~vaifrax/inkscape/bugfix170049

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
'''
Copyright (C) 2005 Aaron Spike, aaron@ekips.org

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
'''

import math, cmath

def rootWrapper(a,b,c,d):
    if a:
	#TODO: find a new cubic solver and put it here
      	#return solveCubicMonic(b/a,c/a,d/a)
        return ()
    elif b:
        det=c**2.0-4.0*b*d
        if det:
            return (-c+cmath.sqrt(det))/(2.0*b),(-c-cmath.sqrt(det))/(2.0*b)
        else:
            return -c/(2.0*b),
    elif c:
        return 1.0*(-d/c),
    return ()

def bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))):
	#parametric bezier
	x0=bx0
	y0=by0
	cx=3*(bx1-x0)
	bx=3*(bx2-bx1)-cx
	ax=bx3-x0-cx-bx
	cy=3*(by1-y0)
	by=3*(by2-by1)-cy
	ay=by3-y0-cy-by

	return ax,ay,bx,by,cx,cy,x0,y0
	#ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))

def linebezierintersect(((lx1,ly1),(lx2,ly2)),((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))):
	#parametric line
	dd=lx1
	cc=lx2-lx1
	bb=ly1
	aa=ly2-ly1

	if aa:
                coef1=cc/aa
                coef2=1
        else:
                coef1=1
                coef2=aa/cc

	ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
	#cubic intersection coefficients
	a=coef1*ay-coef2*ax
	b=coef1*by-coef2*bx
	c=coef1*cy-coef2*cx
	d=coef1*(y0-bb)-coef2*(x0-dd)

        roots = rootWrapper(a,b,c,d)
        retval = []
        for i in roots:
            if type(i) is complex and i.imag==0:
                i = i.real
            if type(i) is not complex and 0<=i<=1:
                retval.append(i)
        return retval

def bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
	ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
        x=ax*(t**3)+bx*(t**2)+cx*t+x0
	y=ay*(t**3)+by*(t**2)+cy*t+y0
        return x,y

def bezierslopeatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
	ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
        dx=3*ax*(t**2)+2*bx*t+cx
	dy=3*ay*(t**2)+2*by*t+cy
        return dx,dy

def beziertatslope(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),(dy,dx)):
	ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
	#quadratic coefficents of slope formula
	if dx:
		slope = 1.0*(dy/dx)
		a=3*ay-3*ax*slope
		b=2*by-2*bx*slope
		c=cy-cx*slope
	elif dy:
		slope = 1.0*(dx/dy)
		a=3*ax-3*ay*slope
		b=2*bx-2*by*slope
		c=cx-cy*slope
	else:
		return []

        roots = rootWrapper(0,a,b,c)
        retval = []
        for i in roots:
            if type(i) is complex and i.imag==0:
                i = i.real
            if type(i) is not complex and 0<=i<=1:
                retval.append(i)
        return retval

def tpoint((x1,y1),(x2,y2),t):
	 return x1+t*(x2-x1),y1+t*(y2-y1)
def beziersplitatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t):
	m1=tpoint((bx0,by0),(bx1,by1),t)
	m2=tpoint((bx1,by1),(bx2,by2),t)
	m3=tpoint((bx2,by2),(bx3,by3),t)
	m4=tpoint(m1,m2,t)
	m5=tpoint(m2,m3,t)
	m=tpoint(m4,m5,t)
	
	return ((bx0,by0),m1,m4,m),(m,m5,m3,(bx3,by3))

'''
Approximating the arc length of a bezier curve
according to <http://www.cit.gu.edu.au/~anthony/info/graphics/bezier.curves>

if:
    L1 = |P0 P1| +|P1 P2| +|P2 P3| 
    L0 = |P0 P3|
then: 
    L = 1/2*L0 + 1/2*L1
    ERR = L1-L0
ERR approaches 0 as the number of subdivisions (m) increases
    2^-4m

Reference:
Jens Gravesen <gravesen@mat.dth.dk>
"Adaptive subdivision and the length of Bezier curves"
mat-report no. 1992-10, Mathematical Institute, The Technical
University of Denmark. 
'''
def pointdistance((x1,y1),(x2,y2)):
	return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
def Gravesen_addifclose(b, len, error = 0.001):
	box = 0
	for i in range(1,4):
		box += pointdistance(b[i-1], b[i])
	chord = pointdistance(b[0], b[3])
	if (box - chord) > error:
		first, second = beziersplitatt(b, 0.5)
		Gravesen_addifclose(first, len, error)
		Gravesen_addifclose(second, len, error)
	else:
		len[0] += (box / 2.0) + (chord / 2.0)
def bezierlengthGravesen(b, error = 0.001):
	len = [0]
	Gravesen_addifclose(b, len, error)
	return len[0]

# balf = Bezier Arc Length Function
balfax,balfbx,balfcx,balfay,balfby,balfcy = 0,0,0,0,0,0
def balf(t):
	retval = (balfax*(t**2) + balfbx*t + balfcx)**2 + (balfay*(t**2) + balfby*t + balfcy)**2
	return math.sqrt(retval)

def Simpson(f, a, b, n_limit, tolerance):
	n = 2
	multiplier = (b - a)/6.0
	endsum = f(a) + f(b)
	interval = (b - a)/2.0
	asum = 0.0
	bsum = f(a + interval)
	est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
	est0 = 2.0 * est1
	#print multiplier, endsum, interval, asum, bsum, est1, est0
	while n < n_limit and abs(est1 - est0) > tolerance:
		n *= 2
		multiplier /= 2.0
		interval /= 2.0
		asum += bsum
		bsum = 0.0
		est0 = est1
		for i in xrange(1, n, 2):
			bsum += f(a + (i * interval))
        	est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
		#print multiplier, endsum, interval, asum, bsum, est1, est0
	return est1

def bezierlengthSimpson(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), tolerance = 0.001):
	global balfax,balfbx,balfcx,balfay,balfby,balfcy
	ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
	balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
	return Simpson(balf, 0.0, 1.0, 4096, tolerance)

def beziertatlength(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), l = 0.5, tolerance = 0.001):
	global balfax,balfbx,balfcx,balfay,balfby,balfcy
	ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
	balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
	t = 1.0
	tdiv = t
	curlen = Simpson(balf, 0.0, t, 4096, tolerance)
	targetlen = l * curlen
	diff = curlen - targetlen
	while abs(diff) > tolerance:
		tdiv /= 2.0
		if diff < 0:
			t += tdiv
		else:
			t -= tdiv			
		curlen = Simpson(balf, 0.0, t, 4096, tolerance)
		diff = curlen - targetlen
	return t

#default bezier length method
bezierlength = bezierlengthSimpson

if __name__ == '__main__':
	import timing
	#print linebezierintersect(((,),(,)),((,),(,),(,),(,)))
	#print linebezierintersect(((0,1),(0,-1)),((-1,0),(-.5,0),(.5,0),(1,0)))
	tol = 0.00000001
	curves = [((0,0),(1,5),(4,5),(5,5)),
			((0,0),(0,0),(5,0),(10,0)),
			((0,0),(0,0),(5,1),(10,0)),
			((-10,0),(0,0),(10,0),(10,10)),
			((15,10),(0,0),(10,0),(-5,10))]
	'''
	for curve in curves:
		timing.start()
		g = bezierlengthGravesen(curve,tol)
		timing.finish()
		gt = timing.micro()

		timing.start()
		s = bezierlengthSimpson(curve,tol)
		timing.finish()
		st = timing.micro()

		print g, gt
		print s, st
	'''
	for curve in curves:
		print beziertatlength(curve,0.5)