~ubuntu-branches/ubuntu/wily/spl-linux/wily-proposed

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/*****************************************************************************\
 *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 *  Copyright (C) 2007 The Regents of the University of California.
 *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 *  UCRL-CODE-235197
 *
 *  This file is part of the SPL, Solaris Porting Layer.
 *  For details, see <http://zfsonlinux.org/>.
 *
 *  The SPL is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 *****************************************************************************
 *  Solaris Porting Layer (SPL) Task Queue Implementation.
\*****************************************************************************/

#include <sys/taskq.h>
#include <sys/kmem.h>
#include <spl-debug.h>

#ifdef SS_DEBUG_SUBSYS
#undef SS_DEBUG_SUBSYS
#endif

#define SS_DEBUG_SUBSYS SS_TASKQ

int spl_taskq_thread_bind = 0;
module_param(spl_taskq_thread_bind, int, 0644);
MODULE_PARM_DESC(spl_taskq_thread_bind, "Bind taskq thread to CPU by default");

/* Global system-wide dynamic task queue available for all consumers */
taskq_t *system_taskq;
EXPORT_SYMBOL(system_taskq);

static int
task_km_flags(uint_t flags)
{
	if (flags & TQ_NOSLEEP)
		return KM_NOSLEEP;

	if (flags & TQ_PUSHPAGE)
		return KM_PUSHPAGE;

	return KM_SLEEP;
}

/*
 * NOTE: Must be called with tq->tq_lock held, returns a list_t which
 * is not attached to the free, work, or pending taskq lists.
 */
static taskq_ent_t *
task_alloc(taskq_t *tq, uint_t flags)
{
	taskq_ent_t *t;
	int count = 0;
	SENTRY;

	ASSERT(tq);
	ASSERT(spin_is_locked(&tq->tq_lock));
retry:
	/* Acquire taskq_ent_t's from free list if available */
	if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
		t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);

		ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
		ASSERT(!(t->tqent_flags & TQENT_FLAG_CANCEL));
		ASSERT(!timer_pending(&t->tqent_timer));

		list_del_init(&t->tqent_list);
		SRETURN(t);
	}

	/* Free list is empty and memory allocations are prohibited */
	if (flags & TQ_NOALLOC)
		SRETURN(NULL);

	/* Hit maximum taskq_ent_t pool size */
	if (tq->tq_nalloc >= tq->tq_maxalloc) {
		if (flags & TQ_NOSLEEP)
			SRETURN(NULL);

		/*
		 * Sleep periodically polling the free list for an available
		 * taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
		 * but we cannot block forever waiting for an taskq_ent_t to
		 * show up in the free list, otherwise a deadlock can happen.
		 *
		 * Therefore, we need to allocate a new task even if the number
		 * of allocated tasks is above tq->tq_maxalloc, but we still
		 * end up delaying the task allocation by one second, thereby
		 * throttling the task dispatch rate.
		 */
		spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
		schedule_timeout(HZ / 100);
		spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
		if (count < 100)
			SGOTO(retry, count++);
	}

	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
	t = kmem_alloc(sizeof(taskq_ent_t), task_km_flags(flags));
	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

	if (t) {
		taskq_init_ent(t);
		tq->tq_nalloc++;
	}

	SRETURN(t);
}

/*
 * NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
 * to already be removed from the free, work, or pending taskq lists.
 */
static void
task_free(taskq_t *tq, taskq_ent_t *t)
{
	SENTRY;

	ASSERT(tq);
	ASSERT(t);
	ASSERT(spin_is_locked(&tq->tq_lock));
	ASSERT(list_empty(&t->tqent_list));
	ASSERT(!timer_pending(&t->tqent_timer));

	kmem_free(t, sizeof(taskq_ent_t));
	tq->tq_nalloc--;

	SEXIT;
}

/*
 * NOTE: Must be called with tq->tq_lock held, either destroys the
 * taskq_ent_t if too many exist or moves it to the free list for later use.
 */
static void
task_done(taskq_t *tq, taskq_ent_t *t)
{
	SENTRY;
	ASSERT(tq);
	ASSERT(t);
	ASSERT(spin_is_locked(&tq->tq_lock));

	/* Wake tasks blocked in taskq_wait_id() */
	wake_up_all(&t->tqent_waitq);

	list_del_init(&t->tqent_list);

	if (tq->tq_nalloc <= tq->tq_minalloc) {
		t->tqent_id = 0;
		t->tqent_func = NULL;
		t->tqent_arg = NULL;
		t->tqent_flags = 0;

		list_add_tail(&t->tqent_list, &tq->tq_free_list);
	} else {
		task_free(tq, t);
	}

	SEXIT;
}

/*
 * When a delayed task timer expires remove it from the delay list and
 * add it to the priority list in order for immediate processing.
 */
static void
task_expire(unsigned long data)
{
	taskq_ent_t *w, *t = (taskq_ent_t *)data;
	taskq_t *tq = t->tqent_taskq;
	struct list_head *l;

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

	if (t->tqent_flags & TQENT_FLAG_CANCEL) {
		ASSERT(list_empty(&t->tqent_list));
		spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
		return;
	}

	/*
	 * The priority list must be maintained in strict task id order
	 * from lowest to highest for lowest_id to be easily calculable.
	 */
	list_del(&t->tqent_list);
	list_for_each_prev(l, &tq->tq_prio_list) {
		w = list_entry(l, taskq_ent_t, tqent_list);
		if (w->tqent_id < t->tqent_id) {
			list_add(&t->tqent_list, l);
			break;
		}
	}
	if (l == &tq->tq_prio_list)
		list_add(&t->tqent_list, &tq->tq_prio_list);

	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	wake_up(&tq->tq_work_waitq);
}

/*
 * Returns the lowest incomplete taskqid_t.  The taskqid_t may
 * be queued on the pending list, on the priority list, on the
 * delay list, or on the work list currently being handled, but
 * it is not 100% complete yet.
 */
static taskqid_t
taskq_lowest_id(taskq_t *tq)
{
	taskqid_t lowest_id = tq->tq_next_id;
	taskq_ent_t *t;
	taskq_thread_t *tqt;
	SENTRY;

	ASSERT(tq);
	ASSERT(spin_is_locked(&tq->tq_lock));

	if (!list_empty(&tq->tq_pend_list)) {
		t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
		lowest_id = MIN(lowest_id, t->tqent_id);
	}

	if (!list_empty(&tq->tq_prio_list)) {
		t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
		lowest_id = MIN(lowest_id, t->tqent_id);
	}

	if (!list_empty(&tq->tq_delay_list)) {
		t = list_entry(tq->tq_delay_list.next, taskq_ent_t, tqent_list);
		lowest_id = MIN(lowest_id, t->tqent_id);
	}

	if (!list_empty(&tq->tq_active_list)) {
		tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
		    tqt_active_list);
		ASSERT(tqt->tqt_id != 0);
		lowest_id = MIN(lowest_id, tqt->tqt_id);
	}

	SRETURN(lowest_id);
}

/*
 * Insert a task into a list keeping the list sorted by increasing taskqid.
 */
static void
taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
{
	taskq_thread_t *w;
	struct list_head *l;

	SENTRY;
	ASSERT(tq);
	ASSERT(tqt);
	ASSERT(spin_is_locked(&tq->tq_lock));

	list_for_each_prev(l, &tq->tq_active_list) {
		w = list_entry(l, taskq_thread_t, tqt_active_list);
		if (w->tqt_id < tqt->tqt_id) {
			list_add(&tqt->tqt_active_list, l);
			break;
		}
	}
	if (l == &tq->tq_active_list)
		list_add(&tqt->tqt_active_list, &tq->tq_active_list);

	SEXIT;
}

/*
 * Find and return a task from the given list if it exists.  The list
 * must be in lowest to highest task id order.
 */
static taskq_ent_t *
taskq_find_list(taskq_t *tq, struct list_head *lh, taskqid_t id)
{
	struct list_head *l;
	taskq_ent_t *t;
	SENTRY;

	ASSERT(spin_is_locked(&tq->tq_lock));

	list_for_each(l, lh) {
		t = list_entry(l, taskq_ent_t, tqent_list);

		if (t->tqent_id == id)
			SRETURN(t);

		if (t->tqent_id > id)
			break;
	}

	SRETURN(NULL);
}

/*
 * Find an already dispatched task given the task id regardless of what
 * state it is in.  If a task is still pending or executing it will be
 * returned and 'active' set appropriately.  If the task has already
 * been run then NULL is returned.
 */
static taskq_ent_t *
taskq_find(taskq_t *tq, taskqid_t id, int *active)
{
	taskq_thread_t *tqt;
	struct list_head *l;
	taskq_ent_t *t;
	SENTRY;

	ASSERT(spin_is_locked(&tq->tq_lock));
	*active = 0;

	t = taskq_find_list(tq, &tq->tq_delay_list, id);
	if (t)
		SRETURN(t);

	t = taskq_find_list(tq, &tq->tq_prio_list, id);
	if (t)
		SRETURN(t);

	t = taskq_find_list(tq, &tq->tq_pend_list, id);
	if (t)
		SRETURN(t);

	list_for_each(l, &tq->tq_active_list) {
		tqt = list_entry(l, taskq_thread_t, tqt_active_list);
		if (tqt->tqt_id == id) {
			t = tqt->tqt_task;
			*active = 1;
			SRETURN(t);
		}
	}

	SRETURN(NULL);
}

static int
taskq_wait_id_check(taskq_t *tq, taskqid_t id)
{
	int active = 0;
	int rc;

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	rc = (taskq_find(tq, id, &active) == NULL);
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	return (rc);
}

/*
 * The taskq_wait_id() function blocks until the passed task id completes.
 * This does not guarantee that all lower task ids have completed.
 */
void
taskq_wait_id(taskq_t *tq, taskqid_t id)
{
	wait_event(tq->tq_wait_waitq, taskq_wait_id_check(tq, id));
}
EXPORT_SYMBOL(taskq_wait_id);

/*
 * The taskq_wait() function will block until all previously submitted
 * tasks have been completed.  A previously submitted task is defined as
 * a task with a lower task id than the current task queue id.  Note that
 * all task id's are assigned monotonically at dispatch time.
 *
 * Waiting for all previous tasks to complete is accomplished by tracking
 * the lowest outstanding task id.  As tasks are dispatched they are added
 * added to the tail of the pending, priority, or delay lists.  And as
 * worker threads become available the tasks are removed from the heads
 * of these lists and linked to the worker threads.  This ensures the
 * lists are kept in lowest to highest task id order.
 *
 * Therefore the lowest outstanding task id can be quickly determined by
 * checking the head item from all of these lists.  This value is stored
 * with the task queue as the lowest id.  It only needs to be recalculated
 * when either the task with the current lowest id completes or is canceled.
 *
 * By blocking until the lowest task id exceeds the current task id when
 * the function was called we ensure all previous tasks have completed.
 *
 * NOTE: When there are multiple worked threads it is possible for larger
 * task ids to complete before smaller ones.  Conversely when the task
 * queue contains delay tasks with small task ids, you may block for a
 * considerable length of time waiting for them to expire and execute.
 */
static int
taskq_wait_check(taskq_t *tq, taskqid_t id)
{
	int rc;

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	rc = (id < tq->tq_lowest_id);
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	SRETURN(rc);
}

void
taskq_wait_all(taskq_t *tq, taskqid_t id)
{
	wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));
}
EXPORT_SYMBOL(taskq_wait_all);

void
taskq_wait(taskq_t *tq)
{
	taskqid_t id;
	SENTRY;
	ASSERT(tq);

	/* Wait for the largest outstanding taskqid */
	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	id = tq->tq_next_id - 1;
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	taskq_wait_all(tq, id);

	SEXIT;

}
EXPORT_SYMBOL(taskq_wait);

int
taskq_member(taskq_t *tq, void *t)
{
	struct list_head *l;
	taskq_thread_t *tqt;
	SENTRY;

	ASSERT(tq);
	ASSERT(t);

	list_for_each(l, &tq->tq_thread_list) {
		tqt = list_entry(l, taskq_thread_t, tqt_thread_list);
		if (tqt->tqt_thread == (struct task_struct *)t)
			SRETURN(1);
	}

	SRETURN(0);
}
EXPORT_SYMBOL(taskq_member);

/*
 * Cancel an already dispatched task given the task id.  Still pending tasks
 * will be immediately canceled, and if the task is active the function will
 * block until it completes.  Preallocated tasks which are canceled must be
 * freed by the caller.
 */
int
taskq_cancel_id(taskq_t *tq, taskqid_t id)
{
	taskq_ent_t *t;
	int active = 0;
	int rc = ENOENT;
	SENTRY;

	ASSERT(tq);

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	t = taskq_find(tq, id, &active);
	if (t && !active) {
		list_del_init(&t->tqent_list);
		t->tqent_flags |= TQENT_FLAG_CANCEL;

		/*
		 * When canceling the lowest outstanding task id we
		 * must recalculate the new lowest outstanding id.
		 */
		if (tq->tq_lowest_id == t->tqent_id) {
			tq->tq_lowest_id = taskq_lowest_id(tq);
			ASSERT3S(tq->tq_lowest_id, >, t->tqent_id);
		}

		/*
		 * The task_expire() function takes the tq->tq_lock so drop
		 * drop the lock before synchronously cancelling the timer.
		 */
		if (timer_pending(&t->tqent_timer)) {
			spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
			del_timer_sync(&t->tqent_timer);
			spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
		}

		if (!(t->tqent_flags & TQENT_FLAG_PREALLOC))
			task_done(tq, t);

		rc = 0;
	}
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	if (active) {
		taskq_wait_id(tq, id);
		rc = EBUSY;
	}

	SRETURN(rc);
}
EXPORT_SYMBOL(taskq_cancel_id);

taskqid_t
taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
{
	taskq_ent_t *t;
	taskqid_t rc = 0;
	SENTRY;

	ASSERT(tq);
	ASSERT(func);

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

	/* Taskq being destroyed and all tasks drained */
	if (!(tq->tq_flags & TQ_ACTIVE))
		SGOTO(out, rc = 0);

	/* Do not queue the task unless there is idle thread for it */
	ASSERT(tq->tq_nactive <= tq->tq_nthreads);
	if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
		SGOTO(out, rc = 0);

	if ((t = task_alloc(tq, flags)) == NULL)
		SGOTO(out, rc = 0);

	spin_lock(&t->tqent_lock);

	/* Queue to the priority list instead of the pending list */
	if (flags & TQ_FRONT)
		list_add_tail(&t->tqent_list, &tq->tq_prio_list);
	else
		list_add_tail(&t->tqent_list, &tq->tq_pend_list);

	t->tqent_id = rc = tq->tq_next_id;
	tq->tq_next_id++;
	t->tqent_func = func;
	t->tqent_arg = arg;
	t->tqent_taskq = tq;
	t->tqent_timer.data = 0;
	t->tqent_timer.function = NULL;
	t->tqent_timer.expires = 0;

	ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));

	spin_unlock(&t->tqent_lock);

	wake_up(&tq->tq_work_waitq);
out:
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
	SRETURN(rc);
}
EXPORT_SYMBOL(taskq_dispatch);

taskqid_t
taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg,
    uint_t flags, clock_t expire_time)
{
	taskq_ent_t *t;
	taskqid_t rc = 0;
	SENTRY;

	ASSERT(tq);
	ASSERT(func);

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

	/* Taskq being destroyed and all tasks drained */
	if (!(tq->tq_flags & TQ_ACTIVE))
		SGOTO(out, rc = 0);

	if ((t = task_alloc(tq, flags)) == NULL)
		SGOTO(out, rc = 0);

	spin_lock(&t->tqent_lock);

	/* Queue to the delay list for subsequent execution */
	list_add_tail(&t->tqent_list, &tq->tq_delay_list);

	t->tqent_id = rc = tq->tq_next_id;
	tq->tq_next_id++;
	t->tqent_func = func;
	t->tqent_arg = arg;
	t->tqent_taskq = tq;
	t->tqent_timer.data = (unsigned long)t;
	t->tqent_timer.function = task_expire;
	t->tqent_timer.expires = (unsigned long)expire_time;
	add_timer(&t->tqent_timer);

	ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));

	spin_unlock(&t->tqent_lock);
out:
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
	SRETURN(rc);
}
EXPORT_SYMBOL(taskq_dispatch_delay);

void
taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
   taskq_ent_t *t)
{
	SENTRY;

	ASSERT(tq);
	ASSERT(func);
	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

	/* Taskq being destroyed and all tasks drained */
	if (!(tq->tq_flags & TQ_ACTIVE)) {
		t->tqent_id = 0;
		goto out;
	}

	spin_lock(&t->tqent_lock);

	/*
	 * Mark it as a prealloc'd task.  This is important
	 * to ensure that we don't free it later.
	 */
	t->tqent_flags |= TQENT_FLAG_PREALLOC;

	/* Queue to the priority list instead of the pending list */
	if (flags & TQ_FRONT)
		list_add_tail(&t->tqent_list, &tq->tq_prio_list);
	else
		list_add_tail(&t->tqent_list, &tq->tq_pend_list);

	t->tqent_id = tq->tq_next_id;
	tq->tq_next_id++;
	t->tqent_func = func;
	t->tqent_arg = arg;
	t->tqent_taskq = tq;

	spin_unlock(&t->tqent_lock);

	wake_up(&tq->tq_work_waitq);
out:
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
	SEXIT;
}
EXPORT_SYMBOL(taskq_dispatch_ent);

int
taskq_empty_ent(taskq_ent_t *t)
{
	return list_empty(&t->tqent_list);
}
EXPORT_SYMBOL(taskq_empty_ent);

void
taskq_init_ent(taskq_ent_t *t)
{
	spin_lock_init(&t->tqent_lock);
	init_waitqueue_head(&t->tqent_waitq);
	init_timer(&t->tqent_timer);
	INIT_LIST_HEAD(&t->tqent_list);
	t->tqent_id = 0;
	t->tqent_func = NULL;
	t->tqent_arg = NULL;
	t->tqent_flags = 0;
	t->tqent_taskq = NULL;
}
EXPORT_SYMBOL(taskq_init_ent);

static int
taskq_thread(void *args)
{
	DECLARE_WAITQUEUE(wait, current);
	sigset_t blocked;
	taskq_thread_t *tqt = args;
	taskq_t *tq;
	taskq_ent_t *t;
	struct list_head *pend_list;
	SENTRY;

	ASSERT(tqt);
	tq = tqt->tqt_tq;
	current->flags |= PF_NOFREEZE;

	sigfillset(&blocked);
	sigprocmask(SIG_BLOCK, &blocked, NULL);
	flush_signals(current);

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	tq->tq_nthreads++;
	wake_up(&tq->tq_wait_waitq);
	set_current_state(TASK_INTERRUPTIBLE);

	while (!kthread_should_stop()) {

		if (list_empty(&tq->tq_pend_list) &&
		    list_empty(&tq->tq_prio_list)) {
			add_wait_queue_exclusive(&tq->tq_work_waitq, &wait);
			spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
			schedule();
			spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
			remove_wait_queue(&tq->tq_work_waitq, &wait);
		} else {
			__set_current_state(TASK_RUNNING);
		}


		if (!list_empty(&tq->tq_prio_list))
			pend_list = &tq->tq_prio_list;
		else if (!list_empty(&tq->tq_pend_list))
			pend_list = &tq->tq_pend_list;
		else
			pend_list = NULL;

		if (pend_list) {
			t = list_entry(pend_list->next,taskq_ent_t,tqent_list);
			list_del_init(&t->tqent_list);

			/* In order to support recursively dispatching a
			 * preallocated taskq_ent_t, tqent_id must be
			 * stored prior to executing tqent_func. */
			tqt->tqt_id = t->tqent_id;
			tqt->tqt_task = t;

			/* We must store a copy of the flags prior to
			 * servicing the task (servicing a prealloc'd task
			 * returns the ownership of the tqent back to
			 * the caller of taskq_dispatch). Thus,
			 * tqent_flags _may_ change within the call. */
			tqt->tqt_flags = t->tqent_flags;

			taskq_insert_in_order(tq, tqt);
			tq->tq_nactive++;
			spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

			/* Perform the requested task */
			t->tqent_func(t->tqent_arg);

			spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
			tq->tq_nactive--;
			list_del_init(&tqt->tqt_active_list);
			tqt->tqt_task = NULL;

			/* For prealloc'd tasks, we don't free anything. */
			if ((tq->tq_flags & TASKQ_DYNAMIC) ||
			    !(tqt->tqt_flags & TQENT_FLAG_PREALLOC))
				task_done(tq, t);

			/* When the current lowest outstanding taskqid is
			 * done calculate the new lowest outstanding id */
			if (tq->tq_lowest_id == tqt->tqt_id) {
				tq->tq_lowest_id = taskq_lowest_id(tq);
				ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id);
			}

			tqt->tqt_id = 0;
			tqt->tqt_flags = 0;
			wake_up_all(&tq->tq_wait_waitq);
		}

		set_current_state(TASK_INTERRUPTIBLE);

	}

	__set_current_state(TASK_RUNNING);
	tq->tq_nthreads--;
	list_del_init(&tqt->tqt_thread_list);
	kmem_free(tqt, sizeof(taskq_thread_t));

	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	SRETURN(0);
}

taskq_t *
taskq_create(const char *name, int nthreads, pri_t pri,
    int minalloc, int maxalloc, uint_t flags)
{
	static int last_used_cpu = 0;
	taskq_t *tq;
	taskq_thread_t *tqt;
	int rc = 0, i, j = 0;
	SENTRY;

	ASSERT(name != NULL);
	ASSERT(pri <= maxclsyspri);
	ASSERT(minalloc >= 0);
	ASSERT(maxalloc <= INT_MAX);
	ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */

	/* Scale the number of threads using nthreads as a percentage */
	if (flags & TASKQ_THREADS_CPU_PCT) {
		ASSERT(nthreads <= 100);
		ASSERT(nthreads >= 0);
		nthreads = MIN(nthreads, 100);
		nthreads = MAX(nthreads, 0);
		nthreads = MAX((num_online_cpus() * nthreads) / 100, 1);
	}

	tq = kmem_alloc(sizeof(*tq), KM_PUSHPAGE);
	if (tq == NULL)
		SRETURN(NULL);

	spin_lock_init(&tq->tq_lock);
	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	INIT_LIST_HEAD(&tq->tq_thread_list);
	INIT_LIST_HEAD(&tq->tq_active_list);
	tq->tq_name      = name;
	tq->tq_nactive   = 0;
	tq->tq_nthreads  = 0;
	tq->tq_pri       = pri;
	tq->tq_minalloc  = minalloc;
	tq->tq_maxalloc  = maxalloc;
	tq->tq_nalloc    = 0;
	tq->tq_flags     = (flags | TQ_ACTIVE);
	tq->tq_next_id   = 1;
	tq->tq_lowest_id = 1;
	INIT_LIST_HEAD(&tq->tq_free_list);
	INIT_LIST_HEAD(&tq->tq_pend_list);
	INIT_LIST_HEAD(&tq->tq_prio_list);
	INIT_LIST_HEAD(&tq->tq_delay_list);
	init_waitqueue_head(&tq->tq_work_waitq);
	init_waitqueue_head(&tq->tq_wait_waitq);

	if (flags & TASKQ_PREPOPULATE)
		for (i = 0; i < minalloc; i++)
			task_done(tq, task_alloc(tq, TQ_PUSHPAGE | TQ_NEW));

	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	for (i = 0; i < nthreads; i++) {
		tqt = kmem_alloc(sizeof(*tqt), KM_PUSHPAGE);
		INIT_LIST_HEAD(&tqt->tqt_thread_list);
		INIT_LIST_HEAD(&tqt->tqt_active_list);
		tqt->tqt_tq = tq;
		tqt->tqt_id = 0;

		tqt->tqt_thread = spl_kthread_create(taskq_thread, tqt,
		    "%s/%d", name, i);
		if (tqt->tqt_thread) {
			list_add(&tqt->tqt_thread_list, &tq->tq_thread_list);
			if (spl_taskq_thread_bind) {
				last_used_cpu = (last_used_cpu + 1) % num_online_cpus();
				kthread_bind(tqt->tqt_thread, last_used_cpu);
			}
			set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(pri));
			wake_up_process(tqt->tqt_thread);
			j++;
		} else {
			kmem_free(tqt, sizeof(taskq_thread_t));
			rc = 1;
		}
	}

	/* Wait for all threads to be started before potential destroy */
	wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);

	if (rc) {
		taskq_destroy(tq);
		tq = NULL;
	}

	SRETURN(tq);
}
EXPORT_SYMBOL(taskq_create);

void
taskq_destroy(taskq_t *tq)
{
	struct task_struct *thread;
	taskq_thread_t *tqt;
	taskq_ent_t *t;
	SENTRY;

	ASSERT(tq);
	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	tq->tq_flags &= ~TQ_ACTIVE;
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	/* TQ_ACTIVE cleared prevents new tasks being added to pending */
	taskq_wait(tq);

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

	/*
	 * Signal each thread to exit and block until it does.  Each thread
	 * is responsible for removing itself from the list and freeing its
	 * taskq_thread_t.  This allows for idle threads to opt to remove
	 * themselves from the taskq.  They can be recreated as needed.
	 */
	while (!list_empty(&tq->tq_thread_list)) {
		tqt = list_entry(tq->tq_thread_list.next,
				 taskq_thread_t, tqt_thread_list);
		thread = tqt->tqt_thread;
		spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

		kthread_stop(thread);

		spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	}

	while (!list_empty(&tq->tq_free_list)) {
		t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);

		ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));

		list_del_init(&t->tqent_list);
		task_free(tq, t);
	}

	ASSERT(tq->tq_nthreads == 0);
	ASSERT(tq->tq_nalloc == 0);
	ASSERT(list_empty(&tq->tq_thread_list));
	ASSERT(list_empty(&tq->tq_active_list));
	ASSERT(list_empty(&tq->tq_free_list));
	ASSERT(list_empty(&tq->tq_pend_list));
	ASSERT(list_empty(&tq->tq_prio_list));
	ASSERT(list_empty(&tq->tq_delay_list));

	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	kmem_free(tq, sizeof(taskq_t));

	SEXIT;
}
EXPORT_SYMBOL(taskq_destroy);

int
spl_taskq_init(void)
{
	SENTRY;

	/* Solaris creates a dynamic taskq of up to 64 threads, however in
	 * a Linux environment 1 thread per-core is usually about right */
	system_taskq = taskq_create("spl_system_taskq", num_online_cpus(),
				    minclsyspri, 4, 512, TASKQ_PREPOPULATE);
	if (system_taskq == NULL)
		SRETURN(1);

	SRETURN(0);
}

void
spl_taskq_fini(void)
{
	SENTRY;
	taskq_destroy(system_taskq);
	SEXIT;
}