1 Labelled Transition System

A Labelled Transition System (LTS) is a tuple $(\mathcal{S}, A, \rightarrow)$ where \mathcal{S} is a set of states, A is a set of actions (or labels), and $\rightarrow \subseteq \mathcal{S} \times A \times \mathcal{S}$ is a transition relation. Whenever $\left(s, a, s^{\prime}\right) \in \rightarrow$, we write $s \xrightarrow{a} s^{\prime}$ and say that a is enabled in s, and we can execute a in s yielding s^{\prime}. Otherwise we say that a is disabled in s and write $s \stackrel{a}{\nrightarrow}$. The set of all enabled actions in a state s is denoted en (s). A state s is said to be a deadlock if en $(s)=\emptyset$. For a possibly infinite sequence of actions $w=a_{1} a_{2} \cdots \in A^{*} \cup A^{\omega}$ and states s_{1}, s_{2}, \ldots we call w an action sequence if $s_{1} \xrightarrow{a_{1}} s_{2} \xrightarrow{a_{2}} \cdots$. If w is finite then this is written as $s_{1} \xrightarrow{w} s_{n}$. By convention $s \xrightarrow{\varepsilon} s$ always holds, where ε is the empty action sequence. Any action sequence of length n from s to s^{\prime} is written as $s \rightarrow^{n} s^{\prime}$. If there exists an action sequence $w \in A^{*}$ such that $s \xrightarrow{w} s^{\prime}$, we write $s \rightarrow^{*} s^{\prime}$. The set of all reachable states from a state s is given by the set reach $(s)=\left\{s^{\prime} \mid s \rightarrow^{*} s^{\prime}\right\}$. The sequence of states induced by an action sequence is called a path and is written as $\pi=s_{1} s_{2} \cdots$. We use $\Pi(s)$ to denote the set of all paths starting from a state s, and $\Pi=\bigcup_{s \in \mathcal{S}} \Pi(s)$ is the set of all paths. The length of a path is given by the function $\ell: \Pi \rightarrow \mathbb{N} \cup\{\infty\}$. A position i in a path $\pi \in \Pi$ refers to state s_{i} in the path and is written as π_{i}. If π is infinite then $i \in \mathbb{N}$, otherwise $1 \leq i \leq \ell(\pi)$. We use $\Pi^{\max }(s)$ to denote the set of all maximal paths starting from a state s which is defined as $\Pi^{\max }(s)=\left\{\pi \in \Pi(s) \mid \ell(\pi)=\infty\right.$ or $\pi_{\ell(\pi)}$ is a deadlock $\}$.

2 Computation Tree Logic

Let $A P$ be a set of atomic propositions, $a \in A P$ an atomic proposition, and $(\mathcal{S}, A, \rightarrow)$ an LTS. We evaluate atomic propositions using the function $v: \mathcal{S} \rightarrow$ $2^{A P}$, where $v(s)$ is the set of atomic propositions satisfied in the state $s \in \mathcal{S}$. The CTL syntax and semantics are given as follows:
$\varphi::=$ true \mid false $|a|$ deadlock $\left|\varphi_{1} \wedge \varphi_{2}\right| \varphi_{1} \vee \varphi_{2}|\neg \varphi| \varphi_{1} \Longrightarrow \varphi_{2} \mid \varphi_{1} \Longleftrightarrow \varphi_{2}$
$|A X \varphi| E X \varphi|A F \varphi| E F \varphi|A G \varphi| E G \varphi\left|A\left(\varphi_{1} U \varphi_{2}\right)\right| E\left(\varphi_{1} U \varphi_{2}\right)$

The semantics of formula φ is defined for a state $s \in \mathcal{S}$ as follows:

$$
\begin{array}{ll}
s \neq \text { true } & \\
s \not \models \text { false } & \\
s \models a & \\
\text { iff } a \in v(s) \\
s \models \text { deadlock } & \\
\text { iff } e n(s)=\emptyset \\
s \models \varphi_{1} \wedge \varphi_{2} & \\
\text { iff } s \models \varphi_{1} \text { and } s \models \varphi_{2} \\
s \models \varphi_{1} \vee \varphi_{2} & \\
\text { iff } s \models \varphi_{1} \text { or } s \models \varphi_{2} \\
s \models \neg \varphi & \\
\text { iff } s \not \models \varphi \\
s \models \varphi_{1} \Longrightarrow \varphi_{2} & \\
\text { iff } s \not \models \varphi_{1} \text { or } s \models \varphi_{2} \\
s \models \varphi_{1} \Longleftrightarrow \varphi_{2} & \\
\text { iff }\left(s \models \varphi_{1} \text { iff } s \models \varphi_{2}\right) \\
s \models A X \varphi & \\
\text { iff for all } s^{\prime} \in \mathcal{S} \text { if } s \rightarrow s^{\prime} \text { then } s^{\prime} \models \varphi \\
s \models E X \varphi & \\
\text { iff exists } s^{\prime} \in \mathcal{S} \text { s.t } s \rightarrow s^{\prime} \text { and } s^{\prime} \models \varphi \\
s \models A G \varphi & \\
\text { iff for all } \pi \in \Pi^{\max }(s) \text { and for all positions } i \text { in } \pi \text { we have } \pi_{i} \models \varphi \\
s \models E F \varphi & \\
\text { iff exists } \pi \in \Pi^{\max }(s) \text { s.t. there exists a position } i \text { in } \pi \text { s.t. } \pi_{i} \models \varphi \\
s \models A F \varphi & \\
\text { iff for all } \pi \in \Pi^{\max }(s) \text { there exists a position } i \text { in } \pi \text { s.t. } \pi_{i} \models \varphi \\
s \models E G \varphi & \\
\text { iff exists } \pi \in \Pi^{\max }(s) \text { s.t. for all positions } i \text { in } \pi \text { we have } \pi_{i} \models \varphi \\
s \models A\left(\varphi_{1} U \varphi_{2}\right) & \\
\text { iff for all } \pi \in \Pi^{\max }(s) \text { there exists a position } i \text { in } \pi \text { s.t. } \\
s \models E\left(\varphi_{1} U \varphi_{2}\right) & \\
& \text { iff exists } \pi \in \Pi^{\max }(s) \text { and there exists a position } i \text { in } \pi \text { s.t. } \\
& \pi_{i} \models \varphi_{2} \text { and for all } 1 \leq j<i \text { we have } \pi_{j} \models \varphi_{1}
\end{array}
$$

We use $\Phi_{C T L}$ to denote the set of all CTL formulae.

3 Atomic Propositions for Petri Net CTL

The satisfiability of CTL formulae in a Petri net is interpreted on the LTS generated by the net. We fix the set of atomic propositions $A P$ based on the informal semantics in the MCC Property Language, which includes arithmetic expressions and fireability of transitions. Let $N=(P, T, W, I)$ be a Petri net. An atomic proposition $a \in A P$ is defined as:
$a::=t \mid e_{1} \bowtie e_{2}$
$e::=c|p| e_{1} \oplus e_{2}$
where $t \in T, c \in \mathbb{N}^{0}, \bowtie \in\{<, \leq,=, \neq,>, \geq\}, p \in P$, and $\oplus \in\{+,-, *\}$. The semantics of φ is defined for a marking M as follows:

$$
\begin{aligned}
& M \models t \\
& M \models e_{1} \bowtie e_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { iff } t \in e n(M) \\
& \text { iff } \operatorname{eval}_{M}\left(e_{1}\right) \bowtie \operatorname{eval}_{M}\left(e_{2}\right)
\end{aligned}
$$

The semantics of an arithmetic expression in a marking M is given as follows:

```
\(\operatorname{eval}_{M}(c)=c\),
\(\operatorname{eval}_{M}(p)=M(p)\),
\(\operatorname{eval}_{M}\left(e_{1} \oplus e_{2}\right)=\operatorname{eval}_{M}\left(e_{1}\right) \oplus \operatorname{eval}_{M}\left(e_{2}\right)\).
```

We use $\Phi_{\text {Reach }} \subseteq \Phi_{C T L}$ to denote a subset of formulae called reachability formulae. Reachability formulae can be on the form $E F \varphi$ or $A G \varphi$, where φ is defined as follows:

$$
\begin{aligned}
& \varphi::=\text { true } \mid \text { false }|a| \text { deadlock }\left|e_{1} \bowtie e_{2}\right| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \neg \varphi\left|\varphi_{1} \Longrightarrow \varphi_{2}\right| \\
& \varphi_{1} \Longleftrightarrow \varphi_{2}
\end{aligned}
$$

A reachability formula $A G \varphi$ is equivalent to $\neg E F \neg \varphi$. Henceforth, we assume all $A G \varphi$ reachability formulae have been transformed to $E F$ formulae.

4 Integer Linear Program

For defining an integer linear program, we first need to define a linear equation. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of variables and \bar{x} a column vector over the variables X such that:

$$
\bar{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

A linear equation is given by $\bar{c} \bar{x} \bowtie k$, where $\bowtie \in\{=,<, \leq,>, \geq\}, k \in \mathbb{Z}$ is an integer, and \bar{c} is a row vector of integers such that:

$$
\bar{c}=\left[c_{1} c_{2} \cdots c_{n}\right] \quad \text { where } c_{i} \in \mathbb{Z} \text { for all } 1 \leq i \leq n .
$$

Definition 1 (Integer Linear Program). An integer linear program $L P=$ $\left\{\bar{c}_{1} \bar{x} \bowtie_{1} k_{1}, \bar{c}_{2} \bar{x} \bowtie_{2} k_{2}, \cdots, \bar{c}_{m} \bar{x} \bowtie_{m} k_{m}\right\}$ is a set of linear equations. A solution to LP is a mapping $u: X \rightarrow \mathbb{N}^{0}$ from variables to natural numbers and corresponding column vector $\bar{u}^{T}=\left[u\left(x_{1}\right) u\left(x_{2}\right) \cdots u\left(x_{n}\right)\right]$, such that for all $1 \leq i \leq m$ we have $\bar{c}_{i} \bar{u} \bowtie_{i} k_{i}$ is true. We use $\mathcal{E}_{\text {lin }}^{X}$ to denote the set of all linear programs over a set of variables X.

Let $N=(P, T, W, I)$ be a Petri net, $M_{0} \in \mathcal{M}(N)$ an initial marking on N, $M \in \mathcal{M}(N)$ a marking on N, and $X=\left\{x_{t} \mid t \in T\right\}$ a set of variables. From this we construct the following linear program over X :

$$
M_{0}(p)+\sum_{t \in T}(W(t, p)-W(p, t)) x_{t}=M(p) \quad \text { for all } p \in P .
$$

It is well-known that if $M \in \operatorname{reach}\left(M_{0}\right)$ then there exists a solution to the linear program. If the linear program is infeasible, then we can discern that $M \notin \operatorname{reach}\left(M_{0}\right)$.

5 Reductions of LTS

A reduction is a function from the set of states to the power set of actions, such that for each state the function returns the set of required actions.
Definition 2 (Reduction). Let $T=(\mathcal{S}, A, \rightarrow)$ be an LTS. A reduction of T is a function $S t: \mathcal{S} \rightarrow 2^{A}$.

A reduction defines a subset of the transition relation of an LTS, and we annotate the transition relation with a reduction to define the reduced state space.

Definition 3 (Reduced transition relation). Let $T=(\mathcal{S}, A, \rightarrow)$ be an LTS and St a reduction of T. A reduced transition relation is a relation $\underset{S t}{ } \subseteq \rightarrow$ such that $s \xrightarrow[\text { St }]{a} s^{\prime}$ iff $s \xrightarrow{a} s^{\prime}$ and $a \in S t(s)$.

Let $T=(\mathcal{S}, A, \rightarrow)$ be an LTS, $a \in \mathcal{S}$ a state, and $S t$ a reduction of T. The set $\overline{S t(s)}=A \backslash S t(s)$, is the set of all actions not in $S t(s)$.

For a sequences of actions, the following condition identifies required actions, that allow us to permute the sequence, such that the permuted sequence begins with the required action.
W For all $s \in \mathcal{S}$, all $a \in S t(s)$, and all $w \in \overline{S t(s)}^{*}$, if $s \xrightarrow{w a} s^{\prime}$ then $s \xrightarrow{a w} s^{\prime}$.
Reductions that satisfy \mathbf{W} are called (weak)semistubborn reductions, and for all $s \in \mathcal{S}$, we say that $S t(s)$ is the stubborn set of s, and that an action $a \in S t(s)$ is a stubborn action.
Lemma 1. Let $T=(\mathcal{S}, A, \rightarrow)$ be an LTS and $S t$ be a reduction on T satisfying \boldsymbol{W}. For all $s \in \mathcal{S}$, all $a \in S t(s)$, and all $w \in \overline{S t(s)}^{*}$, if $a \notin$ en (s) and $s \xrightarrow{w} s^{\prime}$ then $a \notin e n\left(s^{\prime}\right)$.

5.1 Reachability Preserving Stubborn Reduction

When performing reachability analysis, we are searching for states that satisfy a given property. In the context of stubborn reduction, we refer to these states as goal states.

Let $T=(\mathcal{S}, A, \rightarrow)$ be an LTS, $s_{0} \in \mathcal{S}$ an initial state, and $G \subseteq \mathcal{S}$ a set of goal states. For a reduction $S t$ to preserve paths to a goal state, the following condition needs to be satisfied:
\mathbf{R} For all $s \in \mathcal{S}$ if $s \notin G$ and $s \xrightarrow{w} s^{\prime}$ where $w \in \overline{S t(s)}^{*}$ then $s^{\prime} \notin G$.
Rule \mathbf{R} states that, when starting in a non-goal state, the execution of nonstubborn transitions cannot reach any goal state in G. It also ensures that at least one stubborn action has to be executed in order to reach a goal state.
Theorem 1 (Reachability preservation). Let $(\mathcal{S}, A, \rightarrow)$ be an LTS, $G \subseteq S$ a set of goal states, and $s_{0} \in \mathcal{S}$. Let $S t$ be a reduction satisfying $\overline{\boldsymbol{W}}$ and \boldsymbol{R}. If $s_{0} \rightarrow^{n} s$ where $s \in G$ then $s_{0} \overrightarrow{S t}^{m} s^{\prime}$ where $s^{\prime} \in G$ and $m \leq n$. If $s_{0}{\underset{S t}{\longrightarrow}}^{m} s$ where $s \in G$ then $s_{0} \rightarrow^{m} s$.

6 Reductions of Petri Net

Instead of states and actions of LTS, we now refer to markings and transitions of Petri nets. We define goal states as goal markings that satisfy a given reachability property. Let $E F \varphi \in \Phi_{\text {Reach }}$ be a reachability formula and $G_{\varphi}=\{M \in \mathcal{M}(N) \mid$ $M \models \varphi\}$ be the goal markings for φ, where N is a Petri net. The reduction procedure must identify transitions that are required to fire in order to reach the goal markings. All transitions that can alter the truth value of φ from false to true are interesting transitions. The interesting transitions of a marking M and formula φ, denoted $A_{M}(\varphi)$.

Assume $M \not \vDash \varphi$ and $t \in T$. Let $A_{M}(\varphi) \subseteq T$ such that if $M \xrightarrow{t} M^{\prime}$ and $M^{\prime} \models \varphi$ then $t \in A_{M}(\varphi)$. We define $A_{M}(\varphi)$ recursively on the syntactic category for reachability formulae. The interesting transitions for all Boolean formulae are shown in Table 1. The interesting transitions of a negation depend on what follows syntactically from the negation, and thus we describe this in a separate column. Table 1 does not describe $A_{M}(\neg \neg \varphi)$ because its set of interesting transitions is equivalent to that of $A_{M}(\varphi)$. We introduce the notation \bowtie that refers to the complement of of a comparison operator \bowtie. The complement operators are shown in Table 2.

We define the set of expressions that can be constructed with N as E_{N}, and two functions incr $_{M}: E_{N} \rightarrow 2^{T}$ and decr $_{M}: E_{N} \rightarrow 2^{T}$. These functions receive an expression e and return the set of transitions that, when fired, increase and decrease the evaluation of e, respectively. We present the interesting transitions for formulae of the form $e_{1} \bowtie e_{2}$ in Table 3. We recursively define incr $_{M}$ and $d e c r_{M}$ on the syntax of expressions in Table 4 .

Lemma 2. Let $N=(P, T, W, I)$ be a Petri net, $M \in \mathcal{M}(N)$ a marking, and $E F \varphi \in \Phi_{\text {Reach }}$ a reachability formula. If $M \not \vDash \varphi$ and $M \xrightarrow{t^{\prime}} M^{\prime}$ where $t^{\prime} \notin A_{M}(\varphi)$ then $M^{\prime} \not \models \varphi$.

Lemma 3. Let $N=(P, T, W, I)$ be a Petri net, $M \in \mathcal{M}(N)$ a marking, φ a formula, and $w \in{\overline{A_{M}(\varphi)}}^{*}$ a sequence of non-interesting transitions. If $M \notin G_{\varphi}$ and $M \xrightarrow{w} M^{\prime}$ then $M^{\prime} \notin G_{\varphi}$.

We can easily verify the \mathbf{R} property by including all interesting transitions in the stubborn set. Ensuring the \mathbf{W} property is done by examining the structure of the Petri net and the marking in question.

Proposition 1 (Reachability preserving closure for Petri nets). Let $N=$ (P, T, W, I) be a Petri net with inhibitor arcs, $E F \varphi \in \Phi_{\text {Reach }}$ a reachability formula, and St a reduction such that for all $M \in \mathcal{M}(N)$:
$1 A_{M}(\varphi) \subseteq S t(M)$.
2 For all $t \in S t(M)$, if $t \notin e n(M)$ then

- exists p that disables t in M and $\bullet p \subseteq S t(M)$, or
- exists p that inhibits t in M and $p \bullet S t(M)$.

Formula φ	$A_{M}(\varphi)$	$A_{M}(\neg \varphi)$
true	\emptyset	\emptyset
false	\emptyset	\emptyset
t	$\bullet p$ for some $p \in \bullet t$ where $M(p)<W(p, t)$ or	$(\bullet \bullet) \bullet \cup \bullet(\circ t)$
deadlock	$p \bullet$ for some $p \in$ ot where $M(p) \geq I(p, t)$	
$e_{1} \bowtie e_{2}$	$\bullet \bullet t) \bullet \cup \bullet(\circ t)$ for some $t \in$ en (M)	\emptyset
$\varphi_{1} \wedge \varphi_{2}$	See Table 3	$A_{M}\left(e_{1} \bowtie e_{2}\right)$
$\varphi_{1} \vee \varphi_{2}$	$A_{M}\left(\varphi_{1}\right) \cup A_{M}\left(\varphi_{2}\right)$	$A_{M}\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right)$
$\varphi_{1} \Longrightarrow \varphi_{2}$	$A_{M}\left(\neg \varphi_{1} \vee \varphi_{2}\right)$	$A_{M}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$
$\varphi_{1} \Longleftrightarrow \varphi_{2}$	$A_{M}\left(\varphi_{1} \Longrightarrow \varphi_{2} \wedge \varphi_{2} \Longrightarrow \varphi_{1}\right)$	$A_{M}\left(\varphi_{1} \wedge \neg \varphi_{2}\right)$

Table 1: Interesting transitions of φ.

Operator \bowtie	$\bar{\bowtie}$
$<$	\geq
\leq	$>$
$=$	\neq
\neq	$=$
$>$	$<$
\geq	$<$

Table 2: Complement of comparison operator \bowtie.

Formula $e_{1} \bowtie e_{2}$	$A_{M}\left(e_{1} \bowtie e_{2}\right)$
$e_{1}<e_{2}$	$\operatorname{decr}_{M}\left(e_{1}\right) \cup \operatorname{incr}_{M}\left(e_{2}\right)$
$e_{1} \leq e_{2}$	$\operatorname{decr}_{M}\left(e_{1}\right) \cup \operatorname{incr}_{M}\left(e_{2}\right)$
$e_{1}>e_{2}$	$\operatorname{incr}_{M}\left(e_{1}\right) \cup \operatorname{decr}_{M}\left(e_{2}\right)$
$e_{1} \geq e_{2}$	$\operatorname{incr}_{M}\left(e_{1}\right) \cup \operatorname{decr}_{M}\left(e_{2}\right)$
$e_{1}=e_{2}$	if $\operatorname{eval}_{M}\left(e_{1}\right)>\operatorname{eval}_{M}\left(e_{2}\right)$ then
	$\operatorname{decr}_{M}\left(e_{1}\right) \cup \operatorname{incr}_{M}\left(e_{2}\right)$
	else if $\operatorname{eval}_{M}\left(e_{1}\right)<\operatorname{eval}_{M}\left(e_{2}\right)$ then
	$\operatorname{incr}_{M}\left(e_{1}\right) \cup \operatorname{decr}_{M}\left(e_{2}\right)$
$e_{1} \neq e_{2}$	$\operatorname{incr}_{M}\left(e_{1}\right) \cup \operatorname{decr}_{M}\left(e_{1}\right) \cup$ incr $_{M}\left(e_{2}\right) \cup \operatorname{decr}_{M}\left(e_{2}\right)$
	able 3: Interesting transitions of $e_{1} \bowtie e_{2}$.

Expression e	$\operatorname{incr}_{M}(e)$	$\operatorname{decr}_{M}(e)$
c	\emptyset	\emptyset
p	$\bullet p$	$p \bullet$
$e_{1}+e_{2}$	$\operatorname{incr}_{M}\left(e_{1}\right) \cup \operatorname{incr}_{M}\left(e_{2}\right)$	$\operatorname{decr}_{M}\left(e_{1}\right) \cup \operatorname{decr}_{M}\left(e_{2}\right)$
$e_{1}-e_{2}$	$\operatorname{incr}_{M}\left(e_{1}\right) \cup \operatorname{decr}_{M}\left(e_{2}\right)$	$\operatorname{decr}_{M}\left(e_{1}\right) \cup \operatorname{incr}_{M}\left(e_{2}\right)$
$e_{1} * e_{2}$	$\operatorname{incr}_{M}\left(e_{1}\right) \cup \operatorname{decr}_{M}\left(e_{1}\right) \cup$	$\operatorname{incr}_{M}\left(e_{1}\right) \cup \operatorname{decr}_{M}\left(e_{1}\right) \cup$
	$\operatorname{incr}_{M}\left(e_{2}\right) \cup \operatorname{decr}_{M}\left(e_{2}\right)$	$\operatorname{incr}_{M}\left(e_{2}\right) \cup \operatorname{decr}_{M}\left(e_{2}\right)$

Table 4: Increasing and decreasing transitions of e.

```
Algorithm 1: Construction of a reachability preserving stubborn set
    input \(\quad: N=(P, T, W, I), M \in \mathcal{M}(N), \varphi\)
    output : \(S t(M)\) where \(S t\) satisfies \(\mathbf{W}\) and \(\mathbf{R}\)
    \(X:=\emptyset\); unprocessed \(:=A_{M}(\varphi)\);
    while unprocessed \(\neq \emptyset\) do
        pick any \(t \in\) unprocessed;
        if \(t \notin e n(M)\) then
            if Exists \(p \in \bullet\) t s.t. \(M(p)<W(p, t)\) then
                pick any \(p \in \bullet\) s.t. \(M(p)<W(p, t)\);
                unprocessed \(:=\) unprocessed \(\cup(\bullet p \backslash X)\);
            else
                pick any \(p \in \circ\) t s.t. \(M(p) \geq I(p, t)\);
                unprocessed \(:=\) unprocessed \(\cup(p \bullet \backslash X)\);
        else
            unprocessed \(:=\) unprocessed \(\cup((\bullet t) \bullet \backslash X) \cup((t \bullet) \circ \backslash X)\);
        unprocessed \(:=\) unprocessed \(\backslash\{t\}\);
        \(X:=X \cup\{t\} ;\)
    return \(X\);
```

3 For all $t \in S t(M)$, if $t \in e n(M)$ then $-(\bullet t) \bullet S t(M)$, and $-(t \bullet) \circ \subseteq S t(M)$.
then St satisfies \boldsymbol{W} and \boldsymbol{R}.
In Algorithm 1 we illustrate pseudocode on how to construct a reachability preserving stubborn set that satisfies \mathbf{W} and \mathbf{R} for a given marking M and reachability formula $E F \varphi \in \Phi_{\text {Reach }}$.

Lemma 4. Algorithm 1 terminates.
Lemma 5. When Algorithm 1 terminates, the reduction St computed by the algorithm satisfies \boldsymbol{W} and \boldsymbol{R}.

7 The Siphon-Trap Property

It is possible to check for deadlock freedom in Petri nets by examining structural entities within a Petri net called siphons and traps. For this we only consider 1-weighted Petri nets without inhibitor arcs. A Petri net $N=(P, T, W, I)$ is 1-weighted if $W:(P \times T) \cup(T \times P) \rightarrow\{0,1\}$, i.e. every regular arc have a weight of 0 or 1 . N have no inhibitor arcs if for all $p \in P$ and $t \in T$ we have $I(p, t)=\infty$, i.e. the inhibitor arcs have no effect on the enabledness of the transitions.

Definition 4 (Siphon). Let $N=(P, T, W, I)$ be a 1-weighted Petri net with no inhibitor arcs and M_{0} an initial marking on N. A siphon D of N, is a nonempty set of places $D \subseteq P$, where $\bullet D \subseteq D \bullet$. We say that D is marked if there exists a place $p \in D$ with $M_{0}(p)>0$.

Definition 5 (Trap). Let $N=(P, T, W, I)$ be a 1-weighted Petri net with no inhibitor arcs and M_{0} an initial marking on N. A trap Q of N, is a non-empty set of places $Q \subseteq P$, where $Q \bullet \subseteq \bullet$. We say that Q is marked if there exists a place $p \in Q$ with $M_{0}(p)>0$.

Definition 6 (Siphon-Trap Property). Let $N=(P, T, W, I)$ be a 1-weighted Petri net with no inhibitor arcs and M_{0} an initial marking on N. We say that N has the siphon-trap property if for every siphon $D \subseteq P$ there exists a trap $Q \subseteq D$ s.t. Q is marked.
Proposition 2 (Commoner-Hack). Let N be a 1-weighted Petri net with no inhibitor arcs and M_{0} an initial marking on N. If N has the siphon-trap property then no deadlock is reachable from M_{0}.

7.1 Siphon-Trap Property Using Integer Linear Programming

Let $N=(P, T, W, I)$ be a 1-weighted Petri net with no inhibitor arcs and M_{0} an initial marking on N. We know that N has the siphon-trap property if for every siphon $D \subseteq P$ there exists a trap $Q \subseteq D$ s.t. Q is marked. Let D be a siphon of N. The unique maximal trap of D is the union of all traps within D, written $Q_{\max }$ where traps are closed under union. We can convert the problem into an appropriate form:
for all siphons $D \subseteq P$ exists a trap $Q \subseteq D$ s.t. Q is marked \Longleftrightarrow $\neg($ exists a siphon $D \subseteq P$ s.t. for all traps $Q \subseteq D$ s.t. Q is not marked) \Longleftrightarrow $\neg\left(\right.$ exists a siphon D s.t. the maximal trap $Q_{\max }$ of D is not marked)

We want to prove that there exists a siphon whose maximal trap is not marked in order to disprove the siphon-trap property. If we cannot prove this, then the Petri net must have the siphon-trap property.

Let $N=(P, T, W, I)$ be a 1-weighted Petri net with no inhibitor arcs, M_{0} an initial marking on N, and $d \in \mathbb{N}^{0}$ a natural number indicating the depth of the procedure. We have a sequence of sets $X_{0}, X_{1}, \ldots, X_{d}$ such that:

$$
P \supseteq X_{0} \supseteq X_{1} \supseteq \ldots \supseteq X_{d}
$$

The set X_{0} represents the initially selected siphon and each subsequent set represents a candidate maximal trap for the siphon, moving towards either the maximal trap or the empty set. For each place p we have $d+1$ decision variables such that for all $0 \leq i \leq d$ we have $p^{i} \in\{0,1\}$, and $p^{i}=1$ if and only if $p \in X_{i}$.

Additionally, we introduce $d+1$ decision variables for each transition t, written as post t_{t}^{d}, such that for all $0 \leq i \leq d$ we have $\operatorname{post}_{t}^{i} \in\{0,1\}$, and post ${ }_{t}^{i}=1$ if and only if there exists a place $p \in t \bullet$ such that $p^{i}=1$. Equation 1 ensures if $p o s t_{t}^{i}=1$ then there exists a place $p \in t \bullet$ such that $p^{i}=1$, and Equation 2 ensures if there exists a place $p \in t \bullet$ such that $p^{i}=1$ then post $_{t}^{i}=1$.

$$
\begin{array}{rr}
- \text { post }_{t}^{i}+\sum_{p \in t \bullet} p^{i} \geq 0 & \forall i \in\{0, \ldots, d\}, \forall t \in T \\
p^{i}-\text { post }_{t}^{i} \leq 0 & \forall i \in\{0, \ldots, d\}, \forall t \in T, \forall p \in t \bullet \tag{2}
\end{array}
$$

We need to specify integer linear equations such that there exists a solution if the following conditions are true:
a $\bullet X_{0} \subseteq X_{0} \bullet, X_{0}$ is a siphon of N.
b $X_{0} \neq \emptyset$, the initial siphon is not empty.
c For all $0 \leq i \leq d$ we have $X_{i+1} \subseteq X_{i}$, we never add places as we iterate.
d For all $t \in T$ we have $p \in \bullet \bullet$ and $p \in X_{i+1}$ if and only if there exists $p^{\prime} \in t \bullet$ s.t. $p^{\prime} \in X_{i}$.
e For all $p \in X_{d}$ we have $M_{0}(p)=0$, or X_{d} is not a trap.
The reason we need the second part of condition is because after d iterations we are not guaranteed to converge on the maximal trap. In order to guarantee convergence, we need the depth to be equal to the number of places, i.e. $d=|P|$.

Equation 3 ensures condition a

$$
\begin{equation*}
-p^{0}+\sum_{q \in \bullet} q^{0} \geq 0 \quad \forall t \in T, \forall p \in t \bullet \tag{3}
\end{equation*}
$$

If p is in the initial siphon, i.e. $p^{0}=1$, and it is given a token when t is fired, then we must have at least one place $q^{0}=1$ in the siphon where a token is removed when t is fired, otherwise the equation is not satisfied.

Equation 4 ensures condition b

$$
\begin{equation*}
\sum_{p \in P} p^{0} \geq 1 \tag{4}
\end{equation*}
$$

At least one place must be assigned a value of 1 to ensure the initial siphon X_{0} is non-empty, otherwise the equation is not satisfied.

Equation 5 ensures condition C.

$$
\begin{equation*}
-p^{i+1}+p^{i} \geq 0 \quad \forall i \in\{0, \ldots, d\}, \forall p \in P \tag{5}
\end{equation*}
$$

If $p^{i+1}=1$ then we must also have that $p^{i}=1$, otherwise the equation is not satisfied. No places can be added in later iterations.

Equation 6ensures the left-to-right implication of condition d.

$$
\begin{equation*}
-p^{i+1}+p^{2} s t_{t}^{i} \geq 0 \quad \forall i \in\{0, \ldots, d\}, \forall p \in P, \forall t \in p \bullet \tag{6}
\end{equation*}
$$

Equation 7 ensures the right-to-left implication of condition d.

$$
\begin{equation*}
-p^{i+1}+p^{i}+\sum_{t \in p \bullet} p o s t_{t}^{i} \leq|p \bullet| \quad \forall i \in\{0, \ldots, d\}, \forall p \in P \tag{7}
\end{equation*}
$$

We iteratively remove places from the identified siphon until we are either left with the empty set or the maximal trap, iterating d times. A place $p \in X_{i}$ is removed from the siphon in the i th step by assigning its decision variable p^{i+1} to 0 in step $i+1$, where $p^{i}=1$. If place p is not part of the siphon in step i, i.e. $p \notin X_{i}$ and $p^{i}=0$, then it stays outside of the siphon in step $i+1$ and $p^{i+1}=0$,
as we do not add any places. A place p is removed in the i th step if and only if there exists a transition $t \in p \bullet$ s.t. $t \bullet \nsubseteq X_{i}$.

Once the removal procedure reaches depth d, we are left with one of three cases: Either X_{d} is the maximal trap, not a trap at all, or the empty set. In either case, we need to check if the set is unmarked. If it is unmarked then X_{0} is a siphon with no marked trap, and therefore disproves the siphon-trap property. Let $z \in \mathbb{N}^{0}$ be a decision variable. Equation 8 ensures the first part of conditione. Equation 9 ensures the second part of condition e

$$
\begin{array}{rlrl}
p^{d+1}-z & \leq 0 & \forall p \in P \text { where } M_{0}(p)>0 \\
\sum_{p \in P} p^{d+1}+z & =\sum_{p \in P} p^{d} & & \tag{9}
\end{array}
$$

By the construction and reasoning from the integer linear program specification above, we conclude with the following theorem.

Theorem 2. If the integer linear program specified in equations 1 through 9 is infeasible then N has no deadlock.

8 Formula Simplification

To perform formula simplification, we need a way to identify contradictions and impossibilities in the formula.

8.1 Simplification Procedure

We define a function, that given a formula, produces a simplified formula and a set of integer linear programs. We say that such a function is a simplification function.

Definition 7 (Simplification). Let $N=(P, T, W, I)$ be a Petri net, M_{0} an initial marking on N, and $X=\left\{x_{t} \mid t \in T\right\}$ a set of variables. A simplification for marking M_{0} is a function simplify : $\Phi_{C T L} \rightarrow \Phi_{C T L} \times 2^{\mathcal{E}_{\text {lin }}^{X}}$.

φ	Rewritten φ
t	$p_{1} \geq W\left(p_{1}, t\right) \wedge \cdots \wedge p_{n} \geq W\left(p_{n}, t\right) \wedge$
	$p_{1}<I\left(p_{1}, t\right) \wedge \cdots \wedge p_{n}<I\left(p_{n}, t\right)$ where $n=\|P\|$
$e_{1} \neq e_{2}$	$e_{1}>e_{2} \vee e_{1}<e_{2}$
$e_{1}=e_{2}$	$e_{1} \leq e_{2} \wedge e_{1} \geq e_{2}$
$\neg\left(\varphi_{1} \wedge \varphi_{2}\right)$	$\neg \varphi_{1} \vee \neg \varphi_{2}$
$\neg\left(\varphi_{1} \vee \varphi_{2}\right)$	$\neg \varphi_{1} \wedge \neg \varphi_{2}$
$\varphi_{1} \Longrightarrow \varphi_{2}$	$\neg \varphi_{1} \vee \varphi_{2}$
$\varphi_{1} \Longleftrightarrow \varphi_{2}$	$\left(\varphi_{1} \wedge \varphi_{2}\right) \vee\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$
$\neg A X \varphi$	$E X \neg \varphi$
$\neg E X \varphi$	$A X \neg \varphi$
$\neg A F \varphi$	$E G \neg \varphi$
$\neg E F \varphi$	$A G \neg \varphi$
$\neg A G \varphi$	$E F \neg \varphi$
$\neg A G \varphi$	$A F \neg \varphi$

Table 5: Rewriting rules for φ.

φ	$\operatorname{simplify}\left(M_{0}, \varphi\right)$
true	$($ true,$\{\{0 \leq 1\}\})$
false	$($ false,$\emptyset)$
deadlock	$($ deadlock,$\{\{0 \leq 1\}\})$
Table 6: Trivial cases of simplify.	

The function merge : $2^{\mathcal{E}_{\text {lin }}^{X}} \times 2^{\mathcal{E}_{\text {lin }}^{X}} \rightarrow 2^{\mathcal{E}_{\text {lin }}^{X}}$ combines two $L P S$ and is defined as merge $\left(L P S_{1}, L P S_{2}\right)=\left\{L P_{1} \cup L P_{2} \mid L P_{1} \in L P S_{1}\right.$ and $\left.L P_{2} \in L P S_{2}\right\}$.

```
Algorithm 2: Simplify \(\varphi_{1} \wedge \varphi_{2}\)
    Function simplify \(\left(\varphi_{1} \wedge \varphi_{2}\right)\)
        \(\left(\varphi_{1}^{\prime}, L P S_{1}\right) \leftarrow \operatorname{simplify}\left(\varphi_{1}\right)\)
        if \(\varphi_{1}^{\prime}=\) false then
            return (false, \(\emptyset\) )
        \(\left(\varphi_{2}^{\prime}, L P S_{2}\right) \leftarrow \operatorname{simplify}\left(\varphi_{2}\right)\)
        if \(\varphi_{2}^{\prime}=\) false then
            return (false, Ø)
        else if \(\varphi_{2}^{\prime}=\) true then
            return \(\left(\varphi_{1}^{\prime}, L P S_{1}\right)\)
        else if \(\varphi_{1}^{\prime}=\) true then
            return \(\left(\varphi_{2}^{\prime}, L P S_{2}\right)\)
        \(L P S \leftarrow \operatorname{merge}\left(L P S_{1}, L P S_{2}\right)\)
        if \(\{L P \cup B A S E \mid L P \in L P S\}\) has no solution then
            return (false, Ø)
        else
            return \(\left(\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}, L P S\right)\)
```

$B A S E$ is an integer linear program of a Petri net $N=(P, T, W, I)$ and initial marking M_{0} on N, that consists of the following set of linear equations:

$$
M_{0}(p)+\sum_{t \in T}(W(t, p)-W(p, t)) x_{t} \geq 0 \quad \text { for all } p \in P .
$$

Which ensures that no solution to the linear program, can leave a place with a negative amount of tokens.

```
Algorithm 3: Simplify \(\varphi_{1} \vee \varphi_{2}\)
    Function \(\operatorname{simplify}\left(\varphi_{1} \vee \varphi_{2}\right)\)
        \(\left(\varphi_{1}^{\prime}, L P S_{1}\right) \leftarrow \operatorname{simplify}\left(\varphi_{1}\right)\)
        if \(\varphi_{1}^{\prime}=\) true then
            return (true, \(\{\{0 \leq 1\}\}\) )
        \(\left(\varphi_{2}^{\prime}, L P S_{2}\right) \leftarrow \operatorname{simplify}\left(\varphi_{2}\right)\)
        if \(\varphi_{2}^{\prime}=\) true then
            return (true, \(\{\{0 \leq 1\}\}\) )
        if \(\varphi_{1}^{\prime}=\) false then
            return \(\left(\varphi_{2}^{\prime}, L P S_{2}\right)\)
        if \(\varphi_{2}^{\prime}=\) false then
            return \(\left(\varphi_{1}^{\prime}, L P S_{1}\right)\)
        \(\left(\varphi_{1}^{\prime \prime}, L P S_{1}^{\prime}\right) \leftarrow \operatorname{simplify}\left(\neg \varphi_{1}\right)\)
        \(\left(\varphi_{2}^{\prime \prime}, L P S_{2}^{\prime}\right) \leftarrow \operatorname{simplify}\left(\neg \varphi_{2}\right)\)
        \(L P S \leftarrow \operatorname{merge}\left(L P S_{1}^{\prime}, L P S_{2}^{\prime}\right)\)
        if \(\{L P \cup B A S E \mid L P \in L P S\}\) has no solution then
            return (true, \(\{\{0 \leq 1\}\}\) )
        return \(\left(\varphi_{1}^{\prime} \vee \varphi_{2}^{\prime}, L P S_{1} \cup L P S_{2}\right)\)
```

```
Algorithm 4: Simplify \(\neg \varphi\)
    Function simplify \((\neg \varphi)\)
        \(\left(\varphi^{\prime}, L P S\right) \leftarrow \operatorname{simplify}(\varphi)\)
        if \(\varphi^{\prime}=\) true then
            return (false, \(\emptyset\) )
        else if \(\varphi_{2}^{\prime}=\) false then
            return (true, \(\{\{0 \leq 1\}\}\) )
        else
            return \(\left(\neg \varphi^{\prime},\{\{0 \leq 1\}\}\right)\)
```

For the comparison operator $e_{1} \bowtie e_{2}$ we introduce the function const which takes as input an expression e and returns one side of a linear equation.

$$
\begin{array}{ll}
\operatorname{const}(c) & =c \\
\operatorname{const}(p) & =M_{0}(p)+\sum_{t \in T}(W(t, p)-W(p, t)) x_{t} \\
\operatorname{const}\left(e_{1}+e_{2}\right) & =\operatorname{const}\left(e_{1}\right)+\operatorname{const}\left(e_{2}\right) \\
\operatorname{const}\left(e_{1}-e_{2}\right) & =\operatorname{const}\left(e_{1}\right)-\operatorname{const}\left(e_{2}\right) \\
\operatorname{const}\left(e_{1} \cdot e_{2}\right) & =\operatorname{const}\left(e_{1}\right) \cdot \operatorname{const}\left(e_{2}\right)
\end{array}
$$

```
Algorithm 5: Simplify \(e_{1} \bowtie e_{2}\)
    Function simplify ( \(e_{1} \bowtie e_{2}\) )
        if \(e_{1}\) is not linear or \(e_{2}\) is not linear then
            return \(\left(e_{1} \bowtie e_{2},\{\{0 \leq 1\}\}\right)\)
        \(L P S_{1} \leftarrow\left\{\left\{\operatorname{const}\left(e_{1}\right) \bowtie \operatorname{const}\left(e_{2}\right)\right\}\right\}\)
        \(L P S_{2} \leftarrow\left\{\left\{\operatorname{const}\left(e_{1}\right) \bowtie \operatorname{const}\left(e_{2}\right)\right\}\right\}\)
        if \(\left\{L P \cup B A S E \mid L P \in L P S_{1}\right\}\) have no solution then
            return (false, \(\emptyset\) )
        else if \(\left\{L P \cup B A S E \mid L P \in L P S_{2}\right\}\) have no solution then
            return (true, \(\{\{0 \leq 1\}\}\) )
        else
            return \(\left(e_{1} \bowtie e_{2}, L P S_{1}\right)\)
```

```
Algorithm 6: Simplify \(A X \varphi\)
    Function simplify \((A X \varphi)\)
        \(\left(\varphi^{\prime}, L P S\right) \leftarrow \operatorname{simplify}(\varphi)\)
        if \(\varphi^{\prime}=\) true then
            return (true, \(\{\{0 \leq 1\}\}\) )
        else if \(\varphi^{\prime}=\) false then
            return (deadlock, \(\{\{0 \leq 1\}\}\) )
        else
            return \(\left(A X \varphi^{\prime},\{\{0 \leq 1\}\}\right)\)
```

Lemma 6 (Formula Simplification Correctness). Let $N=(P, T, W, I)$ be a Petri net, M_{0} an initial marking on N, and $\varphi \in \Phi_{C T L}$ a CTL formula. If simplify $(\varphi)=\left(\varphi^{\prime}, L P S\right)$ then for all $M \in \mathcal{M}(N)$ such that $M_{0} \xrightarrow{w} M$ we have:

1. $M \models \varphi$ iff $M \models \varphi^{\prime}$, and
2. if $M \models \varphi$ then there exists $L P \in L P S$ such that $\wp(w)$ is a solution to $L P$.
```
Algorithm 7: Simplify \(E X \varphi\)
    Function simplify (EX \(\varphi\) )
        \(\left(\varphi^{\prime}, L P S\right) \leftarrow \operatorname{simplify}(\varphi)\)
        if \(\varphi^{\prime}=\) true then
            return ( \(\neg\) deadlock, \(\{\{0 \leq 1\}\}\) )
        else if \(\varphi^{\prime}=\) false then
            return (false, \(\emptyset\) )
        else
            return \(\left(E X \varphi^{\prime},\{\{0 \leq 1\}\}\right)\)
```

```
Algorithm 8: Simplify \(Q F \varphi\) where \(Q \in\{A, E\}\)
    Function simplify (QF \()\)
        \(\left(\varphi^{\prime}, L P S\right) \leftarrow \operatorname{simplify}(\varphi)\)
        if \(\varphi^{\prime}=\) true then
            return (true, \(\{\{0 \leq 1\}\}\) )
        else if \(\varphi^{\prime}=\) false then
            return (false, \(\emptyset)\)
        else
            return \(\left(Q F \varphi^{\prime},\{\{0 \leq 1\}\}\right)\)
```

```
Algorithm 9: Simplify \(Q G \varphi\) where \(Q \in\{A, E\}\)
    Function simplify ( \(Q G \varphi\) )
        \(\left(\varphi^{\prime}, L P S\right) \leftarrow \operatorname{simplify}(\varphi)\)
        if \(\varphi^{\prime}=\) true then
            return (true, \(\{\{0 \leq 1\}\}\) )
        else if \(\varphi^{\prime}=\) false then
            return (false, \(\emptyset\) )
        else
            return \(\left(Q G \varphi^{\prime},\{\{0 \leq 1\}\}\right)\)
```

```
Algorithm 10: Simplify \(Q\left(\varphi_{1} U \varphi_{2}\right)\) where \(Q \in\{A, E\}\)
    Function simplify \(\left(Q\left(\varphi_{1} U \varphi_{2}\right)\right)\)
    \(\left(\varphi_{2}^{\prime}, L P S_{2}\right) \leftarrow \operatorname{simplify}\left(\varphi_{2}\right)\)
    if \(\varphi_{2}^{\prime}=\) true then
        return (true, \(\{\{0 \leq 1\}\}\) )
    else if \(\varphi_{2}^{\prime}=\) false then
            return (false, \(\emptyset\) )
        \(\left(\varphi_{1}^{\prime}, L P S_{1}\right) \leftarrow \operatorname{simplify}\left(\varphi_{1}\right)\)
        if \(\varphi_{1}^{\prime}=\) true then
            return \(\left(Q F \varphi_{2}^{\prime},\{\{0 \leq 1\}\}\right)\)
    else if \(\varphi_{1}^{\prime}=\) false then
            return \(\left(\varphi_{2}^{\prime}, L P S_{2}\right)\)
        else
            return \(\left(Q\left(\varphi_{1}^{\prime} U \varphi_{2}^{\prime}\right),\{\{0 \leq 1\}\}\right)\)
```

