Improved Reduction Rules, Implemented in Peter's Engine

Peter G. Jensen and Jiří Srba

Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark

The rules are presented in Figures 1 and 2 and they are relative to a given initial marking M_{0} and a cardinality query φ, where $\operatorname{places}(\varphi)$ is the set of all places that occur in the query φ.

Theorem 1. Let $\left(N, M_{0}\right)$ be a marked Petri net and let φ be a cardinality query. Let N^{\prime} be the net N after the application of some reduction rules from Figures 1 and 2. Then $\left(N, M_{0}\right) \models E F \varphi$ if and only if $\left(N^{\prime}, M_{0}\right) \models E F \varphi$.

Theorem 2. Let $\left(N, M_{0}\right)$ be a marked Petri net. Let N^{\prime} be the net N after the application of some reduction rules from Figures 1 and 2 for a query $\varphi=2<1$. Then $\left(N, M_{0}\right)$ has a deadlock if and only if $\left(N^{\prime}, M_{0}\right)$ has a deadlock.

For the inhibitor-arc, we use $I(p, t) \in \mathbb{N} \cup\{0\}$. As a shorthand we write $I(p)=\{t \mid t \in T$ and $I(p, t) \neq 0\}$ (and $I(t)=\{p \mid p \in P$ and $I(p, t) \neq 0\})$ to denote the set of transitions (or places) which are connected via inhibitor-arcs.

Conditions on p, t and p^{\prime} :

$$
\begin{aligned}
& \text { A1: } p \subseteq p^{\bullet} \\
& \text { A2: } I(p)=\emptyset \\
& \text { A3: } p \notin \text { places }(\varphi) \\
& \text { A4: for all } t \in p^{\bullet} \text { it holds that } \\
& \\
& M_{0}(p)<F(p, t) .
\end{aligned}
$$

UE1: Remove p
UE2: Remove all $t \in p^{\bullet}$
(c) Rule E: Dead place removal

Fig. 2: Parallel rules for a cardinality formula φ and initial marking M_{0}

