACHABLE)
		    dfa.remove_unreachable(flags);

	    if (flags & DFA_DUMP_STATES)
		    dfa.dump(cerr);

	    if (flags & DFA_DUMP_GRAPH)
		    dfa.dump_dot_graph(cerr);

	    map<uchar, uchar> eq;
	    if (flags & DFA_CONTROL_EQUIV) {
		    eq = dfa.equivalence_classes(flags);
		    dfa.apply_equivalence_classes(eq);

		    if (flags & DFA_DUMP_EQUIV) {
			    cerr << "\nDFA equivalence class\n";
			    dump_equivalence_classes(cerr, eq);
		    }
	    } else if (flags & DFA_DUMP_EQUIV)
		    cerr << "\nDFA did not generate an equivalence class\n";

	    TransitionTable transition_table(dfa, eq, flags);
	    if (flags & DFA_DUMP_TRANS_TABLE)
		    transition_table.dump(cerr);
	    transition_table.flex_table(stream, "");
    } catch (int error) {
	    *size = 0;
	    return NULL;
    }

    stringbuf *buf = stream.rdbuf();

    buf->pubseekpos(0);
    *size = buf->in_avail();

    buffer = (char *)malloc(*size);
    if (!buffer)
	return NULL;
    buf->sgetn(buffer, *size);
    return buffer;
}