1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
|
/* dfa.c - deterministic extended regexp routines for GNU
Copyright (C) 1988, 1998, 2000, 2002, 2004-2005, 2007-2014 Free Software
Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc.,
51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA */
/* Written June, 1988 by Mike Haertel
Modified July, 1988 by Arthur David Olson to assist BMG speedups */
#include <config.h>
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#ifndef VMS
#include <sys/types.h>
#else
#include <stddef.h>
#endif
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#if HAVE_SETLOCALE
#include <locale.h>
#endif
/* Gawk doesn't use Gnulib, so don't assume that setlocale is present. */
#ifndef LC_ALL
# define setlocale(category, locale) NULL
#endif
#define STREQ(a, b) (strcmp (a, b) == 0)
/* ISASCIIDIGIT differs from isdigit, as follows:
- Its arg may be any int or unsigned int; it need not be an unsigned char.
- It's guaranteed to evaluate its argument exactly once.
- It's typically faster.
Posix 1003.2-1992 section 2.5.2.1 page 50 lines 1556-1558 says that
only '0' through '9' are digits. Prefer ISASCIIDIGIT to isdigit unless
it's important to use the locale's definition of "digit" even when the
host does not conform to Posix. */
#define ISASCIIDIGIT(c) ((unsigned) (c) - '0' <= 9)
#include "gettext.h"
#define _(str) gettext (str)
#include "mbsupport.h" /* Define MBS_SUPPORT to 1 or 0, as appropriate. */
#if MBS_SUPPORT
/* We can handle multibyte strings. */
# include <wchar.h>
# include <wctype.h>
#endif
#include "xalloc.h"
#include "dfa.h"
#ifdef GAWK
static int
is_blank (int c)
{
return (c == ' ' || c == '\t');
}
#endif /* GAWK */
/* HPUX defines these as macros in sys/param.h. */
#ifdef setbit
# undef setbit
#endif
#ifdef clrbit
# undef clrbit
#endif
/* First integer value that is greater than any character code. */
enum { NOTCHAR = 1 << CHAR_BIT };
/* This represents part of a character class. It must be unsigned and
at least CHARCLASS_WORD_BITS wide. Any excess bits are zero. */
typedef unsigned int charclass_word;
/* The number of bits used in a charclass word. utf8_classes assumes
this is exactly 32. */
enum { CHARCLASS_WORD_BITS = 32 };
/* The maximum useful value of a charclass_word; all used bits are 1. */
#define CHARCLASS_WORD_MASK \
(((charclass_word) 1 << (CHARCLASS_WORD_BITS - 1) << 1) - 1)
/* Number of words required to hold a bit for every character. */
enum
{
CHARCLASS_WORDS = (NOTCHAR + CHARCLASS_WORD_BITS - 1) / CHARCLASS_WORD_BITS
};
/* Sets of unsigned characters are stored as bit vectors in arrays of ints. */
typedef charclass_word charclass[CHARCLASS_WORDS];
/* Convert a possibly-signed character to an unsigned character. This is
a bit safer than casting to unsigned char, since it catches some type
errors that the cast doesn't. */
static unsigned char
to_uchar (char ch)
{
return ch;
}
/* Contexts tell us whether a character is a newline or a word constituent.
Word-constituent characters are those that satisfy iswalnum, plus '_'.
Each character has a single CTX_* value; bitmasks of CTX_* values denote
a particular character class.
A state also stores a context value, which is a bitmask of CTX_* values.
A state's context represents a set of characters that the state's
predecessors must match. For example, a state whose context does not
include CTX_LETTER will never have transitions where the previous
character is a word constituent. A state whose context is CTX_ANY
might have transitions from any character. */
#define CTX_NONE 1
#define CTX_LETTER 2
#define CTX_NEWLINE 4
#define CTX_ANY 7
/* Sometimes characters can only be matched depending on the surrounding
context. Such context decisions depend on what the previous character
was, and the value of the current (lookahead) character. Context
dependent constraints are encoded as 8 bit integers. Each bit that
is set indicates that the constraint succeeds in the corresponding
context.
bit 8-11 - valid contexts when next character is CTX_NEWLINE
bit 4-7 - valid contexts when next character is CTX_LETTER
bit 0-3 - valid contexts when next character is CTX_NONE
The macro SUCCEEDS_IN_CONTEXT determines whether a given constraint
succeeds in a particular context. Prev is a bitmask of possible
context values for the previous character, curr is the (single-bit)
context value for the lookahead character. */
#define NEWLINE_CONSTRAINT(constraint) (((constraint) >> 8) & 0xf)
#define LETTER_CONSTRAINT(constraint) (((constraint) >> 4) & 0xf)
#define OTHER_CONSTRAINT(constraint) ((constraint) & 0xf)
#define SUCCEEDS_IN_CONTEXT(constraint, prev, curr) \
((((curr) & CTX_NONE ? OTHER_CONSTRAINT (constraint) : 0) \
| ((curr) & CTX_LETTER ? LETTER_CONSTRAINT (constraint) : 0) \
| ((curr) & CTX_NEWLINE ? NEWLINE_CONSTRAINT (constraint) : 0)) & (prev))
/* The following macros describe what a constraint depends on. */
#define PREV_NEWLINE_CONSTRAINT(constraint) (((constraint) >> 2) & 0x111)
#define PREV_LETTER_CONSTRAINT(constraint) (((constraint) >> 1) & 0x111)
#define PREV_OTHER_CONSTRAINT(constraint) ((constraint) & 0x111)
#define PREV_NEWLINE_DEPENDENT(constraint) \
(PREV_NEWLINE_CONSTRAINT (constraint) != PREV_OTHER_CONSTRAINT (constraint))
#define PREV_LETTER_DEPENDENT(constraint) \
(PREV_LETTER_CONSTRAINT (constraint) != PREV_OTHER_CONSTRAINT (constraint))
/* Tokens that match the empty string subject to some constraint actually
work by applying that constraint to determine what may follow them,
taking into account what has gone before. The following values are
the constraints corresponding to the special tokens previously defined. */
#define NO_CONSTRAINT 0x777
#define BEGLINE_CONSTRAINT 0x444
#define ENDLINE_CONSTRAINT 0x700
#define BEGWORD_CONSTRAINT 0x050
#define ENDWORD_CONSTRAINT 0x202
#define LIMWORD_CONSTRAINT 0x252
#define NOTLIMWORD_CONSTRAINT 0x525
/* The regexp is parsed into an array of tokens in postfix form. Some tokens
are operators and others are terminal symbols. Most (but not all) of these
codes are returned by the lexical analyzer. */
typedef ptrdiff_t token;
/* Predefined token values. */
enum
{
END = -1, /* END is a terminal symbol that matches the
end of input; any value of END or less in
the parse tree is such a symbol. Accepting
states of the DFA are those that would have
a transition on END. */
/* Ordinary character values are terminal symbols that match themselves. */
EMPTY = NOTCHAR, /* EMPTY is a terminal symbol that matches
the empty string. */
BACKREF, /* BACKREF is generated by \<digit>
or by any other construct that
is not completely handled. If the scanner
detects a transition on backref, it returns
a kind of "semi-success" indicating that
the match will have to be verified with
a backtracking matcher. */
BEGLINE, /* BEGLINE is a terminal symbol that matches
the empty string at the beginning of a
line. */
ENDLINE, /* ENDLINE is a terminal symbol that matches
the empty string at the end of a line. */
BEGWORD, /* BEGWORD is a terminal symbol that matches
the empty string at the beginning of a
word. */
ENDWORD, /* ENDWORD is a terminal symbol that matches
the empty string at the end of a word. */
LIMWORD, /* LIMWORD is a terminal symbol that matches
the empty string at the beginning or the
end of a word. */
NOTLIMWORD, /* NOTLIMWORD is a terminal symbol that
matches the empty string not at
the beginning or end of a word. */
QMARK, /* QMARK is an operator of one argument that
matches zero or one occurrences of its
argument. */
STAR, /* STAR is an operator of one argument that
matches the Kleene closure (zero or more
occurrences) of its argument. */
PLUS, /* PLUS is an operator of one argument that
matches the positive closure (one or more
occurrences) of its argument. */
REPMN, /* REPMN is a lexical token corresponding
to the {m,n} construct. REPMN never
appears in the compiled token vector. */
CAT, /* CAT is an operator of two arguments that
matches the concatenation of its
arguments. CAT is never returned by the
lexical analyzer. */
OR, /* OR is an operator of two arguments that
matches either of its arguments. */
LPAREN, /* LPAREN never appears in the parse tree,
it is only a lexeme. */
RPAREN, /* RPAREN never appears in the parse tree. */
ANYCHAR, /* ANYCHAR is a terminal symbol that matches
a valid multibyte (or single byte) character.
It is used only if MB_CUR_MAX > 1. */
MBCSET, /* MBCSET is similar to CSET, but for
multibyte characters. */
WCHAR, /* Only returned by lex. wctok contains
the wide character representation. */
CSET /* CSET and (and any value greater) is a
terminal symbol that matches any of a
class of characters. */
};
/* States of the recognizer correspond to sets of positions in the parse
tree, together with the constraints under which they may be matched.
So a position is encoded as an index into the parse tree together with
a constraint. */
typedef struct
{
size_t index; /* Index into the parse array. */
unsigned int constraint; /* Constraint for matching this position. */
} position;
/* Sets of positions are stored as arrays. */
typedef struct
{
position *elems; /* Elements of this position set. */
size_t nelem; /* Number of elements in this set. */
size_t alloc; /* Number of elements allocated in ELEMS. */
} position_set;
/* Sets of leaves are also stored as arrays. */
typedef struct
{
size_t *elems; /* Elements of this position set. */
size_t nelem; /* Number of elements in this set. */
} leaf_set;
/* A state of the dfa consists of a set of positions, some flags,
and the token value of the lowest-numbered position of the state that
contains an END token. */
typedef struct
{
size_t hash; /* Hash of the positions of this state. */
position_set elems; /* Positions this state could match. */
unsigned char context; /* Context from previous state. */
bool has_backref; /* This state matches a \<digit>. */
bool has_mbcset; /* This state matches a MBCSET. */
unsigned short constraint; /* Constraint for this state to accept. */
token first_end; /* Token value of the first END in elems. */
position_set mbps; /* Positions which can match multibyte
characters, e.g., period.
Used only if MB_CUR_MAX > 1. */
} dfa_state;
/* States are indexed by state_num values. These are normally
nonnegative but -1 is used as a special value. */
typedef ptrdiff_t state_num;
/* A bracket operator.
e.g., [a-c], [[:alpha:]], etc. */
struct mb_char_classes
{
ptrdiff_t cset;
bool invert;
wchar_t *chars; /* Normal characters. */
size_t nchars;
wctype_t *ch_classes; /* Character classes. */
size_t nch_classes;
struct /* Range characters. */
{
wchar_t beg; /* Range start. */
wchar_t end; /* Range end. */
} *ranges;
size_t nranges;
char **equivs; /* Equivalence classes. */
size_t nequivs;
char **coll_elems;
size_t ncoll_elems; /* Collating elements. */
};
/* A compiled regular expression. */
struct dfa
{
/* Fields filled by the scanner. */
charclass *charclasses; /* Array of character sets for CSET tokens. */
size_t cindex; /* Index for adding new charclasses. */
size_t calloc; /* Number of charclasses allocated. */
/* Fields filled by the parser. */
token *tokens; /* Postfix parse array. */
size_t tindex; /* Index for adding new tokens. */
size_t talloc; /* Number of tokens currently allocated. */
size_t depth; /* Depth required of an evaluation stack
used for depth-first traversal of the
parse tree. */
size_t nleaves; /* Number of leaves on the parse tree. */
size_t nregexps; /* Count of parallel regexps being built
with dfaparse. */
bool fast; /* The DFA is fast. */
bool multibyte; /* MB_CUR_MAX > 1. */
token utf8_anychar_classes[5]; /* To lower ANYCHAR in UTF-8 locales. */
mbstate_t mbs; /* Multibyte conversion state. */
/* dfaexec implementation. */
char *(*dfaexec) (struct dfa *, char const *, char *, int, size_t *, int *);
/* The following are valid only if MB_CUR_MAX > 1. */
/* The value of multibyte_prop[i] is defined by following rule.
if tokens[i] < NOTCHAR
bit 0 : tokens[i] is the first byte of a character, including
single-byte characters.
bit 1 : tokens[i] is the last byte of a character, including
single-byte characters.
if tokens[i] = MBCSET
("the index of mbcsets corresponding to this operator" << 2) + 3
e.g.
tokens
= 'single_byte_a', 'multi_byte_A', single_byte_b'
= 'sb_a', 'mb_A(1st byte)', 'mb_A(2nd byte)', 'mb_A(3rd byte)', 'sb_b'
multibyte_prop
= 3 , 1 , 0 , 2 , 3
*/
int *multibyte_prop;
#if MBS_SUPPORT
/* A table indexed by byte values that contains the corresponding wide
character (if any) for that byte. WEOF means the byte is not a
valid single-byte character. */
wint_t mbrtowc_cache[NOTCHAR];
#endif
/* Array of the bracket expression in the DFA. */
struct mb_char_classes *mbcsets;
size_t nmbcsets;
size_t mbcsets_alloc;
/* Fields filled by the superset. */
struct dfa *superset; /* Hint of the dfa. */
/* Fields filled by the state builder. */
dfa_state *states; /* States of the dfa. */
state_num sindex; /* Index for adding new states. */
size_t salloc; /* Number of states currently allocated. */
/* Fields filled by the parse tree->NFA conversion. */
position_set *follows; /* Array of follow sets, indexed by position
index. The follow of a position is the set
of positions containing characters that
could conceivably follow a character
matching the given position in a string
matching the regexp. Allocated to the
maximum possible position index. */
bool searchflag; /* We are supposed to build a searching
as opposed to an exact matcher. A searching
matcher finds the first and shortest string
matching a regexp anywhere in the buffer,
whereas an exact matcher finds the longest
string matching, but anchored to the
beginning of the buffer. */
/* Fields filled by dfaexec. */
state_num tralloc; /* Number of transition tables that have
slots so far, not counting trans[-1]. */
int trcount; /* Number of transition tables that have
actually been built. */
int min_trcount; /* Minimum of number of transition tables.
Always keep the number, even after freeing
the transition tables. It is also the
number of initial states. */
state_num **trans; /* Transition tables for states that can
never accept. If the transitions for a
state have not yet been computed, or the
state could possibly accept, its entry in
this table is NULL. This points to one
past the start of the allocated array,
and trans[-1] is always NULL. */
state_num **fails; /* Transition tables after failing to accept
on a state that potentially could do so. */
int *success; /* Table of acceptance conditions used in
dfaexec and computed in build_state. */
state_num *newlines; /* Transitions on newlines. The entry for a
newline in any transition table is always
-1 so we can count lines without wasting
too many cycles. The transition for a
newline is stored separately and handled
as a special case. Newline is also used
as a sentinel at the end of the buffer. */
state_num initstate_letter; /* Initial state for letter context. */
state_num initstate_others; /* Initial state for other contexts. */
struct dfamust *musts; /* List of strings, at least one of which
is known to appear in any r.e. matching
the dfa. */
position_set mb_follows; /* Follow set added by ANYCHAR and/or MBCSET
on demand. */
int *mb_match_lens; /* Array of length reduced by ANYCHAR and/or
MBCSET. Null if mb_follows.elems has not
been allocated. */
};
/* Some macros for user access to dfa internals. */
/* S could possibly be an accepting state of R. */
#define ACCEPTING(s, r) ((r).states[s].constraint)
/* STATE accepts in the specified context. */
#define ACCEPTS_IN_CONTEXT(prev, curr, state, dfa) \
SUCCEEDS_IN_CONTEXT ((dfa).states[state].constraint, prev, curr)
static void dfamust (struct dfa *dfa);
static void regexp (void);
static void
dfambcache (struct dfa *d)
{
#if MBS_SUPPORT
int i;
for (i = CHAR_MIN; i <= CHAR_MAX; ++i)
{
char c = i;
unsigned char uc = i;
mbstate_t s = { 0 };
wchar_t wc;
d->mbrtowc_cache[uc] = mbrtowc (&wc, &c, 1, &s) <= 1 ? wc : WEOF;
}
#endif
}
#if MBS_SUPPORT
/* Store into *PWC the result of converting the leading bytes of the
multibyte buffer S of length N bytes, using the mbrtowc_cache in *D
and updating the conversion state in *D. On conversion error,
convert just a single byte, to WEOF. Return the number of bytes
converted.
This differs from mbrtowc (PWC, S, N, &D->mbs) as follows:
* PWC points to wint_t, not to wchar_t.
* The last arg is a dfa *D instead of merely a multibyte conversion
state D->mbs. D also contains an mbrtowc_cache for speed.
* N must be at least 1.
* S[N - 1] must be a sentinel byte.
* Shift encodings are not supported.
* The return value is always in the range 1..N.
* D->mbs is always valid afterwards.
* *PWC is always set to something. */
static size_t
mbs_to_wchar (wint_t *pwc, char const *s, size_t n, struct dfa *d)
{
unsigned char uc = s[0];
wint_t wc = d->mbrtowc_cache[uc];
if (wc == WEOF)
{
wchar_t wch;
size_t nbytes = mbrtowc (&wch, s, n, &d->mbs);
if (0 < nbytes && nbytes < (size_t) -2)
{
*pwc = wch;
return nbytes;
}
memset (&d->mbs, 0, sizeof d->mbs);
}
*pwc = wc;
return 1;
}
#else
#define mbs_to_wchar(pwc, s, n, d) (WEOF)
#endif
#ifdef DEBUG
static void
prtok (token t)
{
char const *s;
if (t < 0)
fprintf (stderr, "END");
else if (t < NOTCHAR)
{
int ch = t;
fprintf (stderr, "%c", ch);
}
else
{
switch (t)
{
case EMPTY:
s = "EMPTY";
break;
case BACKREF:
s = "BACKREF";
break;
case BEGLINE:
s = "BEGLINE";
break;
case ENDLINE:
s = "ENDLINE";
break;
case BEGWORD:
s = "BEGWORD";
break;
case ENDWORD:
s = "ENDWORD";
break;
case LIMWORD:
s = "LIMWORD";
break;
case NOTLIMWORD:
s = "NOTLIMWORD";
break;
case QMARK:
s = "QMARK";
break;
case STAR:
s = "STAR";
break;
case PLUS:
s = "PLUS";
break;
case CAT:
s = "CAT";
break;
case OR:
s = "OR";
break;
case LPAREN:
s = "LPAREN";
break;
case RPAREN:
s = "RPAREN";
break;
case ANYCHAR:
s = "ANYCHAR";
break;
case MBCSET:
s = "MBCSET";
break;
default:
s = "CSET";
break;
}
fprintf (stderr, "%s", s);
}
}
#endif /* DEBUG */
/* Stuff pertaining to charclasses. */
static bool
tstbit (unsigned int b, charclass const c)
{
return c[b / CHARCLASS_WORD_BITS] >> b % CHARCLASS_WORD_BITS & 1;
}
static void
setbit (unsigned int b, charclass c)
{
c[b / CHARCLASS_WORD_BITS] |= (charclass_word) 1 << b % CHARCLASS_WORD_BITS;
}
static void
clrbit (unsigned int b, charclass c)
{
c[b / CHARCLASS_WORD_BITS] &= ~((charclass_word) 1
<< b % CHARCLASS_WORD_BITS);
}
static void
copyset (charclass const src, charclass dst)
{
memcpy (dst, src, sizeof (charclass));
}
static void
zeroset (charclass s)
{
memset (s, 0, sizeof (charclass));
}
static void
notset (charclass s)
{
int i;
for (i = 0; i < CHARCLASS_WORDS; ++i)
s[i] = CHARCLASS_WORD_MASK & ~s[i];
}
static bool
equal (charclass const s1, charclass const s2)
{
return memcmp (s1, s2, sizeof (charclass)) == 0;
}
/* Ensure that the array addressed by PTR holds at least NITEMS +
(PTR || !NITEMS) items. Either return PTR, or reallocate the array
and return its new address. Although PTR may be null, the returned
value is never null.
The array holds *NALLOC items; *NALLOC is updated on reallocation.
ITEMSIZE is the size of one item. Avoid O(N**2) behavior on arrays
growing linearly. */
static void *
maybe_realloc (void *ptr, size_t nitems, size_t *nalloc, size_t itemsize)
{
if (nitems < *nalloc)
return ptr;
*nalloc = nitems;
return x2nrealloc (ptr, nalloc, itemsize);
}
/* In DFA D, find the index of charclass S, or allocate a new one. */
static size_t
dfa_charclass_index (struct dfa *d, charclass const s)
{
size_t i;
for (i = 0; i < d->cindex; ++i)
if (equal (s, d->charclasses[i]))
return i;
d->charclasses = maybe_realloc (d->charclasses, d->cindex, &d->calloc,
sizeof *d->charclasses);
++d->cindex;
copyset (s, d->charclasses[i]);
return i;
}
/* A pointer to the current dfa is kept here during parsing. */
static struct dfa *dfa;
/* Find the index of charclass S in the current DFA, or allocate a new one. */
static size_t
charclass_index (charclass const s)
{
return dfa_charclass_index (dfa, s);
}
/* Syntax bits controlling the behavior of the lexical analyzer. */
static reg_syntax_t syntax_bits, syntax_bits_set;
/* Flag for case-folding letters into sets. */
static bool case_fold;
/* End-of-line byte in data. */
static unsigned char eolbyte;
/* Cache of char-context values. */
static int sbit[NOTCHAR];
/* Set of characters considered letters. */
static charclass letters;
/* Set of characters that are newline. */
static charclass newline;
/* Add this to the test for whether a byte is word-constituent, since on
BSD-based systems, many values in the 128..255 range are classified as
alphabetic, while on glibc-based systems, they are not. */
#ifdef __GLIBC__
# define is_valid_unibyte_character(c) 1
#else
# define is_valid_unibyte_character(c) (! (MBS_SUPPORT && btowc (c) == WEOF))
#endif
/* C is a "word-constituent" byte. */
#define IS_WORD_CONSTITUENT(C) \
(is_valid_unibyte_character (C) && (isalnum (C) || (C) == '_'))
static int
char_context (unsigned char c)
{
if (c == eolbyte)
return CTX_NEWLINE;
if (IS_WORD_CONSTITUENT (c))
return CTX_LETTER;
return CTX_NONE;
}
static int
wchar_context (wint_t wc)
{
if (wc == (wchar_t) eolbyte || wc == 0)
return CTX_NEWLINE;
if (wc == L'_' || iswalnum (wc))
return CTX_LETTER;
return CTX_NONE;
}
/* Entry point to set syntax options. */
void
dfasyntax (reg_syntax_t bits, int fold, unsigned char eol)
{
unsigned int i;
syntax_bits_set = 1;
syntax_bits = bits;
case_fold = fold != 0;
eolbyte = eol;
for (i = 0; i < NOTCHAR; ++i)
{
sbit[i] = char_context (i);
switch (sbit[i])
{
case CTX_LETTER:
setbit (i, letters);
break;
case CTX_NEWLINE:
setbit (i, newline);
break;
}
}
}
/* Set a bit in the charclass for the given wchar_t. Do nothing if WC
is represented by a multi-byte sequence. Even for MB_CUR_MAX == 1,
this may happen when folding case in weird Turkish locales where
dotless i/dotted I are not included in the chosen character set.
Return whether a bit was set in the charclass. */
static bool
setbit_wc (wint_t wc, charclass c)
{
#if MBS_SUPPORT
int b = wctob (wc);
if (b == EOF)
return false;
setbit (b, c);
return true;
#else
abort ();
/*NOTREACHED*/ return false;
#endif
}
/* Set a bit for B and its case variants in the charclass C.
MB_CUR_MAX must be 1. */
static void
setbit_case_fold_c (int b, charclass c)
{
int ub = toupper (b);
int i;
for (i = 0; i < NOTCHAR; i++)
if (toupper (i) == ub)
setbit (i, c);
}
/* UTF-8 encoding allows some optimizations that we can't otherwise
assume in a multibyte encoding. */
int
using_utf8 (void)
{
static int utf8 = -1;
if (utf8 < 0)
{
wchar_t wc;
mbstate_t mbs = { 0 };
utf8 = mbrtowc (&wc, "\xc4\x80", 2, &mbs) == 2 && wc == 0x100;
}
return utf8;
}
/* The current locale is known to be a unibyte locale
without multicharacter collating sequences and where range
comparisons simply use the native encoding. These locales can be
processed more efficiently. */
static bool
using_simple_locale (void)
{
/* The native character set is known to be compatible with
the C locale. The following test isn't perfect, but it's good
enough in practice, as only ASCII and EBCDIC are in common use
and this test correctly accepts ASCII and rejects EBCDIC. */
enum { native_c_charset =
('\b' == 8 && '\t' == 9 && '\n' == 10 && '\v' == 11 && '\f' == 12
&& '\r' == 13 && ' ' == 32 && '!' == 33 && '"' == 34 && '#' == 35
&& '%' == 37 && '&' == 38 && '\'' == 39 && '(' == 40 && ')' == 41
&& '*' == 42 && '+' == 43 && ',' == 44 && '-' == 45 && '.' == 46
&& '/' == 47 && '0' == 48 && '9' == 57 && ':' == 58 && ';' == 59
&& '<' == 60 && '=' == 61 && '>' == 62 && '?' == 63 && 'A' == 65
&& 'Z' == 90 && '[' == 91 && '\\' == 92 && ']' == 93 && '^' == 94
&& '_' == 95 && 'a' == 97 && 'z' == 122 && '{' == 123 && '|' == 124
&& '}' == 125 && '~' == 126)
};
if (! native_c_charset || dfa->multibyte)
return false;
else
{
static int unibyte_c = -1;
if (unibyte_c < 0)
{
char const *locale = setlocale (LC_ALL, NULL);
unibyte_c = (!locale
|| STREQ (locale, "C")
|| STREQ (locale, "POSIX"));
}
return unibyte_c;
}
}
/* Lexical analyzer. All the dross that deals with the obnoxious
GNU Regex syntax bits is located here. The poor, suffering
reader is referred to the GNU Regex documentation for the
meaning of the @#%!@#%^!@ syntax bits. */
static char const *lexptr; /* Pointer to next input character. */
static size_t lexleft; /* Number of characters remaining. */
static token lasttok; /* Previous token returned; initially END. */
static bool laststart; /* We're separated from beginning or (,
| only by zero-width characters. */
static size_t parens; /* Count of outstanding left parens. */
static int minrep, maxrep; /* Repeat counts for {m,n}. */
static int cur_mb_len = 1; /* Length of the multibyte representation of
wctok. */
static wint_t wctok; /* Wide character representation of the current
multibyte character, or WEOF if there was
an encoding error. Used only if
MB_CUR_MAX > 1. */
#if MBS_SUPPORT
/* Fetch the next lexical input character. Set C (of type int) to the
next input byte, except set C to EOF if the input is a multibyte
character of length greater than 1. Set WC (of type wint_t) to the
value of the input if it is a valid multibyte character (possibly
of length 1); otherwise set WC to WEOF. If there is no more input,
report EOFERR if EOFERR is not null, and return lasttok = END
otherwise. */
# define FETCH_WC(c, wc, eoferr) \
do { \
if (! lexleft) \
{ \
if ((eoferr) != 0) \
dfaerror (eoferr); \
else \
return lasttok = END; \
} \
else \
{ \
wint_t _wc; \
size_t nbytes = mbs_to_wchar (&_wc, lexptr, lexleft, dfa); \
cur_mb_len = nbytes; \
(wc) = _wc; \
(c) = nbytes == 1 ? to_uchar (*lexptr) : EOF; \
lexptr += nbytes; \
lexleft -= nbytes; \
} \
} while (0)
#else
/* Note that characters become unsigned here. */
# define FETCH_WC(c, unused, eoferr) \
do { \
if (! lexleft) \
{ \
if ((eoferr) != 0) \
dfaerror (eoferr); \
else \
return lasttok = END; \
} \
(c) = to_uchar (*lexptr++); \
--lexleft; \
} while (0)
#endif /* MBS_SUPPORT */
#ifndef MIN
# define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
/* The set of wchar_t values C such that there's a useful locale
somewhere where C != towupper (C) && C != towlower (towupper (C)).
For example, 0x00B5 (U+00B5 MICRO SIGN) is in this table, because
towupper (0x00B5) == 0x039C (U+039C GREEK CAPITAL LETTER MU), and
towlower (0x039C) == 0x03BC (U+03BC GREEK SMALL LETTER MU). */
static short const lonesome_lower[] =
{
0x00B5, 0x0131, 0x017F, 0x01C5, 0x01C8, 0x01CB, 0x01F2, 0x0345,
0x03C2, 0x03D0, 0x03D1, 0x03D5, 0x03D6, 0x03F0, 0x03F1,
/* U+03F2 GREEK LUNATE SIGMA SYMBOL lacks a specific uppercase
counterpart in locales predating Unicode 4.0.0 (April 2003). */
0x03F2,
0x03F5, 0x1E9B, 0x1FBE,
};
/* Maximum number of characters that can be the case-folded
counterparts of a single character, not counting the character
itself. This is 1 for towupper, 1 for towlower, and 1 for each
entry in LONESOME_LOWER. */
enum
{ CASE_FOLDED_BUFSIZE = 2 + sizeof lonesome_lower / sizeof *lonesome_lower };
/* Find the characters equal to C after case-folding, other than C
itself, and store them into FOLDED. Return the number of characters
stored. */
static int
case_folded_counterparts (wchar_t c, wchar_t folded[CASE_FOLDED_BUFSIZE])
{
int i;
int n = 0;
wint_t uc = towupper (c);
wint_t lc = towlower (uc);
if (uc != c)
folded[n++] = uc;
if (lc != uc && lc != c && towupper (lc) == uc)
folded[n++] = lc;
for (i = 0; i < sizeof lonesome_lower / sizeof *lonesome_lower; i++)
{
wint_t li = lonesome_lower[i];
if (li != lc && li != uc && li != c && towupper (li) == uc)
folded[n++] = li;
}
return n;
}
typedef int predicate (int);
/* The following list maps the names of the Posix named character classes
to predicate functions that determine whether a given character is in
the class. The leading [ has already been eaten by the lexical
analyzer. */
struct dfa_ctype
{
const char *name;
predicate *func;
bool single_byte_only;
};
static const struct dfa_ctype prednames[] = {
{"alpha", isalpha, false},
{"upper", isupper, false},
{"lower", islower, false},
{"digit", isdigit, true},
{"xdigit", isxdigit, false},
{"space", isspace, false},
{"punct", ispunct, false},
{"alnum", isalnum, false},
{"print", isprint, false},
{"graph", isgraph, false},
{"cntrl", iscntrl, false},
{"blank", is_blank, false},
{NULL, NULL, false}
};
static const struct dfa_ctype *_GL_ATTRIBUTE_PURE
find_pred (const char *str)
{
unsigned int i;
for (i = 0; prednames[i].name; ++i)
if (STREQ (str, prednames[i].name))
break;
return &prednames[i];
}
/* Multibyte character handling sub-routine for lex.
Parse a bracket expression and build a struct mb_char_classes. */
static token
parse_bracket_exp (void)
{
bool invert;
int c, c1, c2;
charclass ccl;
/* This is a bracket expression that dfaexec is known to
process correctly. */
bool known_bracket_exp = true;
/* Used to warn about [:space:].
Bit 0 = first character is a colon.
Bit 1 = last character is a colon.
Bit 2 = includes any other character but a colon.
Bit 3 = includes ranges, char/equiv classes or collation elements. */
int colon_warning_state;
wint_t wc;
wint_t wc2;
wint_t wc1 = 0;
/* Work area to build a mb_char_classes. */
struct mb_char_classes *work_mbc;
size_t chars_al, ranges_al, ch_classes_al, equivs_al, coll_elems_al;
chars_al = ranges_al = ch_classes_al = equivs_al = coll_elems_al = 0;
if (dfa->multibyte)
{
dfa->mbcsets = maybe_realloc (dfa->mbcsets, dfa->nmbcsets,
&dfa->mbcsets_alloc,
sizeof *dfa->mbcsets);
/* dfa->multibyte_prop[] hold the index of dfa->mbcsets.
We will update dfa->multibyte_prop[] in addtok, because we can't
decide the index in dfa->tokens[]. */
/* Initialize work area. */
work_mbc = &(dfa->mbcsets[dfa->nmbcsets++]);
memset (work_mbc, 0, sizeof *work_mbc);
}
else
work_mbc = NULL;
memset (ccl, 0, sizeof ccl);
FETCH_WC (c, wc, _("unbalanced ["));
if (c == '^')
{
FETCH_WC (c, wc, _("unbalanced ["));
invert = true;
known_bracket_exp = using_simple_locale ();
}
else
invert = false;
colon_warning_state = (c == ':');
do
{
c1 = NOTCHAR; /* Mark c1 as not initialized. */
colon_warning_state &= ~2;
/* Note that if we're looking at some other [:...:] construct,
we just treat it as a bunch of ordinary characters. We can do
this because we assume regex has checked for syntax errors before
dfa is ever called. */
if (c == '[')
{
FETCH_WC (c1, wc1, _("unbalanced ["));
if ((c1 == ':' && (syntax_bits & RE_CHAR_CLASSES))
|| c1 == '.' || c1 == '=')
{
enum { MAX_BRACKET_STRING_LEN = 32 };
char str[MAX_BRACKET_STRING_LEN + 1];
size_t len = 0;
for (;;)
{
FETCH_WC (c, wc, _("unbalanced ["));
if ((c == c1 && *lexptr == ']') || lexleft == 0)
break;
if (len < MAX_BRACKET_STRING_LEN)
str[len++] = c;
else
/* This is in any case an invalid class name. */
str[0] = '\0';
}
str[len] = '\0';
/* Fetch bracket. */
FETCH_WC (c, wc, _("unbalanced ["));
if (c1 == ':')
/* Build character class. POSIX allows character
classes to match multicharacter collating elements,
but the regex code does not support that, so do not
worry about that possibility. */
{
char const *class
= (case_fold && (STREQ (str, "upper")
|| STREQ (str, "lower")) ? "alpha" : str);
const struct dfa_ctype *pred = find_pred (class);
if (!pred)
dfaerror (_("invalid character class"));
if (dfa->multibyte && !pred->single_byte_only)
{
/* Store the character class as wctype_t. */
wctype_t wt = (wctype_t) wctype (class);
work_mbc->ch_classes
= maybe_realloc (work_mbc->ch_classes,
work_mbc->nch_classes, &ch_classes_al,
sizeof *work_mbc->ch_classes);
work_mbc->ch_classes[work_mbc->nch_classes++] = wt;
}
for (c2 = 0; c2 < NOTCHAR; ++c2)
if (pred->func (c2))
setbit (c2, ccl);
}
else
known_bracket_exp = false;
colon_warning_state |= 8;
/* Fetch new lookahead character. */
FETCH_WC (c1, wc1, _("unbalanced ["));
continue;
}
/* We treat '[' as a normal character here. c/c1/wc/wc1
are already set up. */
}
if (c == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
FETCH_WC (c, wc, _("unbalanced ["));
if (c1 == NOTCHAR)
FETCH_WC (c1, wc1, _("unbalanced ["));
if (c1 == '-')
/* build range characters. */
{
FETCH_WC (c2, wc2, _("unbalanced ["));
/* A bracket expression like [a-[.aa.]] matches an unknown set.
Treat it like [-a[.aa.]] while parsing it, and
remember that the set is unknown. */
if (c2 == '[' && *lexptr == '.')
{
known_bracket_exp = false;
c2 = ']';
}
if (c2 != ']')
{
if (c2 == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
FETCH_WC (c2, wc2, _("unbalanced ["));
if (dfa->multibyte)
{
/* When case folding map a range, say [m-z] (or even [M-z])
to the pair of ranges, [m-z] [M-Z]. Although this code
is wrong in multiple ways, it's never used in practice.
FIXME: Remove this (and related) unused code. */
if (wc != WEOF && wc2 != WEOF)
{
work_mbc->ranges
= maybe_realloc (work_mbc->ranges,
work_mbc->nranges + 2,
&ranges_al, sizeof *work_mbc->ranges);
work_mbc->ranges[work_mbc->nranges].beg
= case_fold ? towlower (wc) : wc;
work_mbc->ranges[work_mbc->nranges++].end
= case_fold ? towlower (wc2) : wc2;
if (case_fold && (iswalpha (wc) || iswalpha (wc2)))
{
work_mbc->ranges[work_mbc->nranges].beg
= towupper (wc);
work_mbc->ranges[work_mbc->nranges++].end
= towupper (wc2);
}
}
}
else if (using_simple_locale ())
{
for (c1 = c; c1 <= c2; c1++)
setbit (c1, ccl);
if (case_fold)
{
int uc = toupper (c);
int uc2 = toupper (c2);
for (c1 = 0; c1 < NOTCHAR; c1++)
{
int uc1 = toupper (c1);
if (uc <= uc1 && uc1 <= uc2)
setbit (c1, ccl);
}
}
}
else
known_bracket_exp = false;
colon_warning_state |= 8;
FETCH_WC (c1, wc1, _("unbalanced ["));
continue;
}
/* In the case [x-], the - is an ordinary hyphen,
which is left in c1, the lookahead character. */
lexptr -= cur_mb_len;
lexleft += cur_mb_len;
}
colon_warning_state |= (c == ':') ? 2 : 4;
if (!dfa->multibyte)
{
if (case_fold)
setbit_case_fold_c (c, ccl);
else
setbit (c, ccl);
continue;
}
if (wc == WEOF)
known_bracket_exp = false;
else
{
wchar_t folded[CASE_FOLDED_BUFSIZE + 1];
int i;
int n = (case_fold ? case_folded_counterparts (wc, folded + 1) + 1
: 1);
folded[0] = wc;
for (i = 0; i < n; i++)
if (!setbit_wc (folded[i], ccl))
{
work_mbc->chars
= maybe_realloc (work_mbc->chars, work_mbc->nchars,
&chars_al, sizeof *work_mbc->chars);
work_mbc->chars[work_mbc->nchars++] = folded[i];
}
}
}
while ((wc = wc1, (c = c1) != ']'));
if (colon_warning_state == 7)
dfawarn (_("character class syntax is [[:space:]], not [:space:]"));
if (! known_bracket_exp)
return BACKREF;
if (dfa->multibyte)
{
static charclass zeroclass;
work_mbc->invert = invert;
work_mbc->cset = equal (ccl, zeroclass) ? -1 : charclass_index (ccl);
return MBCSET;
}
if (invert)
{
assert (!dfa->multibyte);
notset (ccl);
if (syntax_bits & RE_HAT_LISTS_NOT_NEWLINE)
clrbit (eolbyte, ccl);
}
return CSET + charclass_index (ccl);
}
static token
lex (void)
{
int c, c2;
bool backslash = false;
charclass ccl;
int i;
/* Basic plan: We fetch a character. If it's a backslash,
we set the backslash flag and go through the loop again.
On the plus side, this avoids having a duplicate of the
main switch inside the backslash case. On the minus side,
it means that just about every case begins with
"if (backslash) ...". */
for (i = 0; i < 2; ++i)
{
FETCH_WC (c, wctok, NULL);
switch (c)
{
case '\\':
if (backslash)
goto normal_char;
if (lexleft == 0)
dfaerror (_("unfinished \\ escape"));
backslash = true;
break;
case '^':
if (backslash)
goto normal_char;
if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|| lasttok == END || lasttok == LPAREN || lasttok == OR)
return lasttok = BEGLINE;
goto normal_char;
case '$':
if (backslash)
goto normal_char;
if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|| lexleft == 0
|| (syntax_bits & RE_NO_BK_PARENS
? lexleft > 0 && *lexptr == ')'
: lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == ')')
|| (syntax_bits & RE_NO_BK_VBAR
? lexleft > 0 && *lexptr == '|'
: lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == '|')
|| ((syntax_bits & RE_NEWLINE_ALT)
&& lexleft > 0 && *lexptr == '\n'))
return lasttok = ENDLINE;
goto normal_char;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (backslash && !(syntax_bits & RE_NO_BK_REFS))
{
laststart = false;
return lasttok = BACKREF;
}
goto normal_char;
case '`':
if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
return lasttok = BEGLINE; /* FIXME: should be beginning of string */
goto normal_char;
case '\'':
if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
return lasttok = ENDLINE; /* FIXME: should be end of string */
goto normal_char;
case '<':
if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
return lasttok = BEGWORD;
goto normal_char;
case '>':
if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
return lasttok = ENDWORD;
goto normal_char;
case 'b':
if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
return lasttok = LIMWORD;
goto normal_char;
case 'B':
if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
return lasttok = NOTLIMWORD;
goto normal_char;
case '?':
if (syntax_bits & RE_LIMITED_OPS)
goto normal_char;
if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
goto normal_char;
if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
goto normal_char;
return lasttok = QMARK;
case '*':
if (backslash)
goto normal_char;
if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
goto normal_char;
return lasttok = STAR;
case '+':
if (syntax_bits & RE_LIMITED_OPS)
goto normal_char;
if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
goto normal_char;
if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
goto normal_char;
return lasttok = PLUS;
case '{':
if (!(syntax_bits & RE_INTERVALS))
goto normal_char;
if (backslash != ((syntax_bits & RE_NO_BK_BRACES) == 0))
goto normal_char;
if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
goto normal_char;
/* Cases:
{M} - exact count
{M,} - minimum count, maximum is infinity
{,N} - 0 through N
{,} - 0 to infinity (same as '*')
{M,N} - M through N */
{
char const *p = lexptr;
char const *lim = p + lexleft;
minrep = maxrep = -1;
for (; p != lim && ISASCIIDIGIT (*p); p++)
{
if (minrep < 0)
minrep = *p - '0';
else
minrep = MIN (RE_DUP_MAX + 1, minrep * 10 + *p - '0');
}
if (p != lim)
{
if (*p != ',')
maxrep = minrep;
else
{
if (minrep < 0)
minrep = 0;
while (++p != lim && ISASCIIDIGIT (*p))
{
if (maxrep < 0)
maxrep = *p - '0';
else
maxrep = MIN (RE_DUP_MAX + 1, maxrep * 10 + *p - '0');
}
}
}
if (! ((! backslash || (p != lim && *p++ == '\\'))
&& p != lim && *p++ == '}'
&& 0 <= minrep && (maxrep < 0 || minrep <= maxrep)))
{
if (syntax_bits & RE_INVALID_INTERVAL_ORD)
goto normal_char;
dfaerror (_("invalid content of \\{\\}"));
}
if (RE_DUP_MAX < maxrep)
dfaerror (_("regular expression too big"));
lexptr = p;
lexleft = lim - p;
}
laststart = false;
return lasttok = REPMN;
case '|':
if (syntax_bits & RE_LIMITED_OPS)
goto normal_char;
if (backslash != ((syntax_bits & RE_NO_BK_VBAR) == 0))
goto normal_char;
laststart = true;
return lasttok = OR;
case '\n':
if (syntax_bits & RE_LIMITED_OPS
|| backslash || !(syntax_bits & RE_NEWLINE_ALT))
goto normal_char;
laststart = true;
return lasttok = OR;
case '(':
if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
goto normal_char;
++parens;
laststart = true;
return lasttok = LPAREN;
case ')':
if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
goto normal_char;
if (parens == 0 && syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD)
goto normal_char;
--parens;
laststart = false;
return lasttok = RPAREN;
case '.':
if (backslash)
goto normal_char;
if (dfa->multibyte)
{
/* In multibyte environment period must match with a single
character not a byte. So we use ANYCHAR. */
laststart = false;
return lasttok = ANYCHAR;
}
zeroset (ccl);
notset (ccl);
if (!(syntax_bits & RE_DOT_NEWLINE))
clrbit (eolbyte, ccl);
if (syntax_bits & RE_DOT_NOT_NULL)
clrbit ('\0', ccl);
laststart = false;
return lasttok = CSET + charclass_index (ccl);
case 's':
case 'S':
if (!backslash || (syntax_bits & RE_NO_GNU_OPS))
goto normal_char;
if (!dfa->multibyte)
{
zeroset (ccl);
for (c2 = 0; c2 < NOTCHAR; ++c2)
if (isspace (c2))
setbit (c2, ccl);
if (c == 'S')
notset (ccl);
laststart = false;
return lasttok = CSET + charclass_index (ccl);
}
#define PUSH_LEX_STATE(s) \
do \
{ \
char const *lexptr_saved = lexptr; \
size_t lexleft_saved = lexleft; \
lexptr = (s); \
lexleft = strlen (lexptr)
#define POP_LEX_STATE() \
lexptr = lexptr_saved; \
lexleft = lexleft_saved; \
} \
while (0)
/* FIXME: see if optimizing this, as is done with ANYCHAR and
add_utf8_anychar, makes sense. */
/* \s and \S are documented to be equivalent to [[:space:]] and
[^[:space:]] respectively, so tell the lexer to process those
strings, each minus its "already processed" '['. */
PUSH_LEX_STATE (c == 's' ? "[:space:]]" : "^[:space:]]");
lasttok = parse_bracket_exp ();
POP_LEX_STATE ();
laststart = false;
return lasttok;
case 'w':
case 'W':
if (!backslash || (syntax_bits & RE_NO_GNU_OPS))
goto normal_char;
zeroset (ccl);
for (c2 = 0; c2 < NOTCHAR; ++c2)
if (IS_WORD_CONSTITUENT (c2))
setbit (c2, ccl);
if (c == 'W')
notset (ccl);
laststart = false;
return lasttok = CSET + charclass_index (ccl);
case '[':
if (backslash)
goto normal_char;
laststart = false;
return lasttok = parse_bracket_exp ();
default:
normal_char:
laststart = false;
/* For multibyte character sets, folding is done in atom. Always
return WCHAR. */
if (dfa->multibyte)
return lasttok = WCHAR;
if (case_fold && isalpha (c))
{
zeroset (ccl);
setbit_case_fold_c (c, ccl);
return lasttok = CSET + charclass_index (ccl);
}
return lasttok = c;
}
}
/* The above loop should consume at most a backslash
and some other character. */
abort ();
return END; /* keeps pedantic compilers happy. */
}
/* Recursive descent parser for regular expressions. */
static token tok; /* Lookahead token. */
static size_t depth; /* Current depth of a hypothetical stack
holding deferred productions. This is
used to determine the depth that will be
required of the real stack later on in
dfaanalyze. */
static void
addtok_mb (token t, int mbprop)
{
if (dfa->talloc == dfa->tindex)
{
dfa->tokens = x2nrealloc (dfa->tokens, &dfa->talloc,
sizeof *dfa->tokens);
if (dfa->multibyte)
dfa->multibyte_prop = xnrealloc (dfa->multibyte_prop, dfa->talloc,
sizeof *dfa->multibyte_prop);
}
if (dfa->multibyte)
dfa->multibyte_prop[dfa->tindex] = mbprop;
dfa->tokens[dfa->tindex++] = t;
switch (t)
{
case QMARK:
case STAR:
case PLUS:
break;
case CAT:
case OR:
--depth;
break;
case BACKREF:
dfa->fast = false;
/* fallthrough */
default:
++dfa->nleaves;
/* fallthrough */
case EMPTY:
++depth;
break;
}
if (depth > dfa->depth)
dfa->depth = depth;
}
static void addtok_wc (wint_t wc);
/* Add the given token to the parse tree, maintaining the depth count and
updating the maximum depth if necessary. */
static void
addtok (token t)
{
if (dfa->multibyte && t == MBCSET)
{
bool need_or = false;
struct mb_char_classes *work_mbc = &dfa->mbcsets[dfa->nmbcsets - 1];
/* Extract wide characters into alternations for better performance.
This does not require UTF-8. */
if (!work_mbc->invert)
{
size_t i;
for (i = 0; i < work_mbc->nchars; i++)
{
addtok_wc (work_mbc->chars[i]);
if (need_or)
addtok (OR);
need_or = true;
}
work_mbc->nchars = 0;
}
/* If the MBCSET is non-inverted and doesn't include neither
character classes including multibyte characters, range
expressions, equivalence classes nor collating elements,
it can be replaced to a simple CSET. */
if (work_mbc->invert
|| work_mbc->nch_classes != 0
|| work_mbc->nranges != 0
|| work_mbc->nequivs != 0 || work_mbc->ncoll_elems != 0)
{
addtok_mb (MBCSET, ((dfa->nmbcsets - 1) << 2) + 3);
if (need_or)
addtok (OR);
}
else
{
/* Characters have been handled above, so it is possible
that the mbcset is empty now. Do nothing in that case. */
if (work_mbc->cset != -1)
{
addtok (CSET + work_mbc->cset);
if (need_or)
addtok (OR);
}
}
}
else
{
addtok_mb (t, 3);
}
}
#if MBS_SUPPORT
/* We treat a multibyte character as a single atom, so that DFA
can treat a multibyte character as a single expression.
e.g., we construct the following tree from "<mb1><mb2>".
<mb1(1st-byte)><mb1(2nd-byte)><CAT><mb1(3rd-byte)><CAT>
<mb2(1st-byte)><mb2(2nd-byte)><CAT><mb2(3rd-byte)><CAT><CAT> */
static void
addtok_wc (wint_t wc)
{
unsigned char buf[MB_LEN_MAX];
mbstate_t s = { 0 };
int i;
size_t stored_bytes = wcrtomb ((char *) buf, wc, &s);
if (stored_bytes != (size_t) -1)
cur_mb_len = stored_bytes;
else
{
/* This is merely stop-gap. buf[0] is undefined, yet skipping
the addtok_mb call altogether can corrupt the heap. */
cur_mb_len = 1;
buf[0] = 0;
}
addtok_mb (buf[0], cur_mb_len == 1 ? 3 : 1);
for (i = 1; i < cur_mb_len; i++)
{
addtok_mb (buf[i], i == cur_mb_len - 1 ? 2 : 0);
addtok (CAT);
}
}
#else
static void
addtok_wc (wint_t wc)
{
}
#endif
static void
add_utf8_anychar (void)
{
#if MBS_SUPPORT
static const charclass utf8_classes[5] = {
/* 80-bf: non-leading bytes. */
{0, 0, 0, 0, CHARCLASS_WORD_MASK, CHARCLASS_WORD_MASK, 0, 0},
/* 00-7f: 1-byte sequence. */
{CHARCLASS_WORD_MASK, CHARCLASS_WORD_MASK, CHARCLASS_WORD_MASK,
CHARCLASS_WORD_MASK, 0, 0, 0, 0},
/* c2-df: 2-byte sequence. */
{0, 0, 0, 0, 0, 0, ~3 & CHARCLASS_WORD_MASK, 0},
/* e0-ef: 3-byte sequence. */
{0, 0, 0, 0, 0, 0, 0, 0xffff},
/* f0-f7: 4-byte sequence. */
{0, 0, 0, 0, 0, 0, 0, 0xff0000}
};
const unsigned int n = sizeof (utf8_classes) / sizeof (utf8_classes[0]);
unsigned int i;
/* Define the five character classes that are needed below. */
if (dfa->utf8_anychar_classes[0] == 0)
for (i = 0; i < n; i++)
{
charclass c;
copyset (utf8_classes[i], c);
if (i == 1)
{
if (!(syntax_bits & RE_DOT_NEWLINE))
clrbit (eolbyte, c);
if (syntax_bits & RE_DOT_NOT_NULL)
clrbit ('\0', c);
}
dfa->utf8_anychar_classes[i] = CSET + charclass_index (c);
}
/* A valid UTF-8 character is
([0x00-0x7f]
|[0xc2-0xdf][0x80-0xbf]
|[0xe0-0xef[0x80-0xbf][0x80-0xbf]
|[0xf0-f7][0x80-0xbf][0x80-0xbf][0x80-0xbf])
which I'll write more concisely "B|CA|DAA|EAAA". Factor the [0x00-0x7f]
and you get "B|(C|(D|EA)A)A". And since the token buffer is in reverse
Polish notation, you get "B C D E A CAT OR A CAT OR A CAT OR". */
for (i = 1; i < n; i++)
addtok (dfa->utf8_anychar_classes[i]);
while (--i > 1)
{
addtok (dfa->utf8_anychar_classes[0]);
addtok (CAT);
addtok (OR);
}
#endif
}
/* The grammar understood by the parser is as follows.
regexp:
regexp OR branch
branch
branch:
branch closure
closure
closure:
closure QMARK
closure STAR
closure PLUS
closure REPMN
atom
atom:
<normal character>
<multibyte character>
ANYCHAR
MBCSET
CSET
BACKREF
BEGLINE
ENDLINE
BEGWORD
ENDWORD
LIMWORD
NOTLIMWORD
LPAREN regexp RPAREN
<empty>
The parser builds a parse tree in postfix form in an array of tokens. */
static void
atom (void)
{
if (MBS_SUPPORT && tok == WCHAR)
{
if (wctok == WEOF)
addtok (BACKREF);
else
{
addtok_wc (wctok);
if (case_fold)
{
wchar_t folded[CASE_FOLDED_BUFSIZE];
int i, n = case_folded_counterparts (wctok, folded);
for (i = 0; i < n; i++)
{
addtok_wc (folded[i]);
addtok (OR);
}
}
}
tok = lex ();
}
else if (MBS_SUPPORT && tok == ANYCHAR && using_utf8 ())
{
/* For UTF-8 expand the period to a series of CSETs that define a valid
UTF-8 character. This avoids using the slow multibyte path. I'm
pretty sure it would be both profitable and correct to do it for
any encoding; however, the optimization must be done manually as
it is done above in add_utf8_anychar. So, let's start with
UTF-8: it is the most used, and the structure of the encoding
makes the correctness more obvious. */
add_utf8_anychar ();
tok = lex ();
}
else if ((tok >= 0 && tok < NOTCHAR) || tok >= CSET || tok == BACKREF
|| tok == BEGLINE || tok == ENDLINE || tok == BEGWORD
#if MBS_SUPPORT
|| tok == ANYCHAR || tok == MBCSET
#endif /* MBS_SUPPORT */
|| tok == ENDWORD || tok == LIMWORD || tok == NOTLIMWORD)
{
addtok (tok);
tok = lex ();
}
else if (tok == LPAREN)
{
tok = lex ();
regexp ();
if (tok != RPAREN)
dfaerror (_("unbalanced ("));
tok = lex ();
}
else
addtok (EMPTY);
}
/* Return the number of tokens in the given subexpression. */
static size_t _GL_ATTRIBUTE_PURE
nsubtoks (size_t tindex)
{
size_t ntoks1;
switch (dfa->tokens[tindex - 1])
{
default:
return 1;
case QMARK:
case STAR:
case PLUS:
return 1 + nsubtoks (tindex - 1);
case CAT:
case OR:
ntoks1 = nsubtoks (tindex - 1);
return 1 + ntoks1 + nsubtoks (tindex - 1 - ntoks1);
}
}
/* Copy the given subexpression to the top of the tree. */
static void
copytoks (size_t tindex, size_t ntokens)
{
size_t i;
if (dfa->multibyte)
for (i = 0; i < ntokens; ++i)
addtok_mb (dfa->tokens[tindex + i], dfa->multibyte_prop[tindex + i]);
else
for (i = 0; i < ntokens; ++i)
addtok_mb (dfa->tokens[tindex + i], 3);
}
static void
closure (void)
{
int i;
size_t tindex, ntokens;
atom ();
while (tok == QMARK || tok == STAR || tok == PLUS || tok == REPMN)
if (tok == REPMN && (minrep || maxrep))
{
ntokens = nsubtoks (dfa->tindex);
tindex = dfa->tindex - ntokens;
if (maxrep < 0)
addtok (PLUS);
if (minrep == 0)
addtok (QMARK);
for (i = 1; i < minrep; ++i)
{
copytoks (tindex, ntokens);
addtok (CAT);
}
for (; i < maxrep; ++i)
{
copytoks (tindex, ntokens);
addtok (QMARK);
addtok (CAT);
}
tok = lex ();
}
else if (tok == REPMN)
{
dfa->tindex -= nsubtoks (dfa->tindex);
tok = lex ();
closure ();
}
else
{
addtok (tok);
tok = lex ();
}
}
static void
branch (void)
{
closure ();
while (tok != RPAREN && tok != OR && tok >= 0)
{
closure ();
addtok (CAT);
}
}
static void
regexp (void)
{
branch ();
while (tok == OR)
{
tok = lex ();
branch ();
addtok (OR);
}
}
/* Main entry point for the parser. S is a string to be parsed, len is the
length of the string, so s can include NUL characters. D is a pointer to
the struct dfa to parse into. */
void
dfaparse (char const *s, size_t len, struct dfa *d)
{
dfa = d;
lexptr = s;
lexleft = len;
lasttok = END;
laststart = true;
parens = 0;
if (dfa->multibyte)
{
cur_mb_len = 0;
memset (&d->mbs, 0, sizeof d->mbs);
}
if (!syntax_bits_set)
dfaerror (_("no syntax specified"));
tok = lex ();
depth = d->depth;
regexp ();
if (tok != END)
dfaerror (_("unbalanced )"));
addtok (END - d->nregexps);
addtok (CAT);
if (d->nregexps)
addtok (OR);
++d->nregexps;
}
/* Some primitives for operating on sets of positions. */
/* Copy one set to another. */
static void
copy (position_set const *src, position_set * dst)
{
if (dst->alloc < src->nelem)
{
free (dst->elems);
dst->alloc = src->nelem;
dst->elems = x2nrealloc (NULL, &dst->alloc, sizeof *dst->elems);
}
memcpy (dst->elems, src->elems, src->nelem * sizeof *dst->elems);
dst->nelem = src->nelem;
}
static void
alloc_position_set (position_set * s, size_t size)
{
s->elems = xnmalloc (size, sizeof *s->elems);
s->alloc = size;
s->nelem = 0;
}
/* Insert position P in set S. S is maintained in sorted order on
decreasing index. If there is already an entry in S with P.index
then merge (logically-OR) P's constraints into the one in S.
S->elems must point to an array large enough to hold the resulting set. */
static void
insert (position p, position_set * s)
{
size_t count = s->nelem;
size_t lo = 0, hi = count;
size_t i;
while (lo < hi)
{
size_t mid = (lo + hi) >> 1;
if (s->elems[mid].index > p.index)
lo = mid + 1;
else
hi = mid;
}
if (lo < count && p.index == s->elems[lo].index)
{
s->elems[lo].constraint |= p.constraint;
return;
}
s->elems = maybe_realloc (s->elems, count, &s->alloc, sizeof *s->elems);
for (i = count; i > lo; i--)
s->elems[i] = s->elems[i - 1];
s->elems[lo] = p;
++s->nelem;
}
/* Merge two sets of positions into a third. The result is exactly as if
the positions of both sets were inserted into an initially empty set. */
static void
merge (position_set const *s1, position_set const *s2, position_set * m)
{
size_t i = 0, j = 0;
if (m->alloc < s1->nelem + s2->nelem)
{
free (m->elems);
m->elems = maybe_realloc (NULL, s1->nelem + s2->nelem, &m->alloc,
sizeof *m->elems);
}
m->nelem = 0;
while (i < s1->nelem && j < s2->nelem)
if (s1->elems[i].index > s2->elems[j].index)
m->elems[m->nelem++] = s1->elems[i++];
else if (s1->elems[i].index < s2->elems[j].index)
m->elems[m->nelem++] = s2->elems[j++];
else
{
m->elems[m->nelem] = s1->elems[i++];
m->elems[m->nelem++].constraint |= s2->elems[j++].constraint;
}
while (i < s1->nelem)
m->elems[m->nelem++] = s1->elems[i++];
while (j < s2->nelem)
m->elems[m->nelem++] = s2->elems[j++];
}
/* Delete a position from a set. */
static void
delete (position p, position_set * s)
{
size_t i;
for (i = 0; i < s->nelem; ++i)
if (p.index == s->elems[i].index)
break;
if (i < s->nelem)
for (--s->nelem; i < s->nelem; ++i)
s->elems[i] = s->elems[i + 1];
}
/* Find the index of the state corresponding to the given position set with
the given preceding context, or create a new state if there is no such
state. Context tells whether we got here on a newline or letter. */
static state_num
state_index (struct dfa *d, position_set const *s, int context)
{
size_t hash = 0;
int constraint;
state_num i, j;
for (i = 0; i < s->nelem; ++i)
hash ^= s->elems[i].index + s->elems[i].constraint;
/* Try to find a state that exactly matches the proposed one. */
for (i = 0; i < d->sindex; ++i)
{
if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem
|| context != d->states[i].context)
continue;
for (j = 0; j < s->nelem; ++j)
if (s->elems[j].constraint
!= d->states[i].elems.elems[j].constraint
|| s->elems[j].index != d->states[i].elems.elems[j].index)
break;
if (j == s->nelem)
return i;
}
/* We'll have to create a new state. */
d->states = maybe_realloc (d->states, d->sindex, &d->salloc,
sizeof *d->states);
d->states[i].hash = hash;
alloc_position_set (&d->states[i].elems, s->nelem);
copy (s, &d->states[i].elems);
d->states[i].context = context;
d->states[i].has_backref = false;
d->states[i].has_mbcset = false;
d->states[i].constraint = 0;
d->states[i].first_end = 0;
d->states[i].mbps.nelem = 0;
d->states[i].mbps.elems = NULL;
for (j = 0; j < s->nelem; ++j)
if (d->tokens[s->elems[j].index] < 0)
{
constraint = s->elems[j].constraint;
if (SUCCEEDS_IN_CONTEXT (constraint, context, CTX_ANY))
d->states[i].constraint |= constraint;
if (!d->states[i].first_end)
d->states[i].first_end = d->tokens[s->elems[j].index];
}
else if (d->tokens[s->elems[j].index] == BACKREF)
{
d->states[i].constraint = NO_CONSTRAINT;
d->states[i].has_backref = true;
}
++d->sindex;
return i;
}
/* Find the epsilon closure of a set of positions. If any position of the set
contains a symbol that matches the empty string in some context, replace
that position with the elements of its follow labeled with an appropriate
constraint. Repeat exhaustively until no funny positions are left.
S->elems must be large enough to hold the result. */
static void
epsclosure (position_set *s, struct dfa const *d, char *visited)
{
size_t i, j;
position p, old;
bool initialized = false;
for (i = 0; i < s->nelem; ++i)
if (d->tokens[s->elems[i].index] >= NOTCHAR
&& d->tokens[s->elems[i].index] != BACKREF
#if MBS_SUPPORT
&& d->tokens[s->elems[i].index] != ANYCHAR
&& d->tokens[s->elems[i].index] != MBCSET
#endif
&& d->tokens[s->elems[i].index] < CSET)
{
if (!initialized)
{
memset (visited, 0, d->tindex * sizeof (*visited));
initialized = true;
}
old = s->elems[i];
p.constraint = old.constraint;
delete (s->elems[i], s);
if (visited[old.index])
{
--i;
continue;
}
visited[old.index] = 1;
switch (d->tokens[old.index])
{
case BEGLINE:
p.constraint &= BEGLINE_CONSTRAINT;
break;
case ENDLINE:
p.constraint &= ENDLINE_CONSTRAINT;
break;
case BEGWORD:
p.constraint &= BEGWORD_CONSTRAINT;
break;
case ENDWORD:
p.constraint &= ENDWORD_CONSTRAINT;
break;
case LIMWORD:
p.constraint &= LIMWORD_CONSTRAINT;
break;
case NOTLIMWORD:
p.constraint &= NOTLIMWORD_CONSTRAINT;
break;
default:
break;
}
for (j = 0; j < d->follows[old.index].nelem; ++j)
{
p.index = d->follows[old.index].elems[j].index;
insert (p, s);
}
/* Force rescan to start at the beginning. */
i = -1;
}
}
/* Returns the set of contexts for which there is at least one
character included in C. */
static int
charclass_context (charclass c)
{
int context = 0;
unsigned int j;
if (tstbit (eolbyte, c))
context |= CTX_NEWLINE;
for (j = 0; j < CHARCLASS_WORDS; ++j)
{
if (c[j] & letters[j])
context |= CTX_LETTER;
if (c[j] & ~(letters[j] | newline[j]))
context |= CTX_NONE;
}
return context;
}
/* Returns the contexts on which the position set S depends. Each context
in the set of returned contexts (let's call it SC) may have a different
follow set than other contexts in SC, and also different from the
follow set of the complement set (sc ^ CTX_ANY). However, all contexts
in the complement set will have the same follow set. */
static int _GL_ATTRIBUTE_PURE
state_separate_contexts (position_set const *s)
{
int separate_contexts = 0;
size_t j;
for (j = 0; j < s->nelem; ++j)
{
if (PREV_NEWLINE_DEPENDENT (s->elems[j].constraint))
separate_contexts |= CTX_NEWLINE;
if (PREV_LETTER_DEPENDENT (s->elems[j].constraint))
separate_contexts |= CTX_LETTER;
}
return separate_contexts;
}
/* Perform bottom-up analysis on the parse tree, computing various functions.
Note that at this point, we're pretending constructs like \< are real
characters rather than constraints on what can follow them.
Nullable: A node is nullable if it is at the root of a regexp that can
match the empty string.
* EMPTY leaves are nullable.
* No other leaf is nullable.
* A QMARK or STAR node is nullable.
* A PLUS node is nullable if its argument is nullable.
* A CAT node is nullable if both its arguments are nullable.
* An OR node is nullable if either argument is nullable.
Firstpos: The firstpos of a node is the set of positions (nonempty leaves)
that could correspond to the first character of a string matching the
regexp rooted at the given node.
* EMPTY leaves have empty firstpos.
* The firstpos of a nonempty leaf is that leaf itself.
* The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its
argument.
* The firstpos of a CAT node is the firstpos of the left argument, union
the firstpos of the right if the left argument is nullable.
* The firstpos of an OR node is the union of firstpos of each argument.
Lastpos: The lastpos of a node is the set of positions that could
correspond to the last character of a string matching the regexp at
the given node.
* EMPTY leaves have empty lastpos.
* The lastpos of a nonempty leaf is that leaf itself.
* The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its
argument.
* The lastpos of a CAT node is the lastpos of its right argument, union
the lastpos of the left if the right argument is nullable.
* The lastpos of an OR node is the union of the lastpos of each argument.
Follow: The follow of a position is the set of positions that could
correspond to the character following a character matching the node in
a string matching the regexp. At this point we consider special symbols
that match the empty string in some context to be just normal characters.
Later, if we find that a special symbol is in a follow set, we will
replace it with the elements of its follow, labeled with an appropriate
constraint.
* Every node in the firstpos of the argument of a STAR or PLUS node is in
the follow of every node in the lastpos.
* Every node in the firstpos of the second argument of a CAT node is in
the follow of every node in the lastpos of the first argument.
Because of the postfix representation of the parse tree, the depth-first
analysis is conveniently done by a linear scan with the aid of a stack.
Sets are stored as arrays of the elements, obeying a stack-like allocation
scheme; the number of elements in each set deeper in the stack can be
used to determine the address of a particular set's array. */
void
dfaanalyze (struct dfa *d, int searchflag)
{
/* Array allocated to hold position sets. */
position *posalloc = xnmalloc (d->nleaves, 2 * sizeof *posalloc);
/* Firstpos and lastpos elements. */
position *firstpos = posalloc + d->nleaves;
position *lastpos = firstpos + d->nleaves;
/* Stack for element counts and nullable flags. */
struct
{
/* Whether the entry is nullable. */
bool nullable;
/* Counts of firstpos and lastpos sets. */
size_t nfirstpos;
size_t nlastpos;
} *stkalloc = xnmalloc (d->depth, sizeof *stkalloc), *stk = stkalloc;
position_set tmp; /* Temporary set for merging sets. */
position_set merged; /* Result of merging sets. */
int separate_contexts; /* Context wanted by some position. */
size_t i, j;
position *pos;
char *visited = xnmalloc (d->tindex, sizeof *visited);
#ifdef DEBUG
fprintf (stderr, "dfaanalyze:\n");
for (i = 0; i < d->tindex; ++i)
{
fprintf (stderr, " %zd:", i);
prtok (d->tokens[i]);
}
putc ('\n', stderr);
#endif
d->searchflag = searchflag != 0;
alloc_position_set (&merged, d->nleaves);
d->follows = xcalloc (d->tindex, sizeof *d->follows);
for (i = 0; i < d->tindex; ++i)
{
switch (d->tokens[i])
{
case EMPTY:
/* The empty set is nullable. */
stk->nullable = true;
/* The firstpos and lastpos of the empty leaf are both empty. */
stk->nfirstpos = stk->nlastpos = 0;
stk++;
break;
case STAR:
case PLUS:
/* Every element in the firstpos of the argument is in the follow
of every element in the lastpos. */
tmp.nelem = stk[-1].nfirstpos;
tmp.elems = firstpos;
pos = lastpos;
for (j = 0; j < stk[-1].nlastpos; ++j)
{
merge (&tmp, &d->follows[pos[j].index], &merged);
copy (&merged, &d->follows[pos[j].index]);
}
/* fallthrough */
case QMARK:
/* A QMARK or STAR node is automatically nullable. */
if (d->tokens[i] != PLUS)
stk[-1].nullable = true;
break;
case CAT:
/* Every element in the firstpos of the second argument is in the
follow of every element in the lastpos of the first argument. */
tmp.nelem = stk[-1].nfirstpos;
tmp.elems = firstpos;
pos = lastpos + stk[-1].nlastpos;
for (j = 0; j < stk[-2].nlastpos; ++j)
{
merge (&tmp, &d->follows[pos[j].index], &merged);
copy (&merged, &d->follows[pos[j].index]);
}
/* The firstpos of a CAT node is the firstpos of the first argument,
union that of the second argument if the first is nullable. */
if (stk[-2].nullable)
stk[-2].nfirstpos += stk[-1].nfirstpos;
else
firstpos += stk[-1].nfirstpos;
/* The lastpos of a CAT node is the lastpos of the second argument,
union that of the first argument if the second is nullable. */
if (stk[-1].nullable)
stk[-2].nlastpos += stk[-1].nlastpos;
else
{
pos = lastpos + stk[-2].nlastpos;
for (j = stk[-1].nlastpos; j-- > 0;)
pos[j] = lastpos[j];
lastpos += stk[-2].nlastpos;
stk[-2].nlastpos = stk[-1].nlastpos;
}
/* A CAT node is nullable if both arguments are nullable. */
stk[-2].nullable &= stk[-1].nullable;
stk--;
break;
case OR:
/* The firstpos is the union of the firstpos of each argument. */
stk[-2].nfirstpos += stk[-1].nfirstpos;
/* The lastpos is the union of the lastpos of each argument. */
stk[-2].nlastpos += stk[-1].nlastpos;
/* An OR node is nullable if either argument is nullable. */
stk[-2].nullable |= stk[-1].nullable;
stk--;
break;
default:
/* Anything else is a nonempty position. (Note that special
constructs like \< are treated as nonempty strings here;
an "epsilon closure" effectively makes them nullable later.
Backreferences have to get a real position so we can detect
transitions on them later. But they are nullable. */
stk->nullable = d->tokens[i] == BACKREF;
/* This position is in its own firstpos and lastpos. */
stk->nfirstpos = stk->nlastpos = 1;
stk++;
--firstpos, --lastpos;
firstpos->index = lastpos->index = i;
firstpos->constraint = lastpos->constraint = NO_CONSTRAINT;
/* Allocate the follow set for this position. */
alloc_position_set (&d->follows[i], 1);
break;
}
#ifdef DEBUG
/* ... balance the above nonsyntactic #ifdef goo... */
fprintf (stderr, "node %zd:", i);
prtok (d->tokens[i]);
putc ('\n', stderr);
fprintf (stderr,
stk[-1].nullable ? " nullable: yes\n" : " nullable: no\n");
fprintf (stderr, " firstpos:");
for (j = stk[-1].nfirstpos; j-- > 0;)
{
fprintf (stderr, " %zd:", firstpos[j].index);
prtok (d->tokens[firstpos[j].index]);
}
fprintf (stderr, "\n lastpos:");
for (j = stk[-1].nlastpos; j-- > 0;)
{
fprintf (stderr, " %zd:", lastpos[j].index);
prtok (d->tokens[lastpos[j].index]);
}
putc ('\n', stderr);
#endif
}
/* For each follow set that is the follow set of a real position, replace
it with its epsilon closure. */
for (i = 0; i < d->tindex; ++i)
if (d->tokens[i] < NOTCHAR || d->tokens[i] == BACKREF
#if MBS_SUPPORT
|| d->tokens[i] == ANYCHAR || d->tokens[i] == MBCSET
#endif
|| d->tokens[i] >= CSET)
{
#ifdef DEBUG
fprintf (stderr, "follows(%zd:", i);
prtok (d->tokens[i]);
fprintf (stderr, "):");
for (j = d->follows[i].nelem; j-- > 0;)
{
fprintf (stderr, " %zd:", d->follows[i].elems[j].index);
prtok (d->tokens[d->follows[i].elems[j].index]);
}
putc ('\n', stderr);
#endif
copy (&d->follows[i], &merged);
epsclosure (&merged, d, visited);
copy (&merged, &d->follows[i]);
}
/* Get the epsilon closure of the firstpos of the regexp. The result will
be the set of positions of state 0. */
merged.nelem = 0;
for (i = 0; i < stk[-1].nfirstpos; ++i)
insert (firstpos[i], &merged);
epsclosure (&merged, d, visited);
/* Build the initial state. */
separate_contexts = state_separate_contexts (&merged);
if (separate_contexts & CTX_NEWLINE)
state_index (d, &merged, CTX_NEWLINE);
d->initstate_others = d->min_trcount
= state_index (d, &merged, separate_contexts ^ CTX_ANY);
if (separate_contexts & CTX_LETTER)
d->initstate_letter = d->min_trcount
= state_index (d, &merged, CTX_LETTER);
else
d->initstate_letter = d->initstate_others;
d->min_trcount++;
free (posalloc);
free (stkalloc);
free (merged.elems);
free (visited);
}
/* Find, for each character, the transition out of state s of d, and store
it in the appropriate slot of trans.
We divide the positions of s into groups (positions can appear in more
than one group). Each group is labeled with a set of characters that
every position in the group matches (taking into account, if necessary,
preceding context information of s). For each group, find the union
of the its elements' follows. This set is the set of positions of the
new state. For each character in the group's label, set the transition
on this character to be to a state corresponding to the set's positions,
and its associated backward context information, if necessary.
If we are building a searching matcher, we include the positions of state
0 in every state.
The collection of groups is constructed by building an equivalence-class
partition of the positions of s.
For each position, find the set of characters C that it matches. Eliminate
any characters from C that fail on grounds of backward context.
Search through the groups, looking for a group whose label L has nonempty
intersection with C. If L - C is nonempty, create a new group labeled
L - C and having the same positions as the current group, and set L to
the intersection of L and C. Insert the position in this group, set
C = C - L, and resume scanning.
If after comparing with every group there are characters remaining in C,
create a new group labeled with the characters of C and insert this
position in that group. */
void
dfastate (state_num s, struct dfa *d, state_num trans[])
{
leaf_set grps[NOTCHAR]; /* As many as will ever be needed. */
charclass labels[NOTCHAR]; /* Labels corresponding to the groups. */
size_t ngrps = 0; /* Number of groups actually used. */
position pos; /* Current position being considered. */
charclass matches; /* Set of matching characters. */
charclass_word matchesf; /* Nonzero if matches is nonempty. */
charclass intersect; /* Intersection with some label set. */
charclass_word intersectf; /* Nonzero if intersect is nonempty. */
charclass leftovers; /* Stuff in the label that didn't match. */
charclass_word leftoversf; /* Nonzero if leftovers is nonempty. */
position_set follows; /* Union of the follows of some group. */
position_set tmp; /* Temporary space for merging sets. */
int possible_contexts; /* Contexts that this group can match. */
int separate_contexts; /* Context that new state wants to know. */
state_num state; /* New state. */
state_num state_newline; /* New state on a newline transition. */
state_num state_letter; /* New state on a letter transition. */
bool next_isnt_1st_byte = false; /* We can't add state0. */
size_t i, j, k;
zeroset (matches);
for (i = 0; i < d->states[s].elems.nelem; ++i)
{
pos = d->states[s].elems.elems[i];
if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR)
setbit (d->tokens[pos.index], matches);
else if (d->tokens[pos.index] >= CSET)
copyset (d->charclasses[d->tokens[pos.index] - CSET], matches);
else
{
if (MBS_SUPPORT
&& (d->tokens[pos.index] == MBCSET
|| d->tokens[pos.index] == ANYCHAR))
{
/* MB_CUR_MAX > 1 */
if (d->tokens[pos.index] == MBCSET)
d->states[s].has_mbcset = true;
/* ANYCHAR and MBCSET must match with a single character, so we
must put it to d->states[s].mbps, which contains the positions
which can match with a single character not a byte. */
if (d->states[s].mbps.nelem == 0)
alloc_position_set (&d->states[s].mbps, 1);
insert (pos, &(d->states[s].mbps));
}
continue;
}
/* Some characters may need to be eliminated from matches because
they fail in the current context. */
if (pos.constraint != NO_CONSTRAINT)
{
if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
d->states[s].context, CTX_NEWLINE))
for (j = 0; j < CHARCLASS_WORDS; ++j)
matches[j] &= ~newline[j];
if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
d->states[s].context, CTX_LETTER))
for (j = 0; j < CHARCLASS_WORDS; ++j)
matches[j] &= ~letters[j];
if (!SUCCEEDS_IN_CONTEXT (pos.constraint,
d->states[s].context, CTX_NONE))
for (j = 0; j < CHARCLASS_WORDS; ++j)
matches[j] &= letters[j] | newline[j];
/* If there are no characters left, there's no point in going on. */
for (j = 0; j < CHARCLASS_WORDS && !matches[j]; ++j)
continue;
if (j == CHARCLASS_WORDS)
continue;
}
for (j = 0; j < ngrps; ++j)
{
/* If matches contains a single character only, and the current
group's label doesn't contain that character, go on to the
next group. */
if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR
&& !tstbit (d->tokens[pos.index], labels[j]))
continue;
/* Check if this group's label has a nonempty intersection with
matches. */
intersectf = 0;
for (k = 0; k < CHARCLASS_WORDS; ++k)
intersectf |= intersect[k] = matches[k] & labels[j][k];
if (!intersectf)
continue;
/* It does; now find the set differences both ways. */
leftoversf = matchesf = 0;
for (k = 0; k < CHARCLASS_WORDS; ++k)
{
/* Even an optimizing compiler can't know this for sure. */
charclass_word match = matches[k], label = labels[j][k];
leftoversf |= leftovers[k] = ~match & label;
matchesf |= matches[k] = match & ~label;
}
/* If there were leftovers, create a new group labeled with them. */
if (leftoversf)
{
copyset (leftovers, labels[ngrps]);
copyset (intersect, labels[j]);
grps[ngrps].elems = xnmalloc (d->nleaves,
sizeof *grps[ngrps].elems);
memcpy (grps[ngrps].elems, grps[j].elems,
sizeof (grps[j].elems[0]) * grps[j].nelem);
grps[ngrps].nelem = grps[j].nelem;
++ngrps;
}
/* Put the position in the current group. The constraint is
irrelevant here. */
grps[j].elems[grps[j].nelem++] = pos.index;
/* If every character matching the current position has been
accounted for, we're done. */
if (!matchesf)
break;
}
/* If we've passed the last group, and there are still characters
unaccounted for, then we'll have to create a new group. */
if (j == ngrps)
{
copyset (matches, labels[ngrps]);
zeroset (matches);
grps[ngrps].elems = xnmalloc (d->nleaves, sizeof *grps[ngrps].elems);
grps[ngrps].nelem = 1;
grps[ngrps].elems[0] = pos.index;
++ngrps;
}
}
alloc_position_set (&follows, d->nleaves);
alloc_position_set (&tmp, d->nleaves);
/* If we are a searching matcher, the default transition is to a state
containing the positions of state 0, otherwise the default transition
is to fail miserably. */
if (d->searchflag)
{
/* Find the state(s) corresponding to the positions of state 0. */
copy (&d->states[0].elems, &follows);
separate_contexts = state_separate_contexts (&follows);
state = state_index (d, &follows, separate_contexts ^ CTX_ANY);
if (separate_contexts & CTX_NEWLINE)
state_newline = state_index (d, &follows, CTX_NEWLINE);
else
state_newline = state;
if (separate_contexts & CTX_LETTER)
state_letter = state_index (d, &follows, CTX_LETTER);
else
state_letter = state;
for (i = 0; i < NOTCHAR; ++i)
trans[i] = (IS_WORD_CONSTITUENT (i)) ? state_letter : state;
trans[eolbyte] = state_newline;
}
else
for (i = 0; i < NOTCHAR; ++i)
trans[i] = -1;
for (i = 0; i < ngrps; ++i)
{
follows.nelem = 0;
/* Find the union of the follows of the positions of the group.
This is a hideously inefficient loop. Fix it someday. */
for (j = 0; j < grps[i].nelem; ++j)
for (k = 0; k < d->follows[grps[i].elems[j]].nelem; ++k)
insert (d->follows[grps[i].elems[j]].elems[k], &follows);
if (d->multibyte)
{
/* If a token in follows.elems is not 1st byte of a multibyte
character, or the states of follows must accept the bytes
which are not 1st byte of the multibyte character.
Then, if a state of follows encounter a byte, it must not be
a 1st byte of a multibyte character nor single byte character.
We cansel to add state[0].follows to next state, because
state[0] must accept 1st-byte
For example, we assume <sb a> is a certain single byte
character, <mb A> is a certain multibyte character, and the
codepoint of <sb a> equals the 2nd byte of the codepoint of
<mb A>.
When state[0] accepts <sb a>, state[i] transit to state[i+1]
by accepting accepts 1st byte of <mb A>, and state[i+1]
accepts 2nd byte of <mb A>, if state[i+1] encounter the
codepoint of <sb a>, it must not be <sb a> but 2nd byte of
<mb A>, so we cannot add state[0]. */
next_isnt_1st_byte = false;
for (j = 0; j < follows.nelem; ++j)
{
if (!(d->multibyte_prop[follows.elems[j].index] & 1))
{
next_isnt_1st_byte = true;
break;
}
}
}
/* If we are building a searching matcher, throw in the positions
of state 0 as well. */
if (d->searchflag && (!d->multibyte || !next_isnt_1st_byte))
{
merge (&d->states[0].elems, &follows, &tmp);
copy (&tmp, &follows);
}
/* Find out if the new state will want any context information. */
possible_contexts = charclass_context (labels[i]);
separate_contexts = state_separate_contexts (&follows);
/* Find the state(s) corresponding to the union of the follows. */
if ((separate_contexts & possible_contexts) != possible_contexts)
state = state_index (d, &follows, separate_contexts ^ CTX_ANY);
else
state = -1;
if (separate_contexts & possible_contexts & CTX_NEWLINE)
state_newline = state_index (d, &follows, CTX_NEWLINE);
else
state_newline = state;
if (separate_contexts & possible_contexts & CTX_LETTER)
state_letter = state_index (d, &follows, CTX_LETTER);
else
state_letter = state;
/* Set the transitions for each character in the current label. */
for (j = 0; j < CHARCLASS_WORDS; ++j)
for (k = 0; k < CHARCLASS_WORD_BITS; ++k)
if (labels[i][j] >> k & 1)
{
int c = j * CHARCLASS_WORD_BITS + k;
if (c == eolbyte)
trans[c] = state_newline;
else if (IS_WORD_CONSTITUENT (c))
trans[c] = state_letter;
else if (c < NOTCHAR)
trans[c] = state;
}
}
for (i = 0; i < ngrps; ++i)
free (grps[i].elems);
free (follows.elems);
free (tmp.elems);
}
/* Make sure D's state arrays are large enough to hold NEW_STATE. */
static void
realloc_trans_if_necessary (struct dfa *d, state_num new_state)
{
state_num oldalloc = d->tralloc;
if (oldalloc <= new_state)
{
state_num **realtrans = d->trans ? d->trans - 1 : NULL;
size_t newalloc, newalloc1;
newalloc1 = new_state + 1;
realtrans = x2nrealloc (realtrans, &newalloc1, sizeof *realtrans);
realtrans[0] = NULL;
d->trans = realtrans + 1;
d->tralloc = newalloc = newalloc1 - 1;
d->fails = xnrealloc (d->fails, newalloc, sizeof *d->fails);
d->success = xnrealloc (d->success, newalloc, sizeof *d->success);
d->newlines = xnrealloc (d->newlines, newalloc, sizeof *d->newlines);
for (; oldalloc < newalloc; oldalloc++)
{
d->trans[oldalloc] = NULL;
d->fails[oldalloc] = NULL;
}
}
}
/* Some routines for manipulating a compiled dfa's transition tables.
Each state may or may not have a transition table; if it does, and it
is a non-accepting state, then d->trans[state] points to its table.
If it is an accepting state then d->fails[state] points to its table.
If it has no table at all, then d->trans[state] is NULL.
TODO: Improve this comment, get rid of the unnecessary redundancy. */
static void
build_state (state_num s, struct dfa *d)
{
state_num *trans; /* The new transition table. */
state_num i, maxstate;
/* Set an upper limit on the number of transition tables that will ever
exist at once. 1024 is arbitrary. The idea is that the frequently
used transition tables will be quickly rebuilt, whereas the ones that
were only needed once or twice will be cleared away. However, do not
clear the initial D->min_trcount states, since they are always used. */
if (d->trcount >= 1024)
{
for (i = d->min_trcount; i < d->tralloc; ++i)
{
free (d->trans[i]);
free (d->fails[i]);
d->trans[i] = d->fails[i] = NULL;
}
d->trcount = d->min_trcount;
}
++d->trcount;
/* Set up the success bits for this state. */
d->success[s] = 0;
if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_NEWLINE, s, *d))
d->success[s] |= CTX_NEWLINE;
if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_LETTER, s, *d))
d->success[s] |= CTX_LETTER;
if (ACCEPTS_IN_CONTEXT (d->states[s].context, CTX_NONE, s, *d))
d->success[s] |= CTX_NONE;
trans = xmalloc (NOTCHAR * sizeof *trans);
dfastate (s, d, trans);
/* Now go through the new transition table, and make sure that the trans
and fail arrays are allocated large enough to hold a pointer for the
largest state mentioned in the table. */
maxstate = -1;
for (i = 0; i < NOTCHAR; ++i)
if (maxstate < trans[i])
maxstate = trans[i];
realloc_trans_if_necessary (d, maxstate);
/* Keep the newline transition in a special place so we can use it as
a sentinel. */
d->newlines[s] = trans[eolbyte];
trans[eolbyte] = -1;
if (ACCEPTING (s, *d))
d->fails[s] = trans;
else
d->trans[s] = trans;
}
/* Multibyte character handling sub-routines for dfaexec. */
/* Return values of transit_state_singlebyte, and
transit_state_consume_1char. */
typedef enum
{
TRANSIT_STATE_IN_PROGRESS, /* State transition has not finished. */
TRANSIT_STATE_DONE, /* State transition has finished. */
TRANSIT_STATE_END_BUFFER /* Reach the end of the buffer. */
} status_transit_state;
/* Consume a single byte and transit state from 's' to '*next_state'.
This function is almost same as the state transition routin in dfaexec.
But state transition is done just once, otherwise matching succeed or
reach the end of the buffer. */
static status_transit_state
transit_state_singlebyte (struct dfa *d, state_num s, unsigned char const *p,
state_num * next_state)
{
state_num *t;
state_num works = s;
status_transit_state rval = TRANSIT_STATE_IN_PROGRESS;
while (rval == TRANSIT_STATE_IN_PROGRESS)
{
if ((t = d->trans[works]) != NULL)
{
works = t[*p];
rval = TRANSIT_STATE_DONE;
if (works < 0)
works = 0;
}
else if (works < 0)
works = 0;
else if (d->fails[works])
{
works = d->fails[works][*p];
rval = TRANSIT_STATE_DONE;
}
else
{
build_state (works, d);
}
}
*next_state = works;
return rval;
}
/* Match a "." against the current context. Return the length of the
match, in bytes. POS is the position of the ".". */
static int
match_anychar (struct dfa *d, state_num s, position pos,
wint_t wc, size_t mbclen)
{
int context;
/* Check syntax bits. */
if (wc == (wchar_t) eolbyte)
{
if (!(syntax_bits & RE_DOT_NEWLINE))
return 0;
}
else if (wc == (wchar_t) '\0')
{
if (syntax_bits & RE_DOT_NOT_NULL)
return 0;
}
else if (wc == WEOF)
return 0;
context = wchar_context (wc);
if (!SUCCEEDS_IN_CONTEXT (pos.constraint, d->states[s].context, context))
return 0;
return mbclen;
}
/* Match a bracket expression against the current context.
Return the length of the match, in bytes.
POS is the position of the bracket expression. */
static int
match_mb_charset (struct dfa *d, state_num s, position pos,
char const *p, wint_t wc, size_t match_len)
{
size_t i;
bool match; /* Matching succeeded. */
int op_len; /* Length of the operator. */
char buffer[128];
/* Pointer to the structure to which we are currently referring. */
struct mb_char_classes *work_mbc;
int context;
/* Check syntax bits. */
if (wc == WEOF)
return 0;
context = wchar_context (wc);
if (!SUCCEEDS_IN_CONTEXT (pos.constraint, d->states[s].context, context))
return 0;
/* Assign the current referring operator to work_mbc. */
work_mbc = &(d->mbcsets[(d->multibyte_prop[pos.index]) >> 2]);
match = !work_mbc->invert;
/* Match in range 0-255? */
if (wc < NOTCHAR && work_mbc->cset != -1
&& tstbit (to_uchar (wc), d->charclasses[work_mbc->cset]))
goto charset_matched;
/* match with a character class? */
for (i = 0; i < work_mbc->nch_classes; i++)
{
if (iswctype ((wint_t) wc, work_mbc->ch_classes[i]))
goto charset_matched;
}
strncpy (buffer, p, match_len);
buffer[match_len] = '\0';
/* match with an equivalence class? */
for (i = 0; i < work_mbc->nequivs; i++)
{
op_len = strlen (work_mbc->equivs[i]);
strncpy (buffer, p, op_len);
buffer[op_len] = '\0';
if (strcoll (work_mbc->equivs[i], buffer) == 0)
{
match_len = op_len;
goto charset_matched;
}
}
/* match with a collating element? */
for (i = 0; i < work_mbc->ncoll_elems; i++)
{
op_len = strlen (work_mbc->coll_elems[i]);
strncpy (buffer, p, op_len);
buffer[op_len] = '\0';
if (strcoll (work_mbc->coll_elems[i], buffer) == 0)
{
match_len = op_len;
goto charset_matched;
}
}
/* match with a range? */
for (i = 0; i < work_mbc->nranges; i++)
{
if (work_mbc->ranges[i].beg <= wc && wc <= work_mbc->ranges[i].end)
goto charset_matched;
}
/* match with a character? */
for (i = 0; i < work_mbc->nchars; i++)
{
if (wc == work_mbc->chars[i])
goto charset_matched;
}
match = !match;
charset_matched:
return match ? match_len : 0;
}
/* Check whether each of 'd->states[s].mbps.elem' can match. Then return the
array which corresponds to 'd->states[s].mbps.elem'; each element of the
array contains the number of bytes with which the element can match.
The caller MUST free the array which this function return. */
static int *
check_matching_with_multibyte_ops (struct dfa *d, state_num s,
char const *p, wint_t wc, size_t mbclen)
{
size_t i;
int *rarray;
rarray = d->mb_match_lens;
for (i = 0; i < d->states[s].mbps.nelem; ++i)
{
position pos = d->states[s].mbps.elems[i];
switch (d->tokens[pos.index])
{
case ANYCHAR:
rarray[i] = match_anychar (d, s, pos, wc, mbclen);
break;
case MBCSET:
rarray[i] = match_mb_charset (d, s, pos, p, wc, mbclen);
break;
default:
break; /* cannot happen. */
}
}
return rarray;
}
/* Consume a single character and enumerate all of the positions which can
be the next position from the state 's'.
'match_lens' is the input. It can be NULL, but it can also be the output
of check_matching_with_multibyte_ops for optimization.
'mbclen' and 'pps' are the output. 'mbclen' is the length of the
character consumed, and 'pps' is the set this function enumerates. */
static status_transit_state
transit_state_consume_1char (struct dfa *d, state_num s,
unsigned char const **pp,
wint_t wc, size_t mbclen,
int *match_lens)
{
size_t i, j;
int k;
state_num s1, s2;
status_transit_state rs = TRANSIT_STATE_DONE;
if (! match_lens && d->states[s].mbps.nelem != 0)
match_lens = check_matching_with_multibyte_ops (d, s, (char const *) *pp,
wc, mbclen);
/* Calculate the state which can be reached from the state 's' by
consuming 'mbclen' single bytes from the buffer. */
s1 = s;
for (k = 0; k < mbclen; k++)
{
s2 = s1;
rs = transit_state_singlebyte (d, s2, (*pp)++, &s1);
}
copy (&d->states[s1].elems, &d->mb_follows);
/* Add all of the positions which can be reached from 's' by consuming
a single character. */
for (i = 0; i < d->states[s].mbps.nelem; i++)
{
if (match_lens[i] == mbclen)
for (j = 0; j < d->follows[d->states[s].mbps.elems[i].index].nelem;
j++)
insert (d->follows[d->states[s].mbps.elems[i].index].elems[j],
&d->mb_follows);
}
/* FIXME: this return value is always ignored. */
return rs;
}
/* Transit state from s, then return new state and update the pointer of the
buffer. This function is for some operator which can match with a multi-
byte character or a collating element (which may be multi characters). */
static state_num
transit_state (struct dfa *d, state_num s, unsigned char const **pp,
unsigned char const *end)
{
state_num s1;
int mbclen; /* The length of current input multibyte character. */
int maxlen = 0;
size_t i, j;
int *match_lens = NULL;
size_t nelem = d->states[s].mbps.nelem; /* Just a alias. */
unsigned char const *p1 = *pp;
wint_t wc;
if (nelem > 0)
/* This state has (a) multibyte operator(s).
We check whether each of them can match or not. */
{
/* Note: caller must free the return value of this function. */
mbclen = mbs_to_wchar (&wc, (char const *) *pp, end - *pp, d);
match_lens = check_matching_with_multibyte_ops (d, s, (char const *) *pp,
wc, mbclen);
for (i = 0; i < nelem; i++)
/* Search the operator which match the longest string,
in this state. */
{
if (match_lens[i] > maxlen)
maxlen = match_lens[i];
}
}
if (nelem == 0 || maxlen == 0)
/* This state has no multibyte operator which can match.
We need to check only one single byte character. */
{
status_transit_state rs;
rs = transit_state_singlebyte (d, s, *pp, &s1);
/* We must update the pointer if state transition succeeded. */
if (rs == TRANSIT_STATE_DONE)
++*pp;
return s1;
}
/* This state has some operators which can match a multibyte character. */
d->mb_follows.nelem = 0;
/* 'maxlen' may be longer than the length of a character, because it may
not be a character but a (multi character) collating element.
We enumerate all of the positions which 's' can reach by consuming
'maxlen' bytes. */
transit_state_consume_1char (d, s, pp, wc, mbclen, match_lens);
s1 = state_index (d, &d->mb_follows, wchar_context (wc));
realloc_trans_if_necessary (d, s1);
while (*pp - p1 < maxlen)
{
mbclen = mbs_to_wchar (&wc, (char const *) *pp, end - *pp, d);
transit_state_consume_1char (d, s1, pp, wc, mbclen, NULL);
for (i = 0; i < nelem; i++)
{
if (match_lens[i] == *pp - p1)
for (j = 0;
j < d->follows[d->states[s1].mbps.elems[i].index].nelem; j++)
insert (d->follows[d->states[s1].mbps.elems[i].index].elems[j],
&d->mb_follows);
}
s1 = state_index (d, &d->mb_follows, wchar_context (wc));
realloc_trans_if_necessary (d, s1);
}
return s1;
}
/* The initial state may encounter a byte which is not a single byte character
nor the first byte of a multibyte character. But it is incorrect for the
initial state to accept such a byte. For example, in Shift JIS the regular
expression "\\" accepts the codepoint 0x5c, but should not accept the second
byte of the codepoint 0x815c. Then the initial state must skip the bytes
that are not a single byte character nor the first byte of a multibyte
character.
Given DFA state d, use mbs_to_wchar to advance MBP until it reaches or
exceeds P. If WCP is non-NULL, set *WCP to the final wide character
processed, or if no wide character is processed, set it to WEOF.
Both P and MBP must be no larger than END. */
static unsigned char const *
skip_remains_mb (struct dfa *d, unsigned char const *p,
unsigned char const *mbp, char const *end, wint_t *wcp)
{
wint_t wc = WEOF;
while (mbp < p)
mbp += mbs_to_wchar (&wc, (char const *) mbp,
end - (char const *) mbp, d);
if (wcp != NULL)
*wcp = wc;
return mbp;
}
/* Search through a buffer looking for a match to the given struct dfa.
Find the first occurrence of a string matching the regexp in the
buffer, and the shortest possible version thereof. Return a pointer to
the first character after the match, or NULL if none is found. BEGIN
points to the beginning of the buffer, and END points to the first byte
after its end. Note however that we store a sentinel byte (usually
newline) in *END, so the actual buffer must be one byte longer.
When ALLOW_NL is nonzero, newlines may appear in the matching string.
If COUNT is non-NULL, increment *COUNT once for each newline processed.
Finally, if BACKREF is non-NULL set *BACKREF to indicate whether we
encountered a back-reference (1) or not (0). The caller may use this
to decide whether to fall back on a backtracking matcher.
If MULTIBYTE, the input consists of multibyte characters and/or
encoding-error bytes. Otherwise, the input consists of single-byte
characters. */
static inline char *
dfaexec_main (struct dfa *d, char const *begin, char *end,
int allow_nl, size_t *count, int *backref, bool multibyte)
{
state_num s, s1; /* Current state. */
unsigned char const *p, *mbp; /* Current input character. */
state_num **trans, *t; /* Copy of d->trans so it can be optimized
into a register. */
unsigned char eol = eolbyte; /* Likewise for eolbyte. */
unsigned char saved_end;
size_t nlcount = 0;
if (!d->tralloc)
{
realloc_trans_if_necessary (d, 1);
build_state (0, d);
}
s = s1 = 0;
p = mbp = (unsigned char const *) begin;
trans = d->trans;
saved_end = *(unsigned char *) end;
*end = eol;
if (multibyte)
{
memset (&d->mbs, 0, sizeof d->mbs);
if (! d->mb_match_lens)
{
d->mb_match_lens = xnmalloc (d->nleaves, sizeof *d->mb_match_lens);
alloc_position_set (&d->mb_follows, d->nleaves);
}
}
for (;;)
{
if (multibyte)
{
while ((t = trans[s]) != NULL)
{
s1 = s;
if (s < d->min_trcount)
{
if (d->min_trcount == 1)
{
if (d->states[s].mbps.nelem == 0)
{
do
{
while (t[*p] == 0)
p++;
p = mbp = skip_remains_mb (d, p, mbp, end, NULL);
}
while (t[*p] == 0);
}
else
p = mbp = skip_remains_mb (d, p, mbp, end, NULL);
}
else
{
wint_t wc;
mbp = skip_remains_mb (d, p, mbp, end, &wc);
/* If d->min_trcount is greater than 1, maybe
transit to another initial state after skip. */
if (p < mbp)
{
int context = wchar_context (wc);
if (context == CTX_LETTER)
s = d->initstate_letter;
else
/* It's CTX_NONE. CTX_NEWLINE cannot happen,
as we assume that a newline is always a
single byte character. */
s = d->initstate_others;
p = mbp;
s1 = s;
}
}
}
if (d->states[s].mbps.nelem == 0)
{
s = t[*p++];
continue;
}
/* The following code is used twice.
Use a macro to avoid the risk that they diverge. */
#define State_transition() \
do { \
/* Falling back to the glibc matcher in this case gives \
better performance (up to 25% better on [a-z], for \
example) and enables support for collating symbols and \
equivalence classes. */ \
if (d->states[s].has_mbcset && backref) \
{ \
*backref = 1; \
goto done; \
} \
\
/* Can match with a multibyte character (and multi-character \
collating element). Transition table might be updated. */ \
s = transit_state (d, s, &p, (unsigned char *) end); \
\
/* If previous character is newline after a transition \
for ANYCHAR or MBCSET in non-UTF8 multibyte locales, \
check whether current position is beyond the end of \
the input buffer. Also, transit to initial state if \
!ALLOW_NL, even if RE_DOT_NEWLINE is set. */ \
if (p[-1] == eol) \
{ \
if ((char *) p > end) \
{ \
p = NULL; \
goto done; \
} \
\
nlcount++; \
\
if (!allow_nl) \
s = 0; \
} \
\
mbp = p; \
trans = d->trans; \
} while (0)
State_transition();
}
}
else
{
if (s == 0 && (t = trans[s]) != NULL)
{
while (t[*p] == 0)
p++;
s1 = 0;
s = t[*p++];
}
while ((t = trans[s]) != NULL)
{
s1 = t[*p++];
if ((t = trans[s1]) == NULL)
{
state_num tmp = s;
s = s1;
s1 = tmp; /* swap */
break;
}
s = t[*p++];
}
}
if ((char *) p > end)
{
p = NULL;
goto done;
}
if (s >= 0 && d->fails[s])
{
if (d->success[s] & sbit[*p])
{
if (backref)
*backref = d->states[s].has_backref;
goto done;
}
s1 = s;
if (multibyte)
State_transition();
else
s = d->fails[s][*p++];
continue;
}
/* If the previous character was a newline, count it, and skip
checking of multibyte character boundary until here. */
if (p[-1] == eol)
{
nlcount++;
mbp = p;
}
if (s >= 0)
{
if (!d->trans[s])
build_state (s, d);
trans = d->trans;
continue;
}
if (p[-1] == eol && allow_nl)
{
s = d->newlines[s1];
continue;
}
s = 0;
}
done:
if (count)
*count += nlcount;
*end = saved_end;
return (char *) p;
}
/* Specialized versions of dfaexec_main for multibyte and single-byte
cases. This is for performance. */
static char *
dfaexec_mb (struct dfa *d, char const *begin, char *end,
int allow_nl, size_t *count, int *backref)
{
return dfaexec_main (d, begin, end, allow_nl, count, backref, true);
}
static char *
dfaexec_sb (struct dfa *d, char const *begin, char *end,
int allow_nl, size_t *count, int *backref)
{
return dfaexec_main (d, begin, end, allow_nl, count, backref, false);
}
/* Like dfaexec_main (D, BEGIN, END, ALLOW_NL, COUNT, BACKREF, D->multibyte),
but faster. */
char *
dfaexec (struct dfa *d, char const *begin, char *end,
int allow_nl, size_t *count, int *backref)
{
return d->dfaexec (d, begin, end, allow_nl, count, backref);
}
struct dfa *
dfasuperset (struct dfa const *d)
{
return d->superset;
}
bool
dfaisfast (struct dfa const *d)
{
return d->fast;
}
static void
free_mbdata (struct dfa *d)
{
size_t i;
free (d->multibyte_prop);
for (i = 0; i < d->nmbcsets; ++i)
{
size_t j;
struct mb_char_classes *p = &(d->mbcsets[i]);
free (p->chars);
free (p->ch_classes);
free (p->ranges);
for (j = 0; j < p->nequivs; ++j)
free (p->equivs[j]);
free (p->equivs);
for (j = 0; j < p->ncoll_elems; ++j)
free (p->coll_elems[j]);
free (p->coll_elems);
}
free (d->mbcsets);
free (d->mb_follows.elems);
free (d->mb_match_lens);
d->mb_match_lens = NULL;
}
/* Initialize the components of a dfa that the other routines don't
initialize for themselves. */
void
dfainit (struct dfa *d)
{
memset (d, 0, sizeof *d);
d->multibyte = MB_CUR_MAX > 1;
d->dfaexec = d->multibyte ? dfaexec_mb : dfaexec_sb;
d->fast = !d->multibyte;
}
static void
dfaoptimize (struct dfa *d)
{
size_t i;
bool have_backref = false;
if (!MBS_SUPPORT || !using_utf8 ())
return;
for (i = 0; i < d->tindex; ++i)
{
switch (d->tokens[i])
{
case ANYCHAR:
/* Lowered. */
abort ();
case BACKREF:
have_backref = true;
break;
case MBCSET:
/* Requires multi-byte algorithm. */
return;
default:
break;
}
}
if (!have_backref && d->superset)
{
/* The superset DFA is not likely to be much faster, so remove it. */
dfafree (d->superset);
free (d->superset);
d->superset = NULL;
}
free_mbdata (d);
d->multibyte = false;
d->dfaexec = dfaexec_sb;
}
static void
dfassbuild (struct dfa *d)
{
size_t i, j;
charclass ccl;
bool have_achar = false;
bool have_nchar = false;
struct dfa *sup = dfaalloc ();
*sup = *d;
sup->multibyte = false;
sup->dfaexec = dfaexec_sb;
sup->multibyte_prop = NULL;
sup->mbcsets = NULL;
sup->superset = NULL;
sup->states = NULL;
sup->sindex = 0;
sup->follows = NULL;
sup->tralloc = 0;
sup->trans = NULL;
sup->fails = NULL;
sup->success = NULL;
sup->newlines = NULL;
sup->musts = NULL;
sup->charclasses = xnmalloc (sup->calloc, sizeof *sup->charclasses);
memcpy (sup->charclasses, d->charclasses,
d->cindex * sizeof *sup->charclasses);
sup->tokens = xnmalloc (d->tindex, 2 * sizeof *sup->tokens);
sup->talloc = d->tindex * 2;
for (i = j = 0; i < d->tindex; i++)
{
switch (d->tokens[i])
{
case ANYCHAR:
case MBCSET:
case BACKREF:
zeroset (ccl);
notset (ccl);
sup->tokens[j++] = CSET + dfa_charclass_index (sup, ccl);
sup->tokens[j++] = STAR;
if (d->tokens[i + 1] == QMARK || d->tokens[i + 1] == STAR
|| d->tokens[i + 1] == PLUS)
i++;
have_achar = true;
break;
case BEGWORD:
case ENDWORD:
case LIMWORD:
case NOTLIMWORD:
if (d->multibyte)
{
/* These constraints aren't supported in a multibyte locale.
Ignore them in the superset DFA, and treat them as
backreferences in the main DFA. */
sup->tokens[j++] = EMPTY;
d->tokens[i] = BACKREF;
break;
}
default:
sup->tokens[j++] = d->tokens[i];
if ((0 <= d->tokens[i] && d->tokens[i] < NOTCHAR)
|| d->tokens[i] >= CSET)
have_nchar = true;
break;
}
}
sup->tindex = j;
if (have_nchar && (have_achar || d->multibyte))
d->superset = sup;
else
{
dfafree (sup);
free (sup);
}
}
/* Parse and analyze a single string of the given length. */
void
dfacomp (char const *s, size_t len, struct dfa *d, int searchflag)
{
dfainit (d);
dfambcache (d);
dfaparse (s, len, d);
dfamust (d);
dfassbuild (d);
dfaoptimize (d);
dfaanalyze (d, searchflag);
if (d->superset)
{
d->fast = true;
dfaanalyze (d->superset, searchflag);
}
}
/* Free the storage held by the components of a dfa. */
void
dfafree (struct dfa *d)
{
size_t i;
struct dfamust *dm, *ndm;
free (d->charclasses);
free (d->tokens);
if (d->multibyte)
free_mbdata (d);
for (i = 0; i < d->sindex; ++i)
{
free (d->states[i].elems.elems);
free (d->states[i].mbps.elems);
}
free (d->states);
if (d->follows)
{
for (i = 0; i < d->tindex; ++i)
free (d->follows[i].elems);
free (d->follows);
}
if (d->trans)
{
for (i = 0; i < d->tralloc; ++i)
{
free (d->trans[i]);
free (d->fails[i]);
}
free (d->trans - 1);
free (d->fails);
free (d->newlines);
free (d->success);
}
for (dm = d->musts; dm; dm = ndm)
{
ndm = dm->next;
free (dm->must);
free (dm);
}
if (d->superset)
dfafree (d->superset);
}
/* Having found the postfix representation of the regular expression,
try to find a long sequence of characters that must appear in any line
containing the r.e.
Finding a "longest" sequence is beyond the scope here;
we take an easy way out and hope for the best.
(Take "(ab|a)b"--please.)
We do a bottom-up calculation of sequences of characters that must appear
in matches of r.e.'s represented by trees rooted at the nodes of the postfix
representation:
sequences that must appear at the left of the match ("left")
sequences that must appear at the right of the match ("right")
lists of sequences that must appear somewhere in the match ("in")
sequences that must constitute the match ("is")
When we get to the root of the tree, we use one of the longest of its
calculated "in" sequences as our answer. The sequence we find is returned in
d->must (where "d" is the single argument passed to "dfamust");
the length of the sequence is returned in d->mustn.
The sequences calculated for the various types of node (in pseudo ANSI c)
are shown below. "p" is the operand of unary operators (and the left-hand
operand of binary operators); "q" is the right-hand operand of binary
operators.
"ZERO" means "a zero-length sequence" below.
Type left right is in
---- ---- ----- -- --
char c # c # c # c # c
ANYCHAR ZERO ZERO ZERO ZERO
MBCSET ZERO ZERO ZERO ZERO
CSET ZERO ZERO ZERO ZERO
STAR ZERO ZERO ZERO ZERO
QMARK ZERO ZERO ZERO ZERO
PLUS p->left p->right ZERO p->in
CAT (p->is==ZERO)? (q->is==ZERO)? (p->is!=ZERO && p->in plus
p->left : q->right : q->is!=ZERO) ? q->in plus
p->is##q->left p->right##q->is p->is##q->is : p->right##q->left
ZERO
OR longest common longest common (do p->is and substrings common
leading trailing to q->is have same p->in and
(sub)sequence (sub)sequence q->in length and content) ?
of p->left of p->right
and q->left and q->right p->is : NULL
If there's anything else we recognize in the tree, all four sequences get set
to zero-length sequences. If there's something we don't recognize in the
tree, we just return a zero-length sequence.
Break ties in favor of infrequent letters (choosing 'zzz' in preference to
'aaa')?
And ... is it here or someplace that we might ponder "optimizations" such as
egrep 'psi|epsilon' -> egrep 'psi'
egrep 'pepsi|epsilon' -> egrep 'epsi'
(Yes, we now find "epsi" as a "string
that must occur", but we might also
simplify the *entire* r.e. being sought)
grep '[c]' -> grep 'c'
grep '(ab|a)b' -> grep 'ab'
grep 'ab*' -> grep 'a'
grep 'a*b' -> grep 'b'
There are several issues:
Is optimization easy (enough)?
Does optimization actually accomplish anything,
or is the automaton you get from "psi|epsilon" (for example)
the same as the one you get from "psi" (for example)?
Are optimizable r.e.'s likely to be used in real-life situations
(something like 'ab*' is probably unlikely; something like is
'psi|epsilon' is likelier)? */
static char *
icatalloc (char *old, char const *new)
{
char *result;
size_t oldsize;
size_t newsize = strlen (new);
if (newsize == 0)
return old;
oldsize = strlen (old);
result = xrealloc (old, oldsize + newsize + 1);
memcpy (result + oldsize, new, newsize + 1);
return result;
}
static void
freelist (char **cpp)
{
while (*cpp)
free (*cpp++);
}
static char **
enlist (char **cpp, char *new, size_t len)
{
size_t i, j;
new = memcpy (xmalloc (len + 1), new, len);
new[len] = '\0';
/* Is there already something in the list that's new (or longer)? */
for (i = 0; cpp[i] != NULL; ++i)
if (strstr (cpp[i], new) != NULL)
{
free (new);
return cpp;
}
/* Eliminate any obsoleted strings. */
j = 0;
while (cpp[j] != NULL)
if (strstr (new, cpp[j]) == NULL)
++j;
else
{
free (cpp[j]);
if (--i == j)
break;
cpp[j] = cpp[i];
cpp[i] = NULL;
}
/* Add the new string. */
cpp = xnrealloc (cpp, i + 2, sizeof *cpp);
cpp[i] = new;
cpp[i + 1] = NULL;
return cpp;
}
/* Given pointers to two strings, return a pointer to an allocated
list of their distinct common substrings. */
static char **
comsubs (char *left, char const *right)
{
char **cpp = xzalloc (sizeof *cpp);
char *lcp;
for (lcp = left; *lcp != '\0'; ++lcp)
{
size_t len = 0;
char *rcp = strchr (right, *lcp);
while (rcp != NULL)
{
size_t i;
for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i)
continue;
if (i > len)
len = i;
rcp = strchr (rcp + 1, *lcp);
}
if (len != 0)
cpp = enlist (cpp, lcp, len);
}
return cpp;
}
static char **
addlists (char **old, char **new)
{
for (; *new; new++)
old = enlist (old, *new, strlen (*new));
return old;
}
/* Given two lists of substrings, return a new list giving substrings
common to both. */
static char **
inboth (char **left, char **right)
{
char **both = xzalloc (sizeof *both);
size_t lnum, rnum;
for (lnum = 0; left[lnum] != NULL; ++lnum)
{
for (rnum = 0; right[rnum] != NULL; ++rnum)
{
char **temp = comsubs (left[lnum], right[rnum]);
both = addlists (both, temp);
freelist (temp);
free (temp);
}
}
return both;
}
typedef struct must must;
struct must
{
char **in;
char *left;
char *right;
char *is;
bool begline;
bool endline;
must *prev;
};
static must *
allocmust (must *mp)
{
must *new_mp = xmalloc (sizeof *new_mp);
new_mp->in = xzalloc (sizeof *new_mp->in);
new_mp->left = xzalloc (2);
new_mp->right = xzalloc (2);
new_mp->is = xzalloc (2);
new_mp->begline = false;
new_mp->endline = false;
new_mp->prev = mp;
return new_mp;
}
static void
resetmust (must *mp)
{
freelist (mp->in);
mp->in[0] = NULL;
mp->left[0] = mp->right[0] = mp->is[0] = '\0';
mp->begline = false;
mp->endline = false;
}
static void
freemust (must *mp)
{
freelist (mp->in);
free (mp->in);
free (mp->left);
free (mp->right);
free (mp->is);
free (mp);
}
static void
dfamust (struct dfa *d)
{
must *mp = NULL;
char const *result = "";
size_t ri;
size_t i;
bool exact = false;
bool begline = false;
bool endline = false;
struct dfamust *dm;
for (ri = 0; ri < d->tindex; ++ri)
{
token t = d->tokens[ri];
switch (t)
{
case BEGLINE:
mp = allocmust (mp);
mp->begline = true;
break;
case ENDLINE:
mp = allocmust (mp);
mp->endline = true;
break;
case LPAREN:
case RPAREN:
assert (!"neither LPAREN nor RPAREN may appear here");
case EMPTY:
case BEGWORD:
case ENDWORD:
case LIMWORD:
case NOTLIMWORD:
case BACKREF:
case ANYCHAR:
case MBCSET:
mp = allocmust (mp);
break;
case STAR:
case QMARK:
resetmust (mp);
break;
case OR:
{
char **new;
must *rmp = mp;
must *lmp = mp = mp->prev;
size_t j, ln, rn, n;
/* Guaranteed to be. Unlikely, but ... */
if (STREQ (lmp->is, rmp->is))
{
lmp->begline &= rmp->begline;
lmp->endline &= rmp->endline;
}
else
{
lmp->is[0] = '\0';
lmp->begline = false;
lmp->endline = false;
}
/* Left side--easy */
i = 0;
while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i])
++i;
lmp->left[i] = '\0';
/* Right side */
ln = strlen (lmp->right);
rn = strlen (rmp->right);
n = ln;
if (n > rn)
n = rn;
for (i = 0; i < n; ++i)
if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1])
break;
for (j = 0; j < i; ++j)
lmp->right[j] = lmp->right[(ln - i) + j];
lmp->right[j] = '\0';
new = inboth (lmp->in, rmp->in);
freelist (lmp->in);
free (lmp->in);
lmp->in = new;
freemust (rmp);
}
break;
case PLUS:
mp->is[0] = '\0';
break;
case END:
assert (!mp->prev);
for (i = 0; mp->in[i] != NULL; ++i)
if (strlen (mp->in[i]) > strlen (result))
result = mp->in[i];
if (STREQ (result, mp->is))
{
exact = true;
begline = mp->begline;
endline = mp->endline;
}
goto done;
case CAT:
{
must *rmp = mp;
must *lmp = mp = mp->prev;
/* In. Everything in left, plus everything in
right, plus concatenation of
left's right and right's left. */
lmp->in = addlists (lmp->in, rmp->in);
if (lmp->right[0] != '\0' && rmp->left[0] != '\0')
{
size_t lrlen = strlen (lmp->right);
size_t rllen = strlen (rmp->left);
char *tp = xmalloc (lrlen + rllen);
memcpy (tp, lmp->right, lrlen);
memcpy (tp + lrlen, rmp->left, rllen);
lmp->in = enlist (lmp->in, tp, lrlen + rllen);
free (tp);
}
/* Left-hand */
if (lmp->is[0] != '\0')
lmp->left = icatalloc (lmp->left, rmp->left);
/* Right-hand */
if (rmp->is[0] == '\0')
lmp->right[0] = '\0';
lmp->right = icatalloc (lmp->right, rmp->right);
/* Guaranteed to be */
if ((lmp->is[0] != '\0' || lmp->begline)
&& (rmp->is[0] != '\0' || rmp->endline))
{
lmp->is = icatalloc (lmp->is, rmp->is);
lmp->endline = rmp->endline;
}
else
{
lmp->is[0] = '\0';
lmp->begline = false;
lmp->endline = false;
}
freemust (rmp);
}
break;
case '\0':
/* Not on *my* shift. */
goto done;
default:
mp = allocmust (mp);
if (CSET <= t)
{
/* If T is a singleton, or if case-folding in a unibyte
locale and T's members all case-fold to the same char,
convert T to one of its members. Otherwise, do
nothing further with T. */
charclass *ccl = &d->charclasses[t - CSET];
int j;
for (j = 0; j < NOTCHAR; j++)
if (tstbit (j, *ccl))
break;
if (! (j < NOTCHAR))
break;
t = j;
while (++j < NOTCHAR)
if (tstbit (j, *ccl)
&& ! (case_fold && !d->multibyte
&& toupper (j) == toupper (t)))
break;
if (j < NOTCHAR)
break;
}
mp->is[0] = mp->left[0] = mp->right[0]
= case_fold && !d->multibyte ? toupper (t) : t;
mp->is[1] = mp->left[1] = mp->right[1] = '\0';
mp->in = enlist (mp->in, mp->is, 1);
break;
}
}
done:
if (*result)
{
dm = xmalloc (sizeof *dm);
dm->exact = exact;
dm->begline = begline;
dm->endline = endline;
dm->must = xstrdup (result);
dm->next = d->musts;
d->musts = dm;
}
while (mp)
{
must *prev = mp->prev;
freemust (mp);
mp = prev;
}
}
struct dfa *
dfaalloc (void)
{
return xmalloc (sizeof (struct dfa));
}
struct dfamust *_GL_ATTRIBUTE_PURE
dfamusts (struct dfa const *d)
{
return d->musts;
}
/* vim:set shiftwidth=2: */
|