Improved Reduction Rules, Implemented in Peter's Engine

Peter G. Jensen and Jiří Srba

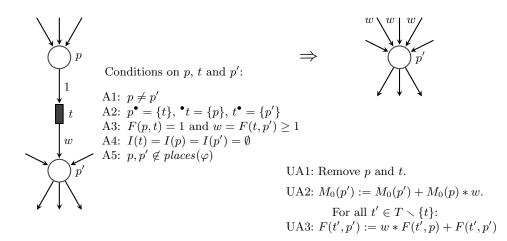
Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark

The rules are presented in Figures 1 and 2 and they are relative to a given initial marking M_0 and a cardinality query φ , where $places(\varphi)$ is the set of all places that occur in the query φ .

Theorem 1. Let (N, M_0) be a marked Petri net and let φ be a cardinality query. Let N' be the net N after the application of some reduction rules from Figures 1 and 2. Then $(N, M_0) \models EF \varphi$ if and only if $(N', M_0) \models EF \varphi$.

Theorem 2. Let (N, M_0) be a marked Petri net. Let N' be the net N after the application of some reduction rules from Figures 1 and 2 for a query $\varphi = 2 < 1$. Then (N, M_0) has a deadlock if and only if (N', M_0) has a deadlock.

For the inhibitor-arc, we use $I(p,t) \in \mathbb{N} \cup \{0\}$. As a shorthand we write $I(p) = \{t \mid t \in T \text{ and } I(p,t) \neq 0\}$ (and $I(t) = \{p \mid p \in P \text{ and } I(p,t) \neq 0\}$) to denote the set of transitions (or places) which are connected via inhibitor-arcs.



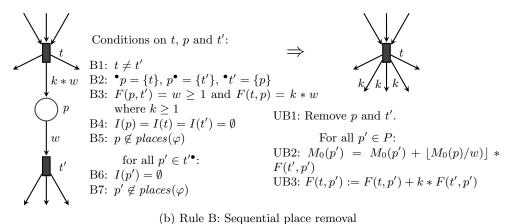


Fig. 1: Sequential rules for a cardinality formula φ and initial marking M_0

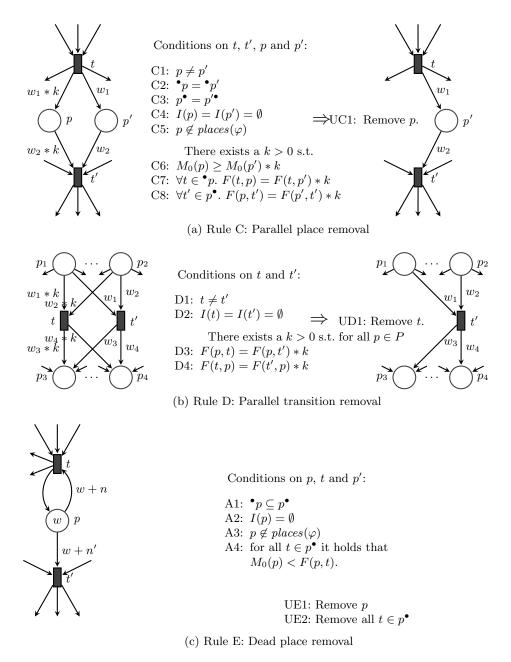


Fig. 2: Parallel rules for a cardinality formula φ and initial marking M_0