/* can-calc-bit-timing.c: Calculate CAN bit timing parameters * * Copyright (C) 2008 Wolfgang Grandegger * * Derived from: * can_baud.c - CAN baudrate calculation * Code based on LinCAN sources and H8S2638 project * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz * Copyright 2005 Stanislav Marek * email:pisa@cmp.felk.cvut.cz * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. */ #include #include #include #include #include #include #include /* seems not to be defined in errno.h */ #ifndef ENOTSUPP #define ENOTSUPP 524 /* Operation is not supported */ #endif /* useful defines */ #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #define do_div(a,b) a = (a) / (b) #define abs(x) ({ \ long __x = (x); \ (__x < 0) ? -__x : __x; \ }) /** * clamp - return a value clamped to a given range with strict typechecking * @val: current value * @min: minimum allowable value * @max: maximum allowable value * * This macro does strict typechecking of min/max to make sure they are of the * same type as val. See the unnecessary pointer comparisons. */ #define clamp(val, min, max) ({ \ typeof(val) __val = (val); \ typeof(min) __min = (min); \ typeof(max) __max = (max); \ (void) (&__val == &__min); \ (void) (&__val == &__max); \ __val = __val < __min ? __min: __val; \ __val > __max ? __max: __val; }) /* we don't want to see these prints */ #define dev_err(dev, format, arg...) do { } while (0) #define dev_warn(dev, format, arg...) do { } while (0) /* define in-kernel-types */ typedef __u64 u64; typedef __u32 u32; /* * CAN bit-timing parameters * * For futher information, please read chapter "8 BIT TIMING * REQUIREMENTS" of the "Bosch CAN Specification version 2.0" * at http://www.semiconductors.bosch.de/pdf/can2spec.pdf. */ struct can_bittiming { __u32 bitrate; /* Bit-rate in bits/second */ __u32 sample_point; /* Sample point in one-tenth of a percent */ __u32 tq; /* Time quanta (TQ) in nanoseconds */ __u32 prop_seg; /* Propagation segment in TQs */ __u32 phase_seg1; /* Phase buffer segment 1 in TQs */ __u32 phase_seg2; /* Phase buffer segment 2 in TQs */ __u32 sjw; /* Synchronisation jump width in TQs */ __u32 brp; /* Bit-rate prescaler */ }; /* * CAN harware-dependent bit-timing constant * * Used for calculating and checking bit-timing parameters */ struct can_bittiming_const { char name[16]; /* Name of the CAN controller hardware */ __u32 tseg1_min; /* Time segement 1 = prop_seg + phase_seg1 */ __u32 tseg1_max; __u32 tseg2_min; /* Time segement 2 = phase_seg2 */ __u32 tseg2_max; __u32 sjw_max; /* Synchronisation jump width */ __u32 brp_min; /* Bit-rate prescaler */ __u32 brp_max; __u32 brp_inc; /* added for can-calc-bit-timing utility */ __u32 ref_clk; /* CAN system clock frequency in Hz */ void (*printf_btr)(struct can_bittiming *bt, int hdr); }; /* * CAN clock parameters */ struct can_clock { __u32 freq; /* CAN system clock frequency in Hz */ }; /* * minimal structs, just enough to be source level compatible */ struct can_priv { const struct can_bittiming_const *bittiming_const; struct can_clock clock; }; struct net_device { struct can_priv priv; }; static inline void *netdev_priv(const struct net_device *dev) { return (void *)&dev->priv; } static void print_usage(char* cmd) { printf("Usage: %s [options] []\n" "\tOptions:\n" "\t-q : don't print header line\n" "\t-l : list all support CAN controller names\n" "\t-b : bit-rate in bits/sec\n" "\t-s : sample-point in one-tenth of a percent\n" "\t or 0 for CIA recommended sample points\n" "\t-c : real CAN system clock in Hz\n", cmd); exit(EXIT_FAILURE); } static void printf_btr_sja1000(struct can_bittiming *bt, int hdr) { uint8_t btr0, btr1; if (hdr) { printf("BTR0 BTR1"); } else { btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6); btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) | (((bt->phase_seg2 - 1) & 0x7) << 4); printf("0x%02x 0x%02x", btr0, btr1); } } static void printf_btr_at91(struct can_bittiming *bt, int hdr) { if (hdr) { printf("%10s", "CAN_BR"); } else { uint32_t br = ((bt->phase_seg2 - 1) | ((bt->phase_seg1 - 1) << 4) | ((bt->prop_seg - 1) << 8) | ((bt->sjw - 1) << 12) | ((bt->brp - 1) << 16)); printf("0x%08x", br); } } static void printf_btr_flexcan(struct can_bittiming *bt, int hdr) { if (hdr) { printf("%10s", "CAN_CTRL"); } else { uint32_t ctrl = (((bt->brp - 1) << 24) | ((bt->sjw - 1) << 22) | ((bt->phase_seg1 - 1) << 19) | ((bt->phase_seg2 - 1) << 16) | ((bt->prop_seg - 1) << 0)); printf("0x%08x", ctrl); } } static void printf_btr_mcp251x(struct can_bittiming *bt, int hdr) { uint8_t cnf1, cnf2, cnf3; if (hdr) { printf("CNF1 CNF2 CNF3"); } else { cnf1 = ((bt->sjw - 1) << 6) | (bt->brp - 1); cnf2 = 0x80 | ((bt->phase_seg1 - 1) << 3) | (bt->prop_seg - 1); cnf3 = bt->phase_seg2 - 1; printf("0x%02x 0x%02x 0x%02x", cnf1, cnf2, cnf3); } } static void printf_btr_ti_hecc(struct can_bittiming *bt, int hdr) { if (hdr) { printf("%10s", "CANBTC"); } else { uint32_t can_btc; can_btc = (bt->phase_seg2 - 1) & 0x7; can_btc |= ((bt->phase_seg1 + bt->prop_seg - 1) & 0xF) << 3; can_btc |= ((bt->sjw - 1) & 0x3) << 8; can_btc |= ((bt->brp - 1) & 0xFF) << 16; printf("0x%08x", can_btc); } } static struct can_bittiming_const can_calc_consts[] = { { .name = "sja1000", .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .ref_clk = 8000000, .printf_btr = printf_btr_sja1000, }, { .name = "mscan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .ref_clk = 32000000, .printf_btr = printf_btr_sja1000, }, { .name = "mscan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .ref_clk = 33000000, .printf_btr = printf_btr_sja1000, }, { .name = "mscan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .ref_clk = 33300000, .printf_btr = printf_btr_sja1000, }, { .name = "mscan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .ref_clk = 33333333, .printf_btr = printf_btr_sja1000, }, { .name = "mscan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .ref_clk = 66660000, /* mpc5121 */ .printf_btr = printf_btr_sja1000, }, { .name = "at91", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 2, .brp_max = 128, .brp_inc = 1, .ref_clk = 100000000, .printf_btr = printf_btr_at91, }, { .name = "at91", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 2, .brp_max = 128, .brp_inc = 1, /* real world clock as found on the ronetix PM9263 */ .ref_clk = 99532800, .printf_btr = printf_btr_at91, }, { .name = "flexcan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, .ref_clk = 24000000, /* mx28 */ .printf_btr = printf_btr_flexcan, }, { .name = "flexcan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, .ref_clk = 49875000, .printf_btr = printf_btr_flexcan, }, { .name = "flexcan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, .ref_clk = 66000000, .printf_btr = printf_btr_flexcan, }, { .name = "flexcan", .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, .ref_clk = 66500000, .printf_btr = printf_btr_flexcan, }, { .name = "mcp251x", .tseg1_min = 3, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .ref_clk = 8000000, .printf_btr = printf_btr_mcp251x, }, { .name = "mcp251x", .tseg1_min = 3, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, .ref_clk = 16000000, .printf_btr = printf_btr_mcp251x, }, { .name = "ti_hecc", .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, .ref_clk = 13000000, .printf_btr = printf_btr_ti_hecc, } }; static long common_bitrates[] = { 1000000, 800000, 500000, 250000, 125000, 100000, 50000, 20000, 10000, }; #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ static int can_update_spt(const struct can_bittiming_const *btc, int sampl_pt, int tseg, int *tseg1, int *tseg2) { *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; if (*tseg2 < btc->tseg2_min) *tseg2 = btc->tseg2_min; if (*tseg2 > btc->tseg2_max) *tseg2 = btc->tseg2_max; *tseg1 = tseg - *tseg2; if (*tseg1 > btc->tseg1_max) { *tseg1 = btc->tseg1_max; *tseg2 = tseg - *tseg1; } return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); } static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) { struct can_priv *priv = netdev_priv(dev); const struct can_bittiming_const *btc = priv->bittiming_const; long rate = 0; long best_error = 1000000000, error = 0; int best_tseg = 0, best_brp = 0, brp = 0; int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0; int spt_error = 1000, spt = 0, sampl_pt; u64 v64; if (!priv->bittiming_const) return -ENOTSUPP; /* Use CIA recommended sample points */ if (bt->sample_point) { sampl_pt = bt->sample_point; } else { if (bt->bitrate > 800000) sampl_pt = 750; else if (bt->bitrate > 500000) sampl_pt = 800; else sampl_pt = 875; } /* tseg even = round down, odd = round up */ for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { tsegall = 1 + tseg / 2; /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; /* chose brp step which is possible in system */ brp = (brp / btc->brp_inc) * btc->brp_inc; if ((brp < btc->brp_min) || (brp > btc->brp_max)) continue; rate = priv->clock.freq / (brp * tsegall); error = bt->bitrate - rate; /* tseg brp biterror */ if (error < 0) error = -error; if (error > best_error) continue; best_error = error; if (error == 0) { spt = can_update_spt(btc, sampl_pt, tseg / 2, &tseg1, &tseg2); error = sampl_pt - spt; if (error < 0) error = -error; if (error > spt_error) continue; spt_error = error; } best_tseg = tseg / 2; best_brp = brp; if (error == 0) break; } if (best_error) { /* Error in one-tenth of a percent */ error = (best_error * 1000) / bt->bitrate; if (error > CAN_CALC_MAX_ERROR) { dev_err(dev->dev.parent, "bitrate error %ld.%ld%% too high\n", error / 10, error % 10); return -EDOM; } else { dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n", error / 10, error % 10); } } /* real sample point */ bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg, &tseg1, &tseg2); v64 = (u64)best_brp * 1000000000UL; do_div(v64, priv->clock.freq); bt->tq = (u32)v64; bt->prop_seg = tseg1 / 2; bt->phase_seg1 = tseg1 - bt->prop_seg; bt->phase_seg2 = tseg2; bt->sjw = 1; bt->brp = best_brp; /* real bit-rate */ bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1)); return 0; } static __u32 get_cia_sample_point(__u32 bitrate) { __u32 sampl_pt; if (bitrate > 800000) sampl_pt = 750; else if (bitrate > 500000) sampl_pt = 800; else sampl_pt = 875; return sampl_pt; } static void print_bit_timing(const struct can_bittiming_const *btc, __u32 bitrate, __u32 sample_point, __u32 ref_clk, int quiet) { struct net_device dev = { .priv.bittiming_const = btc, .priv.clock.freq = ref_clk, }; struct can_bittiming bt = { .bitrate = bitrate, .sample_point = sample_point, }; long rate_error, spt_error; if (!quiet) { printf("Bit timing parameters for %s with %.6f MHz ref clock\n" "nominal real Bitrt nom real SampP\n" "Bitrate TQ[ns] PrS PhS1 PhS2 SJW BRP Bitrate Error SampP SampP Error ", btc->name, ref_clk / 1000000.0); btc->printf_btr(&bt, 1); printf("\n"); } if (can_calc_bittiming(&dev, &bt)) { printf("%7d ***bitrate not possible***\n", bitrate); return; } /* get nominal sample point */ if (!sample_point) sample_point = get_cia_sample_point(bitrate); rate_error = abs((__s32)(bitrate - bt.bitrate)); spt_error = abs((__s32)(sample_point - bt.sample_point)); printf("%7d " "%6d %3d %4d %4d " "%3d %3d " "%7d %4.1f%% " "%4.1f%% %4.1f%% %4.1f%% ", bitrate, bt.tq, bt.prop_seg, bt.phase_seg1, bt.phase_seg2, bt.sjw, bt.brp, bt.bitrate, 100.0 * rate_error / bitrate, sample_point / 10.0, bt.sample_point / 10.0, 100.0 * spt_error / sample_point); btc->printf_btr(&bt, 0); printf("\n"); } static void do_list(void) { unsigned int i; for (i = 0; i < ARRAY_SIZE(can_calc_consts); i++) printf("%s\n", can_calc_consts[i].name); } int main(int argc, char *argv[]) { __u32 bitrate = 0; __u32 opt_ref_clk = 0, ref_clk; int sampl_pt = 0; int quiet = 0; int list = 0; char *name = NULL; unsigned int i, j; int opt, found = 0; const struct can_bittiming_const *btc = NULL; while ((opt = getopt(argc, argv, "b:c:lps:")) != -1) { switch (opt) { case 'b': bitrate = atoi(optarg); break; case 'c': opt_ref_clk = atoi(optarg); break; case 'l': list = 1; break; case 'q': quiet = 1; break; case 's': sampl_pt = atoi(optarg); break; default: print_usage(argv[0]); break; } } if (argc > optind + 1) print_usage(argv[0]); if (argc == optind + 1) name = argv[optind]; if (list) { do_list(); exit(EXIT_SUCCESS); } if (sampl_pt && (sampl_pt >= 1000 || sampl_pt < 100)) print_usage(argv[0]); for (i = 0; i < ARRAY_SIZE(can_calc_consts); i++) { if (name && strcmp(can_calc_consts[i].name, name)) continue; found = 1; btc = &can_calc_consts[i]; if (opt_ref_clk) ref_clk = opt_ref_clk; else ref_clk = btc->ref_clk; if (bitrate) { print_bit_timing(btc, bitrate, sampl_pt, ref_clk, quiet); } else { for (j = 0; j < ARRAY_SIZE(common_bitrates); j++) print_bit_timing(btc, common_bitrates[j], sampl_pt, ref_clk, j); } printf("\n"); } if (!found) { printf("error: unknown CAN controller '%s', try one of these:\n\n", name); do_list(); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); }