/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */ /* * Thread management for memcached. */ #include "memcached.h" #include #include #include #include #include #include #include #ifdef __sun #include #endif #define ITEMS_PER_ALLOC 64 /* An item in the connection queue. */ typedef struct conn_queue_item CQ_ITEM; struct conn_queue_item { int sfd; enum conn_states init_state; int event_flags; int read_buffer_size; enum network_transport transport; CQ_ITEM *next; }; /* A connection queue. */ typedef struct conn_queue CQ; struct conn_queue { CQ_ITEM *head; CQ_ITEM *tail; pthread_mutex_t lock; pthread_cond_t cond; }; /* Lock for cache operations (item_*, assoc_*) */ pthread_mutex_t cache_lock; /* Connection lock around accepting new connections */ pthread_mutex_t conn_lock = PTHREAD_MUTEX_INITIALIZER; #if !defined(HAVE_GCC_ATOMICS) && !defined(__sun) pthread_mutex_t atomics_mutex = PTHREAD_MUTEX_INITIALIZER; #endif /* Lock for global stats */ static pthread_mutex_t stats_lock; /* Free list of CQ_ITEM structs */ static CQ_ITEM *cqi_freelist; static pthread_mutex_t cqi_freelist_lock; static pthread_mutex_t *item_locks; /* size of the item lock hash table */ static uint32_t item_lock_count; /* size - 1 for lookup masking */ static uint32_t item_lock_mask; static LIBEVENT_DISPATCHER_THREAD dispatcher_thread; /* * Each libevent instance has a wakeup pipe, which other threads * can use to signal that they've put a new connection on its queue. */ static LIBEVENT_THREAD *threads; /* * Number of worker threads that have finished setting themselves up. */ static int init_count = 0; static pthread_mutex_t init_lock; static pthread_cond_t init_cond; static void thread_libevent_process(int fd, short which, void *arg); unsigned short refcount_incr(unsigned short *refcount) { #ifdef HAVE_GCC_ATOMICS return __sync_add_and_fetch(refcount, 1); #elif defined(__sun) return atomic_inc_ushort_nv(refcount); #else unsigned short res; mutex_lock(&atomics_mutex); (*refcount)++; res = *refcount; mutex_unlock(&atomics_mutex); return res; #endif } unsigned short refcount_decr(unsigned short *refcount) { #ifdef HAVE_GCC_ATOMICS return __sync_sub_and_fetch(refcount, 1); #elif defined(__sun) return atomic_dec_ushort_nv(refcount); #else unsigned short res; mutex_lock(&atomics_mutex); (*refcount)--; res = *refcount; mutex_unlock(&atomics_mutex); return res; #endif } void item_lock(uint32_t hv) { mutex_lock(&item_locks[hv & item_lock_mask]); } void item_unlock(uint32_t hv) { mutex_unlock(&item_locks[hv & item_lock_mask]); } /* * Initializes a connection queue. */ static void cq_init(CQ *cq) { pthread_mutex_init(&cq->lock, NULL); pthread_cond_init(&cq->cond, NULL); cq->head = NULL; cq->tail = NULL; } /* * Looks for an item on a connection queue, but doesn't block if there isn't * one. * Returns the item, or NULL if no item is available */ static CQ_ITEM *cq_pop(CQ *cq) { CQ_ITEM *item; pthread_mutex_lock(&cq->lock); item = cq->head; if (NULL != item) { cq->head = item->next; if (NULL == cq->head) cq->tail = NULL; } pthread_mutex_unlock(&cq->lock); return item; } /* * Adds an item to a connection queue. */ static void cq_push(CQ *cq, CQ_ITEM *item) { item->next = NULL; pthread_mutex_lock(&cq->lock); if (NULL == cq->tail) cq->head = item; else cq->tail->next = item; cq->tail = item; pthread_cond_signal(&cq->cond); pthread_mutex_unlock(&cq->lock); } /* * Returns a fresh connection queue item. */ static CQ_ITEM *cqi_new(void) { CQ_ITEM *item = NULL; pthread_mutex_lock(&cqi_freelist_lock); if (cqi_freelist) { item = cqi_freelist; cqi_freelist = item->next; } pthread_mutex_unlock(&cqi_freelist_lock); if (NULL == item) { int i; /* Allocate a bunch of items at once to reduce fragmentation */ item = malloc(sizeof(CQ_ITEM) * ITEMS_PER_ALLOC); if (NULL == item) return NULL; /* * Link together all the new items except the first one * (which we'll return to the caller) for placement on * the freelist. */ for (i = 2; i < ITEMS_PER_ALLOC; i++) item[i - 1].next = &item[i]; pthread_mutex_lock(&cqi_freelist_lock); item[ITEMS_PER_ALLOC - 1].next = cqi_freelist; cqi_freelist = &item[1]; pthread_mutex_unlock(&cqi_freelist_lock); } return item; } /* * Frees a connection queue item (adds it to the freelist.) */ static void cqi_free(CQ_ITEM *item) { pthread_mutex_lock(&cqi_freelist_lock); item->next = cqi_freelist; cqi_freelist = item; pthread_mutex_unlock(&cqi_freelist_lock); } /* * Creates a worker thread. */ static void create_worker(void *(*func)(void *), void *arg) { pthread_t thread; pthread_attr_t attr; int ret; pthread_attr_init(&attr); if ((ret = pthread_create(&thread, &attr, func, arg)) != 0) { fprintf(stderr, "Can't create thread: %s\n", strerror(ret)); exit(1); } } /* * Sets whether or not we accept new connections. */ void accept_new_conns(const bool do_accept) { pthread_mutex_lock(&conn_lock); do_accept_new_conns(do_accept); pthread_mutex_unlock(&conn_lock); } /****************************** LIBEVENT THREADS *****************************/ /* * Set up a thread's information. */ static void setup_thread(LIBEVENT_THREAD *me) { me->base = event_init(); if (! me->base) { fprintf(stderr, "Can't allocate event base\n"); exit(1); } /* Listen for notifications from other threads */ event_set(&me->notify_event, me->notify_receive_fd, EV_READ | EV_PERSIST, thread_libevent_process, me); event_base_set(me->base, &me->notify_event); if (event_add(&me->notify_event, 0) == -1) { fprintf(stderr, "Can't monitor libevent notify pipe\n"); exit(1); } me->new_conn_queue = malloc(sizeof(struct conn_queue)); if (me->new_conn_queue == NULL) { perror("Failed to allocate memory for connection queue"); exit(EXIT_FAILURE); } cq_init(me->new_conn_queue); if (pthread_mutex_init(&me->stats.mutex, NULL) != 0) { perror("Failed to initialize mutex"); exit(EXIT_FAILURE); } me->suffix_cache = cache_create("suffix", SUFFIX_SIZE, sizeof(char*), NULL, NULL); if (me->suffix_cache == NULL) { fprintf(stderr, "Failed to create suffix cache\n"); exit(EXIT_FAILURE); } } /* * Worker thread: main event loop */ static void *worker_libevent(void *arg) { LIBEVENT_THREAD *me = arg; /* Any per-thread setup can happen here; thread_init() will block until * all threads have finished initializing. */ pthread_mutex_lock(&init_lock); init_count++; pthread_cond_signal(&init_cond); pthread_mutex_unlock(&init_lock); event_base_loop(me->base, 0); return NULL; } /* * Processes an incoming "handle a new connection" item. This is called when * input arrives on the libevent wakeup pipe. */ static void thread_libevent_process(int fd, short which, void *arg) { LIBEVENT_THREAD *me = arg; CQ_ITEM *item; char buf[1]; if (read(fd, buf, 1) != 1) if (settings.verbose > 0) fprintf(stderr, "Can't read from libevent pipe\n"); item = cq_pop(me->new_conn_queue); if (NULL != item) { conn *c = conn_new(item->sfd, item->init_state, item->event_flags, item->read_buffer_size, item->transport, me->base); if (c == NULL) { if (IS_UDP(item->transport)) { fprintf(stderr, "Can't listen for events on UDP socket\n"); exit(1); } else { if (settings.verbose > 0) { fprintf(stderr, "Can't listen for events on fd %d\n", item->sfd); } close(item->sfd); } } else { c->thread = me; } cqi_free(item); } } /* Which thread we assigned a connection to most recently. */ static int last_thread = -1; /* * Dispatches a new connection to another thread. This is only ever called * from the main thread, either during initialization (for UDP) or because * of an incoming connection. */ void dispatch_conn_new(int sfd, enum conn_states init_state, int event_flags, int read_buffer_size, enum network_transport transport) { CQ_ITEM *item = cqi_new(); int tid = (last_thread + 1) % settings.num_threads; LIBEVENT_THREAD *thread = threads + tid; last_thread = tid; item->sfd = sfd; item->init_state = init_state; item->event_flags = event_flags; item->read_buffer_size = read_buffer_size; item->transport = transport; cq_push(thread->new_conn_queue, item); MEMCACHED_CONN_DISPATCH(sfd, thread->thread_id); if (write(thread->notify_send_fd, "", 1) != 1) { perror("Writing to thread notify pipe"); } } /* * Returns true if this is the thread that listens for new TCP connections. */ int is_listen_thread() { return pthread_self() == dispatcher_thread.thread_id; } /********************************* ITEM ACCESS *******************************/ /* * Allocates a new item. */ item *item_alloc(char *key, size_t nkey, int flags, rel_time_t exptime, int nbytes) { item *it; /* do_item_alloc handles its own locks */ it = do_item_alloc(key, nkey, flags, exptime, nbytes); return it; } /* * Returns an item if it hasn't been marked as expired, * lazy-expiring as needed. */ item *item_get(const char *key, const size_t nkey) { item *it; uint32_t hv; hv = hash(key, nkey, 0); item_lock(hv); it = do_item_get(key, nkey, hv); item_unlock(hv); return it; } item *item_touch(const char *key, size_t nkey, uint32_t exptime) { item *it; uint32_t hv; hv = hash(key, nkey, 0); item_lock(hv); it = do_item_touch(key, nkey, exptime, hv); item_unlock(hv); return it; } /* * Links an item into the LRU and hashtable. */ int item_link(item *item) { int ret; uint32_t hv; hv = hash(ITEM_key(item), item->nkey, 0); item_lock(hv); ret = do_item_link(item, hv); item_unlock(hv); return ret; } /* * Decrements the reference count on an item and adds it to the freelist if * needed. */ void item_remove(item *item) { uint32_t hv; hv = hash(ITEM_key(item), item->nkey, 0); item_lock(hv); do_item_remove(item); item_unlock(hv); } /* * Replaces one item with another in the hashtable. * Unprotected by a mutex lock since the core server does not require * it to be thread-safe. */ int item_replace(item *old_it, item *new_it, const uint32_t hv) { return do_item_replace(old_it, new_it, hv); } /* * Unlinks an item from the LRU and hashtable. */ void item_unlink(item *item) { uint32_t hv; hv = hash(ITEM_key(item), item->nkey, 0); item_lock(hv); do_item_unlink(item, hv); item_unlock(hv); } /* * Moves an item to the back of the LRU queue. */ void item_update(item *item) { uint32_t hv; hv = hash(ITEM_key(item), item->nkey, 0); item_lock(hv); do_item_update(item); item_unlock(hv); } /* * Does arithmetic on a numeric item value. */ enum delta_result_type add_delta(conn *c, const char *key, const size_t nkey, int incr, const int64_t delta, char *buf, uint64_t *cas) { enum delta_result_type ret; uint32_t hv; hv = hash(key, nkey, 0); item_lock(hv); ret = do_add_delta(c, key, nkey, incr, delta, buf, cas, hv); item_unlock(hv); return ret; } /* * Stores an item in the cache (high level, obeys set/add/replace semantics) */ enum store_item_type store_item(item *item, int comm, conn* c) { enum store_item_type ret; uint32_t hv; hv = hash(ITEM_key(item), item->nkey, 0); item_lock(hv); ret = do_store_item(item, comm, c, hv); item_unlock(hv); return ret; } /* * Flushes expired items after a flush_all call */ void item_flush_expired() { mutex_lock(&cache_lock); do_item_flush_expired(); mutex_unlock(&cache_lock); } /* * Dumps part of the cache */ char *item_cachedump(unsigned int slabs_clsid, unsigned int limit, unsigned int *bytes) { char *ret; mutex_lock(&cache_lock); ret = do_item_cachedump(slabs_clsid, limit, bytes); mutex_unlock(&cache_lock); return ret; } /* * Dumps statistics about slab classes */ void item_stats(ADD_STAT add_stats, void *c) { mutex_lock(&cache_lock); do_item_stats(add_stats, c); mutex_unlock(&cache_lock); } /* * Dumps a list of objects of each size in 32-byte increments */ void item_stats_sizes(ADD_STAT add_stats, void *c) { mutex_lock(&cache_lock); do_item_stats_sizes(add_stats, c); mutex_unlock(&cache_lock); } /******************************* GLOBAL STATS ******************************/ void STATS_LOCK() { pthread_mutex_lock(&stats_lock); } void STATS_UNLOCK() { pthread_mutex_unlock(&stats_lock); } void threadlocal_stats_reset(void) { int ii, sid; for (ii = 0; ii < settings.num_threads; ++ii) { pthread_mutex_lock(&threads[ii].stats.mutex); threads[ii].stats.get_cmds = 0; threads[ii].stats.get_misses = 0; threads[ii].stats.touch_cmds = 0; threads[ii].stats.touch_misses = 0; threads[ii].stats.delete_misses = 0; threads[ii].stats.incr_misses = 0; threads[ii].stats.decr_misses = 0; threads[ii].stats.cas_misses = 0; threads[ii].stats.bytes_read = 0; threads[ii].stats.bytes_written = 0; threads[ii].stats.flush_cmds = 0; threads[ii].stats.conn_yields = 0; threads[ii].stats.auth_cmds = 0; threads[ii].stats.auth_errors = 0; for(sid = 0; sid < MAX_NUMBER_OF_SLAB_CLASSES; sid++) { threads[ii].stats.slab_stats[sid].set_cmds = 0; threads[ii].stats.slab_stats[sid].get_hits = 0; threads[ii].stats.slab_stats[sid].touch_hits = 0; threads[ii].stats.slab_stats[sid].delete_hits = 0; threads[ii].stats.slab_stats[sid].incr_hits = 0; threads[ii].stats.slab_stats[sid].decr_hits = 0; threads[ii].stats.slab_stats[sid].cas_hits = 0; threads[ii].stats.slab_stats[sid].cas_badval = 0; } pthread_mutex_unlock(&threads[ii].stats.mutex); } } void threadlocal_stats_aggregate(struct thread_stats *stats) { int ii, sid; /* The struct has a mutex, but we can safely set the whole thing * to zero since it is unused when aggregating. */ memset(stats, 0, sizeof(*stats)); for (ii = 0; ii < settings.num_threads; ++ii) { pthread_mutex_lock(&threads[ii].stats.mutex); stats->get_cmds += threads[ii].stats.get_cmds; stats->get_misses += threads[ii].stats.get_misses; stats->touch_cmds += threads[ii].stats.touch_cmds; stats->touch_misses += threads[ii].stats.touch_misses; stats->delete_misses += threads[ii].stats.delete_misses; stats->decr_misses += threads[ii].stats.decr_misses; stats->incr_misses += threads[ii].stats.incr_misses; stats->cas_misses += threads[ii].stats.cas_misses; stats->bytes_read += threads[ii].stats.bytes_read; stats->bytes_written += threads[ii].stats.bytes_written; stats->flush_cmds += threads[ii].stats.flush_cmds; stats->conn_yields += threads[ii].stats.conn_yields; stats->auth_cmds += threads[ii].stats.auth_cmds; stats->auth_errors += threads[ii].stats.auth_errors; for (sid = 0; sid < MAX_NUMBER_OF_SLAB_CLASSES; sid++) { stats->slab_stats[sid].set_cmds += threads[ii].stats.slab_stats[sid].set_cmds; stats->slab_stats[sid].get_hits += threads[ii].stats.slab_stats[sid].get_hits; stats->slab_stats[sid].touch_hits += threads[ii].stats.slab_stats[sid].touch_hits; stats->slab_stats[sid].delete_hits += threads[ii].stats.slab_stats[sid].delete_hits; stats->slab_stats[sid].decr_hits += threads[ii].stats.slab_stats[sid].decr_hits; stats->slab_stats[sid].incr_hits += threads[ii].stats.slab_stats[sid].incr_hits; stats->slab_stats[sid].cas_hits += threads[ii].stats.slab_stats[sid].cas_hits; stats->slab_stats[sid].cas_badval += threads[ii].stats.slab_stats[sid].cas_badval; } pthread_mutex_unlock(&threads[ii].stats.mutex); } } void slab_stats_aggregate(struct thread_stats *stats, struct slab_stats *out) { int sid; out->set_cmds = 0; out->get_hits = 0; out->touch_hits = 0; out->delete_hits = 0; out->incr_hits = 0; out->decr_hits = 0; out->cas_hits = 0; out->cas_badval = 0; for (sid = 0; sid < MAX_NUMBER_OF_SLAB_CLASSES; sid++) { out->set_cmds += stats->slab_stats[sid].set_cmds; out->get_hits += stats->slab_stats[sid].get_hits; out->touch_hits += stats->slab_stats[sid].touch_hits; out->delete_hits += stats->slab_stats[sid].delete_hits; out->decr_hits += stats->slab_stats[sid].decr_hits; out->incr_hits += stats->slab_stats[sid].incr_hits; out->cas_hits += stats->slab_stats[sid].cas_hits; out->cas_badval += stats->slab_stats[sid].cas_badval; } } /* * Initializes the thread subsystem, creating various worker threads. * * nthreads Number of worker event handler threads to spawn * main_base Event base for main thread */ void thread_init(int nthreads, struct event_base *main_base) { int i; int power; pthread_mutex_init(&cache_lock, NULL); pthread_mutex_init(&stats_lock, NULL); pthread_mutex_init(&init_lock, NULL); pthread_cond_init(&init_cond, NULL); pthread_mutex_init(&cqi_freelist_lock, NULL); cqi_freelist = NULL; /* Want a wide lock table, but don't waste memory */ if (nthreads < 3) { power = 10; } else if (nthreads < 4) { power = 11; } else if (nthreads < 5) { power = 12; } else { /* 8192 buckets, and central locks don't scale much past 5 threads */ power = 13; } item_lock_count = ((unsigned long int)1 << (power)); item_lock_mask = item_lock_count - 1; item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t)); if (! item_locks) { perror("Can't allocate item locks"); exit(1); } for (i = 0; i < item_lock_count; i++) { pthread_mutex_init(&item_locks[i], NULL); } threads = calloc(nthreads, sizeof(LIBEVENT_THREAD)); if (! threads) { perror("Can't allocate thread descriptors"); exit(1); } dispatcher_thread.base = main_base; dispatcher_thread.thread_id = pthread_self(); for (i = 0; i < nthreads; i++) { int fds[2]; if (pipe(fds)) { perror("Can't create notify pipe"); exit(1); } threads[i].notify_receive_fd = fds[0]; threads[i].notify_send_fd = fds[1]; setup_thread(&threads[i]); /* Reserve three fds for the libevent base, and two for the pipe */ stats.reserved_fds += 5; } /* Create threads after we've done all the libevent setup. */ for (i = 0; i < nthreads; i++) { create_worker(worker_libevent, &threads[i]); } /* Wait for all the threads to set themselves up before returning. */ pthread_mutex_lock(&init_lock); while (init_count < nthreads) { pthread_cond_wait(&init_cond, &init_lock); } pthread_mutex_unlock(&init_lock); }