
1

1 Labelled Transition System

A Labelled Transition System (LTS) is a tuple (S, A,→) where S is a set of
states, A is a set of actions (or labels), and → ⊆ S × A × S is a transition

relation. Whenever (s, a, s′) ∈ →, we write s
a−→ s′ and say that a is enabled in

s, and we can execute a in s yielding s′. Otherwise we say that a is disabled in
s and write s 6a−→. The set of all enabled actions in a state s is denoted en(s).
A state s is said to be a deadlock if en(s) = ∅. For a possibly infinite sequence
of actions w = a1a2 · · · ∈ A∗ ∪ Aω and states s1, s2, . . . we call w an action
sequence if s1

a1−→ s2
a2−→ · · · . If w is finite then this is written as s1

w−→ sn.
By convention s

ε−→ s always holds, where ε is the empty action sequence. Any
action sequence of length n from s to s′ is written as s −→n s′. If there exists
an action sequence w ∈ A∗ such that s

w−→ s′, we write s −→∗ s′. The set of all
reachable states from a state s is given by the set reach(s) = {s′ | s −→∗ s′}. The
sequence of states induced by an action sequence is called a path and is written
as π = s1s2 · · · . We use Π(s) to denote the set of all paths starting from a state
s, and Π =

⋃
s∈S Π(s) is the set of all paths. The length of a path is given by

the function ` : Π −→ N∪ {∞}. A position i in a path π ∈ Π refers to state si in
the path and is written as πi. If π is infinite then i ∈ N, otherwise 1 ≤ i ≤ `(π).
We use Πmax (s) to denote the set of all maximal paths starting from a state s
which is defined as Πmax (s) = {π ∈ Π(s) | `(π) =∞ or π`(π) is a deadlock}.

2 Computation Tree Logic

Let AP be a set of atomic propositions, a ∈ AP an atomic proposition, and
(S, A,→) an LTS. We evaluate atomic propositions using the function v : S −→
2AP , where v(s) is the set of atomic propositions satisfied in the state s ∈ S.
The CTL syntax and semantics are given as follows:

ϕ ::= true | false | a | deadlock | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | ¬ϕ | ϕ1 =⇒ ϕ2 | ϕ1 ⇐⇒ ϕ2

| AXϕ | EXϕ | AFϕ | EFϕ | AGϕ | EGϕ | A(ϕ1Uϕ2) | E (ϕ1Uϕ2)

2

The semantics of formula ϕ is defined for a state s ∈ S as follows:

s |= true

s 6|= false

s |= a iff a ∈ v(s)

s |= deadlock iff en(s) = ∅
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

s |= ¬ϕ iff s 6|= ϕ

s |= ϕ1 =⇒ ϕ2 iff s 6|= ϕ1 or s |= ϕ2

s |= ϕ1 ⇐⇒ ϕ2 iff (s |= ϕ1 iff s |= ϕ2)

s |= AXϕ iff for all s′ ∈ S if s −→ s′ then s′ |= ϕ

s |= EXϕ iff exists s′ ∈ S s.t s −→ s′ and s′ |= ϕ

s |= AGϕ iff for all π ∈ Πmax (s) and for all positions i in π we have πi |= ϕ

s |= EFϕ iff exists π ∈ Πmax (s) s.t. there exists a position i in π s.t. πi |= ϕ

s |= AFϕ iff for all π ∈ Πmax (s) there exists a position i in π s.t. πi |= ϕ

s |= EGϕ iff exists π ∈ Πmax (s) s.t. for all positions i in π we have πi |= ϕ

s |= A(ϕ1Uϕ2) iff for all π ∈ Πmax (s) there exists a position i in π s.t.

πi |= ϕ2 and for all 1 ≤ j < i we have πj |= ϕ1

s |= E (ϕ1Uϕ2) iff exists π ∈ Πmax (s) and there exists a position i in π s.t.

πi |= ϕ2 and for all 1 ≤ j < i we have πj |= ϕ1

We use ΦCTL to denote the set of all CTL formulae.

3 Atomic Propositions for Petri Net CTL

The satisfiability of CTL formulae in a Petri net is interpreted on the LTS
generated by the net. We fix the set of atomic propositions AP based on the
informal semantics in the MCC Property Language, which includes arithmetic
expressions and fireability of transitions. Let N = (P, T,W, I) be a Petri net. An
atomic proposition a ∈ AP is defined as:

a ::= t | e1 ./ e2

e ::= c | p | e1 ⊕ e2
where t ∈ T , c ∈ N0, ./ ∈ {<,≤,=, 6=, >,≥}, p ∈ P , and ⊕ ∈ {+,−, ∗}. The
semantics of ϕ is defined for a marking M as follows:

M |= t iff t ∈ en(M)

M |= e1 ./ e2 iff evalM (e1) ./ evalM (e2)

3

The semantics of an arithmetic expression in a marking M is given as follows:

evalM (c) = c,
evalM (p) = M(p),
evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

We use ΦReach ⊆ ΦCTL to denote a subset of formulae called reachability
formulae. Reachability formulae can be on the form EFϕ or AGϕ, where ϕ is
defined as follows:

ϕ ::= true | false | a | deadlock | e1 ./ e2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 =⇒ ϕ2 |
ϕ1 ⇐⇒ ϕ2

A reachability formula AGϕ is equivalent to ¬EF¬ϕ. Henceforth, we assume
all AGϕ reachability formulae have been transformed to EF formulae.

4 Integer Linear Program

For defining an integer linear program, we first need to define a linear equation.
Let X = {x1, x2, . . . , xn} be a set of variables and x a column vector over the
variables X such that:

x =


x1
x2
...
xn

 .
A linear equation is given by c x ./ k, where ./ ∈ {=, <,≤, >,≥}, k ∈ Z is an
integer, and c is a row vector of integers such that:

c =
[
c1 c2 · · · cn

]
where ci ∈ Z for all 1 ≤ i ≤ n.

Definition 1 (Integer Linear Program). An integer linear program LP =
{c1x ./1 k1, c2x ./2 k2, · · · , cmx ./m km} is a set of linear equations. A solution
to LP is a mapping u : X −→ N0 from variables to natural numbers and corre-
sponding column vector uT = [u(x1) u(x2) · · ·u(xn)], such that for all 1 ≤ i ≤ m
we have ciu ./i ki is true. We use EXlin to denote the set of all linear programs
over a set of variables X .

Let N = (P, T,W, I) be a Petri net, M0 ∈ M(N) an initial marking on N ,
M ∈M(N) a marking on N , and X = {xt | t ∈ T} a set of variables. From this
we construct the following linear program over X:

M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt = M(p) for all p ∈ P.

It is well-known that if M ∈ reach(M0) then there exists a solution to the
linear program. If the linear program is infeasible, then we can discern that
M /∈ reach(M0).

4

5 Reductions of LTS

A reduction is a function from the set of states to the power set of actions, such
that for each state the function returns the set of required actions.

Definition 2 (Reduction). Let T = (S, A,→) be an LTS. A reduction of T is
a function St : S → 2A.

A reduction defines a subset of the transition relation of an LTS, and we
annotate the transition relation with a reduction to define the reduced state
space.

Definition 3 (Reduced transition relation). Let T = (S, A,→) be an LTS
and St a reduction of T . A reduced transition relation is a relation −→

St
⊆ →

such that s
a−→
St

s′ iff s
a−→ s′ and a ∈ St(s).

Let T = (S, A,→) be an LTS, a ∈ S a state, and St a reduction of T . The
set St(s) = A \ St(s), is the set of all actions not in St(s).

For a sequences of actions, the following condition identifies required actions,
that allow us to permute the sequence, such that the permuted sequence begins
with the required action.

W For all s ∈ S, all a ∈ St(s), and all w ∈ St(s)
∗
, if s

wa−−→ s′ then s
aw−−→ s′.

Reductions that satisfy W are called (weak)semistubborn reductions, and for
all s ∈ S, we say that St(s) is the stubborn set of s, and that an action a ∈ St(s)
is a stubborn action.

Lemma 1. Let T = (S, A,→) be an LTS and St be a reduction on T satisfying

W. For all s ∈ S, all a ∈ St(s), and all w ∈ St(s)
∗
, if a /∈ en(s) and s

w−→ s′

then a /∈ en(s′).

5.1 Reachability Preserving Stubborn Reduction

When performing reachability analysis, we are searching for states that satisfy
a given property. In the context of stubborn reduction, we refer to these states
as goal states.

Let T = (S, A,→) be an LTS, s0 ∈ S an initial state, and G ⊆ S a set of
goal states. For a reduction St to preserve paths to a goal state, the following
condition needs to be satisfied:

R For all s ∈ S if s 6∈ G and s
w−→ s′ where w ∈ St(s)

∗
then s′ 6∈ G.

Rule R states that, when starting in a non-goal state, the execution of non-
stubborn transitions cannot reach any goal state in G. It also ensures that at
least one stubborn action has to be executed in order to reach a goal state.

Theorem 1 (Reachability preservation). Let (S, A,→) be an LTS, G ⊆ S
a set of goal states, and s0 ∈ S. Let St be a reduction satisfying W and R. If
s0 −→n s where s ∈ G then s0 −→

St

m s′ where s′ ∈ G and m ≤ n. If s0 −→
St

m s

where s ∈ G then s0 −→m s.

5

6 Reductions of Petri Net

Instead of states and actions of LTS, we now refer to markings and transitions of
Petri nets. We define goal states as goal markings that satisfy a given reachability
property. Let EF ϕ ∈ ΦReach be a reachability formula and Gϕ = {M ∈M(N) |
M |= ϕ} be the goal markings for ϕ, where N is a Petri net. The reduction
procedure must identify transitions that are required to fire in order to reach
the goal markings. All transitions that can alter the truth value of ϕ from false
to true are interesting transitions. The interesting transitions of a marking M
and formula ϕ, denoted AM (ϕ).

Assume M 6|= ϕ and t ∈ T . Let AM (ϕ) ⊆ T such that if M
t−→ M ′ and

M ′ |= ϕ then t ∈ AM (ϕ). We define AM (ϕ) recursively on the syntactic cat-
egory for reachability formulae. The interesting transitions for all Boolean for-
mulae are shown in Table 1. The interesting transitions of a negation depend
on what follows syntactically from the negation, and thus we describe this in a
separate column. Table 1 does not describe AM (¬¬ϕ) because its set of inter-
esting transitions is equivalent to that of AM (ϕ). We introduce the notation ./
that refers to the complement of of a comparison operator ./. The complement
operators are shown in Table 2.

We define the set of expressions that can be constructed with N as EN , and
two functions incrM : EN −→ 2T and decrM : EN −→ 2T . These functions receive
an expression e and return the set of transitions that, when fired, increase and
decrease the evaluation of e, respectively. We present the interesting transitions
for formulae of the form e1 ./ e2 in Table 3. We recursively define incrM and
decrM on the syntax of expressions in Table 4.

Lemma 2. Let N = (P, T,W, I) be a Petri net, M ∈ M(N) a marking, and

EFϕ ∈ ΦReach a reachability formula. If M 6|= ϕ and M
t′−→M ′ where t′ /∈ AM (ϕ)

then M ′ 6|= ϕ.

Lemma 3. Let N = (P, T,W, I) be a Petri net, M ∈ M(N) a marking, ϕ a

formula, and w ∈ AM (ϕ)
∗

a sequence of non-interesting transitions. If M /∈ Gϕ
and M

w−→M ′ then M ′ /∈ Gϕ.

We can easily verify the R property by including all interesting transitions in
the stubborn set. Ensuring the W property is done by examining the structure
of the Petri net and the marking in question.

Proposition 1 (Reachability preserving closure for Petri nets). Let N =
(P, T,W, I) be a Petri net with inhibitor arcs, EFϕ ∈ ΦReach a reachability
formula, and St a reduction such that for all M ∈M(N):

1 AM (ϕ) ⊆ St(M).
2 For all t ∈ St(M), if t /∈ en(M) then

– exists p that disables t in M and •p ⊆ St(M), or
– exists p that inhibits t in M and p• ⊆ St(M).

6

Formula ϕ AM (ϕ) AM (¬ϕ)

true ∅ ∅
false ∅ ∅

t
•p for some p ∈ •t where M(p) < W (p, t) or
p• for some p ∈ ◦t where M(p) ≥ I(p, t)

(•t) • ∪ • (◦t)

deadlock (•t) • ∪ • (◦t) for some t ∈ en(M) ∅
e1 ./ e2 See Table 3 AM (e1 ./ e2)

ϕ1 ∧ ϕ2 AM (ϕi) for some i ∈ {1, 2} where M 6|= ϕi AM (¬ϕ1 ∨ ¬ϕ2)

ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

ϕ1 =⇒ ϕ2 AM (¬ϕ1 ∨ ϕ2) AM (ϕ1 ∧ ¬ϕ2)

ϕ1 ⇐⇒ ϕ2 AM (ϕ1 =⇒ ϕ2 ∧ ϕ2 =⇒ ϕ1) AM (ϕ1 ⇐⇒ ¬ϕ2)

Table 1: Interesting transitions of ϕ.

Operator ./ ./

< ≥
≤ >

= 6=
6= =

> ≤
≥ <

Table 2: Complement of comparison operator ./.

Formula e1 ./ e2 AM (e1 ./ e2)

e1 < e2 decrM (e1) ∪ incrM (e2)

e1 ≤ e2 decrM (e1) ∪ incrM (e2)

e1 > e2 incrM (e1) ∪ decrM (e2)

e1 ≥ e2 incrM (e1) ∪ decrM (e2)

e1 = e2

if evalM (e1) > evalM (e2) then
decrM (e1) ∪ incrM (e2)
else if evalM (e1) < evalM (e2) then
incrM (e1) ∪ decrM (e2)

e1 6= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2)

Table 3: Interesting transitions of e1 ./ e2.

Expression e incrM (e) decrM (e)

c ∅ ∅
p •p p•
e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)

e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 ∗ e2
incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

Table 4: Increasing and decreasing transitions of e.

7

Algorithm 1: Construction of a reachability preserving stubborn set

input : N = (P, T,W, I), M ∈M(N), ϕ
output : St(M) where St satisfies W and R

1 X := ∅; unprocessed := AM (ϕ);
2 while unprocessed 6= ∅ do
3 pick any t ∈ unprocessed ;
4 if t 6∈ en(M) then
5 if Exists p ∈ •t s.t. M(p) < W (p, t) then
6 pick any p ∈ •t s.t. M(p) < W (p, t);
7 unprocessed := unprocessed ∪ (•p \X);

8 else
9 pick any p ∈ ◦t s.t. M(p) ≥ I(p, t);

10 unprocessed := unprocessed ∪ (p • \X);

11 else
12 unprocessed := unprocessed ∪ ((•t) • \X) ∪ ((t•) ◦ \X);

13 unprocessed := unprocessed \ {t};
14 X := X ∪ {t};
15 return X;

3 For all t ∈ St(M), if t ∈ en(M) then
– (•t)• ⊆ St(M), and
– (t•)◦ ⊆ St(M).

then St satisfies W and R.

In Algorithm 1 we illustrate pseudocode on how to construct a reachability
preserving stubborn set that satisfies W and R for a given marking M and
reachability formula EFϕ ∈ ΦReach .

Lemma 4. Algorithm 1 terminates.

Lemma 5. When Algorithm 1 terminates, the reduction St computed by the
algorithm satisfies W and R.

7 The Siphon-Trap Property

It is possible to check for deadlock freedom in Petri nets by examining structural
entities within a Petri net called siphons and traps. For this we only consider
1-weighted Petri nets without inhibitor arcs. A Petri net N = (P, T,W, I) is
1-weighted if W : (P ×T)∪(T ×P) −→ {0, 1}, i.e. every regular arc have a weight
of 0 or 1. N have no inhibitor arcs if for all p ∈ P and t ∈ T we have I(p, t) =∞,
i.e. the inhibitor arcs have no effect on the enabledness of the transitions.

Definition 4 (Siphon). Let N = (P, T,W, I) be a 1-weighted Petri net with
no inhibitor arcs and M0 an initial marking on N . A siphon D of N , is a non-
empty set of places D ⊆ P , where •D ⊆ D•. We say that D is marked if there
exists a place p ∈ D with M0(p) > 0.

8

Definition 5 (Trap). Let N = (P, T,W, I) be a 1-weighted Petri net with no
inhibitor arcs and M0 an initial marking on N . A trap Q of N , is a non-empty
set of places Q ⊆ P , where Q• ⊆ •Q. We say that Q is marked if there exists a
place p ∈ Q with M0(p) > 0.

Definition 6 (Siphon-Trap Property). Let N = (P, T,W, I) be a 1-weighted
Petri net with no inhibitor arcs and M0 an initial marking on N . We say that
N has the siphon-trap property if for every siphon D ⊆ P there exists a trap
Q ⊆ D s.t. Q is marked.

Proposition 2 (Commoner-Hack). Let N be a 1-weighted Petri net with no
inhibitor arcs and M0 an initial marking on N . If N has the siphon-trap property
then no deadlock is reachable from M0.

7.1 Siphon-Trap Property Using Integer Linear Programming

Let N = (P, T,W, I) be a 1-weighted Petri net with no inhibitor arcs and M0 an
initial marking on N . We know that N has the siphon-trap property if for every
siphon D ⊆ P there exists a trap Q ⊆ D s.t. Q is marked. Let D be a siphon
of N . The unique maximal trap of D is the union of all traps within D, written
Qmax where traps are closed under union. We can convert the problem into an
appropriate form:

for all siphons D ⊆ P exists a trap Q ⊆ D s.t. Q is marked ⇐⇒
¬(exists a siphon D ⊆ P s.t. for all traps Q ⊆ D s.t. Q is not marked) ⇐⇒

¬(exists a siphon D s.t. the maximal trap Qmax of D is not marked)

We want to prove that there exists a siphon whose maximal trap is not
marked in order to disprove the siphon-trap property. If we cannot prove this,
then the Petri net must have the siphon-trap property.

Let N = (P, T,W, I) be a 1-weighted Petri net with no inhibitor arcs, M0 an
initial marking on N , and d ∈ N0 a natural number indicating the depth of the
procedure. We have a sequence of sets X0, X1, . . . , Xd such that:

P ⊇ X0 ⊇ X1 ⊇ . . . ⊇ Xd

The set X0 represents the initially selected siphon and each subsequent set rep-
resents a candidate maximal trap for the siphon, moving towards either the
maximal trap or the empty set. For each place p we have d+1 decision variables
such that for all 0 ≤ i ≤ d we have pi ∈ {0, 1}, and pi = 1 if and only if p ∈ Xi.

Additionally, we introduce d+1 decision variables for each transition t, writ-
ten as postdt , such that for all 0 ≤ i ≤ d we have post it ∈ {0, 1}, and post it = 1
if and only if there exists a place p ∈ t• such that pi = 1. Equation 1 ensures
if post it = 1 then there exists a place p ∈ t• such that pi = 1, and Equation 2
ensures if there exists a place p ∈ t• such that pi = 1 then post it = 1.

−post it +
∑
p∈t•

pi ≥ 0 ∀i ∈ {0, . . . , d},∀t ∈ T (1)

pi − post it ≤ 0 ∀i ∈ {0, . . . , d},∀t ∈ T, ∀p ∈ t• (2)

9

We need to specify integer linear equations such that there exists a solution
if the following conditions are true:

a •X0 ⊆ X0•, X0 is a siphon of N .
b X0 6= ∅, the initial siphon is not empty.
c For all 0 ≤ i ≤ d we have Xi+1 ⊆ Xi, we never add places as we iterate.
d For all t ∈ T we have p ∈ •t and p ∈ Xi+1 if and only if there exists p′ ∈ t•

s.t. p′ ∈ Xi.
e For all p ∈ Xd we have M0(p) = 0, or Xd is not a trap.

The reason we need the second part of condition e is because after d iterations
we are not guaranteed to converge on the maximal trap. In order to guarantee
convergence, we need the depth to be equal to the number of places, i.e. d = |P |.

Equation 3 ensures condition a.

−p0 +
∑
q∈•t

q0 ≥ 0 ∀t ∈ T, ∀p ∈ t• (3)

If p is in the initial siphon, i.e. p0 = 1, and it is given a token when t is fired, then
we must have at least one place q0 = 1 in the siphon where a token is removed
when t is fired, otherwise the equation is not satisfied.

Equation 4 ensures condition b.∑
p∈P

p0 ≥ 1 (4)

At least one place must be assigned a value of 1 to ensure the initial siphon X0

is non-empty, otherwise the equation is not satisfied.
Equation 5 ensures condition c.

−pi+1 + pi ≥ 0 ∀i ∈ {0, . . . , d},∀p ∈ P (5)

If pi+1 = 1 then we must also have that pi = 1, otherwise the equation is not
satisfied. No places can be added in later iterations.

Equation 6 ensures the left-to-right implication of condition d.

−pi+1 + post it ≥ 0 ∀i ∈ {0, . . . , d},∀p ∈ P,∀t ∈ p• (6)

Equation 7 ensures the right-to-left implication of condition d.

−pi+1 + pi +
∑
t∈p•

post it ≤ |p•| ∀i ∈ {0, . . . , d},∀p ∈ P (7)

We iteratively remove places from the identified siphon until we are either left
with the empty set or the maximal trap, iterating d times. A place p ∈ Xi is
removed from the siphon in the ith step by assigning its decision variable pi+1

to 0 in step i+ 1, where pi = 1. If place p is not part of the siphon in step i, i.e.
p /∈ Xi and pi = 0, then it stays outside of the siphon in step i+ 1 and pi+1 = 0,

10

as we do not add any places. A place p is removed in the ith step if and only if
there exists a transition t ∈ p• s.t. t• * Xi.

Once the removal procedure reaches depth d, we are left with one of three
cases: Either Xd is the maximal trap, not a trap at all, or the empty set. In
either case, we need to check if the set is unmarked. If it is unmarked then X0 is
a siphon with no marked trap, and therefore disproves the siphon-trap property.
Let z ∈ N0 be a decision variable. Equation 8 ensures the first part of condition e.
Equation 9 ensures the second part of condition e.

pd+1 − z ≤ 0 ∀p ∈ P where M0(p) > 0 (8)∑
p∈P

pd+1 + z =
∑
p∈P

pd (9)

By the construction and reasoning from the integer linear program specifica-
tion above, we conclude with the following theorem.

Theorem 2. If the integer linear program specified in equations 1 through 9 is
infeasible then N has no deadlock.

8 Formula Simplification

To perform formula simplification, we need a way to identify contradictions and
impossibilities in the formula.

8.1 Simplification Procedure

We define a function, that given a formula, produces a simplified formula and
a set of integer linear programs. We say that such a function is a simplification
function.

Definition 7 (Simplification). Let N = (P, T,W, I) be a Petri net, M0 an
initial marking on N , and X = {xt | t ∈ T} a set of variables. A simplification

for marking M0 is a function simplify : ΦCTL −→ ΦCTL × 2E
X
lin .

11

ϕ Rewritten ϕ

t p1 ≥W (p1, t) ∧ · · · ∧ pn ≥W (pn, t) ∧
p1 < I(p1, t) ∧ · · · ∧ pn < I(pn, t) where n = |P |

e1 6= e2 e1 > e2 ∨ e1 < e2
e1 = e2 e1 ≤ e2 ∧ e1 ≥ e2
¬(ϕ1 ∧ ϕ2) ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ∧ ¬ϕ2

ϕ1 =⇒ ϕ2 ¬ϕ1 ∨ ϕ2

ϕ1 ⇐⇒ ϕ2 (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2)

¬AXϕ EX¬ϕ
¬EXϕ AX¬ϕ
¬AFϕ EG¬ϕ
¬EFϕ AG¬ϕ
¬AGϕ EF¬ϕ
¬EGϕ AF¬ϕ

Table 5: Rewriting rules for ϕ.

ϕ simplify(M0, ϕ)

true (true, {{0 ≤ 1}})
false (false, ∅)
deadlock (deadlock , {{0 ≤ 1}})
Table 6: Trivial cases of simplify .

The function merge : 2E
X
lin × 2E

X
lin → 2E

X
lin combines two LPS and is defined as

merge (LPS 1,LPS 2)= {LP1 ∪ LP2 | LP1 ∈ LPS 1 and LP2 ∈ LPS 2}.
Algorithm 2: Simplify ϕ1 ∧ ϕ2

1 Function simplify(ϕ1 ∧ ϕ2)
2 (ϕ′1,LPS 1)← simplify(ϕ1)
3 if ϕ′1 = false then
4 return (false, ∅)
5 (ϕ′2,LPS 2)← simplify(ϕ2)
6 if ϕ′2 = false then
7 return (false, ∅)
8 else if ϕ′2 = true then
9 return (ϕ′1,LPS 1)

10 else if ϕ′1 = true then
11 return (ϕ′2,LPS 2)
12 LPS ← merge(LPS 1,LPS 2)
13 if {LP ∪BASE | LP ∈ LPS} has no solution then
14 return (false, ∅)
15 else
16 return (ϕ′1 ∧ ϕ′2,LPS)

BASE is an integer linear program of a Petri net N = (P, T,W, I) and initial marking
M0 on N , that consists of the following set of linear equations:

M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt ≥ 0 for all p ∈ P.

Which ensures that no solution to the linear program, can leave a place with a
negative amount of tokens.

12

Algorithm 3: Simplify ϕ1 ∨ ϕ2

1 Function simplify(ϕ1 ∨ ϕ2)
2 (ϕ′

1,LPS1)← simplify(ϕ1)
3 if ϕ′

1 = true then
4 return (true, {{0 ≤ 1}})
5 (ϕ′

2,LPS2)← simplify(ϕ2)
6 if ϕ′

2 = true then
7 return (true, {{0 ≤ 1}})
8 if ϕ′

1 = false then
9 return (ϕ′

2,LPS2)

10 if ϕ′
2 = false then

11 return (ϕ′
1,LPS1)

12 (ϕ′′
1 ,LPS

′
1)← simplify(¬ϕ1)

13 (ϕ′′
2 ,LPS

′
2)← simplify(¬ϕ2)

14 LPS ← merge(LPS ′
1,LPS

′
2)

15 if {LP ∪BASE | LP ∈ LPS} has no solution then
16 return (true, {{0 ≤ 1}})
17 return (ϕ′

1 ∨ ϕ′
2,LPS1 ∪ LPS2)

Algorithm 4: Simplify ¬ϕ
1 Function simplify(¬ϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (false, ∅)
5 else if ϕ′

2 = false then
6 return (true, {{0 ≤ 1}})
7 else
8 return (¬ϕ′, {{0 ≤ 1}})

For the comparison operator e1 ./ e2 we introduce the function const which
takes as input an expression e and returns one side of a linear equation.

const(c) = c

const(p) = M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt

const(e1 + e2) = const(e1) + const(e2)

const(e1 − e2) = const(e1)− const(e2)

const(e1 · e2) = const(e1) · const(e2)

13

Algorithm 5: Simplify e1 ./ e2

1 Function simplify(e1 ./ e2)
2 if e1 is not linear or e2 is not linear then
3 return (e1 ./ e2, {{0 ≤ 1}})
4 LPS1 ← {{const(e1) ./ const(e2)}}
5 LPS2 ← {{const(e1) ./ const(e2)}}
6 if {LP ∪BASE | LP ∈ LPS1} have no solution then
7 return (false, ∅)
8 else if {LP ∪BASE | LP ∈ LPS2} have no solution then
9 return (true, {{0 ≤ 1}})

10 else
11 return (e1 ./ e2,LPS1)

Algorithm 6: Simplify AXϕ

1 Function simplify(AXϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (true, {{0 ≤ 1}})
5 else if ϕ′ = false then
6 return (deadlock , {{0 ≤ 1}})
7 else
8 return (AXϕ′, {{0 ≤ 1}})

Lemma 6 (Formula Simplification Correctness). Let N = (P, T,W, I) be
a Petri net, M0 an initial marking on N , and ϕ ∈ ΦCTL a CTL formula. If
simplify(ϕ) = (ϕ′,LPS) then for all M ∈M(N) such that M0

w−→M we have:

1. M |= ϕ iff M |= ϕ′, and
2. if M |= ϕ then there exists LP ∈ LPS such that ℘(w) is a solution to LP.

14

Algorithm 7: Simplify EXϕ

1 Function simplify(EXϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (¬deadlock , {{0 ≤ 1}})
5 else if ϕ′ = false then
6 return (false, ∅)
7 else
8 return (EXϕ′, {{0 ≤ 1}})

Algorithm 8: Simplify QFϕ where Q ∈ {A,E}
1 Function simplify(QFϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (true, {{0 ≤ 1}})
5 else if ϕ′ = false then
6 return (false, ∅)
7 else
8 return (QFϕ′, {{0 ≤ 1}})

Algorithm 9: Simplify QGϕ where Q ∈ {A,E}
1 Function simplify(QGϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (true, {{0 ≤ 1}})
5 else if ϕ′ = false then
6 return (false, ∅)
7 else
8 return (QGϕ′, {{0 ≤ 1}})

15

Algorithm 10: Simplify Q(ϕ1Uϕ2) where Q ∈ {A,E}
1 Function simplify(Q(ϕ1Uϕ2))
2 (ϕ′

2,LPS2)← simplify(ϕ2)
3 if ϕ′

2 = true then
4 return (true, {{0 ≤ 1}})
5 else if ϕ′

2 = false then
6 return (false, ∅)
7 (ϕ′

1,LPS1)← simplify(ϕ1)
8 if ϕ′

1 = true then
9 return (QFϕ′

2, {{0 ≤ 1}})
10 else if ϕ′

1 = false then
11 return (ϕ′

2,LPS2)
12 else
13 return (Q(ϕ′

1Uϕ′
2), {{0 ≤ 1}})

	Labelled Transition System
	Computation Tree Logic
	Atomic Propositions for Petri Net CTL
	Integer Linear Program
	Reductions of LTS
	Reachability Preserving Stubborn Reduction

	Reductions of Petri Net
	The Siphon-Trap Property
	Siphon-Trap Property Using Integer Linear Programming

	Formula Simplification
	Simplification Procedure

