~gerald-mwangi/+junk/Thesis

« back to all changes in this revision

Viewing changes to main.aux

  • Committer: gerald.mwangi at gmx
  • Date: 2018-04-04 18:55:14 UTC
  • Revision ID: gerald.mwangi@gmx.de-20180404185514-j00p97m1ueqssvqq
work on background finishing5

Show diffs side-by-side

added added

removed removed

Lines of Context:
831
831
\newlabel{eq:EnergyModernNoether@cref}{{[equation][1][3]3.1}{54}}
832
832
\newlabel{eq:priorEnergyModernNoether}{{3.2}{54}{Noether's First Theorem: A Modern Version}{equation.3.0.2}{}}
833
833
\newlabel{eq:priorEnergyModernNoether@cref}{{[equation][2][3]3.2}{54}}
834
 
\newlabel{eq:KKTLieAlgebra}{{3.3}{54}{Noether's First Theorem: A Modern Version}{equation.3.0.3}{}}
835
 
\newlabel{eq:KKTLieAlgebra@cref}{{[equation][3][3]3.3}{54}}
836
 
\@writefile{toc}{\contentsline {section}{\numberline {3.1}The action of $\mathbb  {G}$ on Functionals}{55}{section.3.1}}
837
 
\newlabel{sec:GActionFunctionals}{{3.1}{55}{The action of $\mathbb {G}$ on Functionals}{section.3.1}{}}
 
834
\newlabel{eq:KKTLieAlgebra}{{3.3}{55}{Noether's First Theorem: A Modern Version}{equation.3.0.3}{}}
 
835
\newlabel{eq:KKTLieAlgebra@cref}{{[equation][3][3]3.3}{55}}
 
836
\@writefile{toc}{\contentsline {section}{\numberline {3.1}The action of $\mathbb  {G}^{\Omega \phi }$ on Functionals}{55}{section.3.1}}
 
837
\newlabel{sec:GActionFunctionals}{{3.1}{55}{The action of $\mathbb {G}^{\Omega \phi }$ on Functionals}{section.3.1}{}}
838
838
\newlabel{sec:GActionFunctionals@cref}{{[section][1][3]3.1}{55}}
839
 
\newlabel{eq:GOmegaPhiAction}{{3.4}{55}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.4}{}}
 
839
\newlabel{eq:GOmegaPhiAction}{{3.4}{55}{The action of $\mathbb {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.4}{}}
840
840
\newlabel{eq:GOmegaPhiAction@cref}{{[equation][4][3]3.4}{55}}
841
 
\newlabel{eq:GPhiAction}{{3.5}{55}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.5}{}}
 
841
\newlabel{eq:GPhiAction}{{3.5}{55}{The action of $\mathbb {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.5}{}}
842
842
\newlabel{eq:GPhiAction@cref}{{[equation][5][3]3.5}{55}}
843
 
\newlabel{eq:GOmegaAction}{{3.6}{55}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.6}{}}
 
843
\newlabel{eq:GOmegaAction}{{3.6}{55}{The action of $\mathbb {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.6}{}}
844
844
\newlabel{eq:GOmegaAction@cref}{{[equation][6][3]3.6}{55}}
845
845
\newlabel{example:variationRotationAction}{{1}{55}{}{example.1}{}}
846
846
\newlabel{example:variationRotationAction@cref}{{[example][1][]1}{55}}
848
848
\newlabel{eq:variationAction@cref}{{[equation][7][3]3.7}{55}}
849
849
\newlabel{eq:variationRotationAction}{{3.8}{55}{}{equation.3.1.8}{}}
850
850
\newlabel{eq:variationRotationAction@cref}{{[equation][8][3]3.8}{55}}
851
 
\newlabel{eq:GOmegaPhiAlgebra}{{3.11}{56}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.11}{}}
 
851
\newlabel{eq:GOmegaPhiAlgebra}{{3.11}{56}{The action of $\mathbb {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.11}{}}
852
852
\newlabel{eq:GOmegaPhiAlgebra@cref}{{[equation][11][3]3.11}{56}}
853
 
\newlabel{eq:GOmegaPhiAlgebraDerivation}{{3.13}{56}{The action of $\mathcal {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.13}{}}
 
853
\newlabel{eq:GOmegaPhiAlgebraDerivation}{{3.13}{56}{The action of $\mathbb {G}^{\Omega \phi }$ on $\functionspace $}{equation.3.1.13}{}}
854
854
\newlabel{eq:GOmegaPhiAlgebraDerivation@cref}{{[equation][13][3]3.13}{56}}
855
855
\newlabel{eq:Xbasis}{{3.15}{57}{Dual Basis}{equation.3.1.15}{}}
856
856
\newlabel{eq:Xbasis@cref}{{[equation][15][3]3.15}{57}}
866
866
\newlabel{eq:derivativeE@cref}{{[equation][24][3]3.24}{58}}
867
867
\newlabel{eq:flowSubdiffF}{{3.25}{58}{Flow Subdifferential}{equation.3.1.25}{}}
868
868
\newlabel{eq:flowSubdiffF@cref}{{[equation][25][3]3.25}{58}}
869
 
\newlabel{eq:subdiffHi}{{3.27}{59}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.27}{}}
870
 
\newlabel{eq:subdiffHi@cref}{{[equation][27][3]3.27}{59}}
871
 
\newlabel{eq:flowSubdiffH}{{3.30}{59}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.30}{}}
872
 
\newlabel{eq:flowSubdiffH@cref}{{[equation][30][3]3.30}{59}}
 
869
\newlabel{eq:flowSubdiffH}{{3.28}{59}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.28}{}}
 
870
\newlabel{eq:flowSubdiffH@cref}{{[equation][28][3]3.28}{59}}
 
871
\newlabel{eq:flowSubdiffE}{{3.30}{59}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.30}{}}
 
872
\newlabel{eq:flowSubdiffE@cref}{{[equation][30][3]3.30}{59}}
 
873
\newlabel{eq:flowBending}{{3.31}{59}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.31}{}}
 
874
\newlabel{eq:flowBending@cref}{{[equation][31][3]3.31}{59}}
 
875
\newlabel{eq:flowEulerLagrange}{{3.32}{59}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.32}{}}
 
876
\newlabel{eq:flowEulerLagrange@cref}{{[equation][32][3]3.32}{59}}
873
877
\citation{NoetherTheoremDeu}
874
 
\newlabel{eq:flowSubdiffE}{{3.32}{60}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.32}{}}
875
 
\newlabel{eq:flowSubdiffE@cref}{{[equation][32][3]3.32}{60}}
876
 
\newlabel{eq:flowEulerLagrange}{{3.33}{60}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.33}{}}
877
 
\newlabel{eq:flowEulerLagrange@cref}{{[equation][33][3]3.33}{60}}
878
 
\newlabel{eq:flowBending}{{3.34}{60}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.34}{}}
879
 
\newlabel{eq:flowBending@cref}{{[equation][34][3]3.34}{60}}
880
 
\newlabel{eq:trivialSymmetry}{{3.35}{60}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.35}{}}
881
 
\newlabel{eq:trivialSymmetry@cref}{{[equation][35][3]3.35}{60}}
 
878
\newlabel{eq:trivialSymmetry}{{3.33}{60}{The action of $\mathbb {G}^{\Omega \phi }$ on functionals of $\functionspace $}{equation.3.1.33}{}}
 
879
\newlabel{eq:trivialSymmetry@cref}{{[equation][33][3]3.33}{60}}
882
880
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Noether's First Theorem: A Modern Version}{60}{section.3.2}}
883
881
\newlabel{sec:noetherModern}{{3.2}{60}{Noether's First Theorem: A Modern Version}{section.3.2}{}}
884
882
\newlabel{sec:noetherModern@cref}{{[section][2][3]3.2}{60}}
885
883
\@writefile{brf}{\backcite{NoetherTheoremDeu}{{60}{3.2}{section.3.2}}}
886
 
\newlabel{eq:flowSubdiffENoether}{{3.36}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.36}{}}
887
 
\newlabel{eq:flowSubdiffENoether@cref}{{[equation][36][3]3.36}{61}}
888
 
\newlabel{eq:flowEulerLagrangeNoether}{{3.37}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.37}{}}
889
 
\newlabel{eq:flowEulerLagrangeNoether@cref}{{[equation][37][3]3.37}{61}}
890
 
\newlabel{eq:flowBendingNoether}{{3.38}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.38}{}}
891
 
\newlabel{eq:flowBendingNoether@cref}{{[equation][38][3]3.38}{61}}
892
 
\newlabel{eq:flowDiffENoetherV}{{3.39}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.39}{}}
893
 
\newlabel{eq:flowDiffENoetherV@cref}{{[equation][39][3]3.39}{61}}
894
 
\newlabel{eq:eulerLagrange}{{3.40}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.40}{}}
895
 
\newlabel{eq:eulerLagrange@cref}{{[equation][40][3]3.40}{61}}
896
 
\newlabel{eq:GOmegaPhiAlgebraAction}{{3.41}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.41}{}}
897
 
\newlabel{eq:GOmegaPhiAlgebraAction@cref}{{[equation][41][3]3.41}{61}}
898
 
\newlabel{eq:flowDiffENoether}{{3.42}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.42}{}}
899
 
\newlabel{eq:flowDiffENoether@cref}{{[equation][42][3]3.42}{61}}
900
 
\newlabel{eq:flowDiffENoetherBending}{{3.43}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.43}{}}
901
 
\newlabel{eq:flowDiffENoetherBending@cref}{{[equation][43][3]3.43}{61}}
902
 
\newlabel{eq:noetherDivergence}{{3.44}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.44}{}}
903
 
\newlabel{eq:noetherDivergence@cref}{{[equation][44][3]3.44}{61}}
904
 
\newlabel{eq:divergenceFreeVectors}{{3.45}{62}{Noether's First Theorem: A Modern Version}{equation.3.2.45}{}}
905
 
\newlabel{eq:divergenceFreeVectors@cref}{{[equation][45][3]3.45}{62}}
906
 
\newlabel{eq:flowDiffENoether2}{{3.46}{62}{Noether's First Theorem: A Modern Version}{equation.3.2.46}{}}
907
 
\newlabel{eq:flowDiffENoether2@cref}{{[equation][46][3]3.46}{62}}
908
 
\newlabel{eq:flowDiffENoetherInvariant}{{3.47}{62}{Noether's First Theorem: A Modern Version}{equation.3.2.47}{}}
909
 
\newlabel{eq:flowDiffENoetherInvariant@cref}{{[equation][47][3]3.47}{62}}
910
 
\newlabel{eq:noetherMutualIndep}{{3.48}{62}{Noether's First Theorem: A Modern Version}{equation.3.2.48}{}}
911
 
\newlabel{eq:noetherMutualIndep@cref}{{[equation][48][3]3.48}{62}}
912
 
\newlabel{eq:flowDiffENoetherInvariantBending}{{3.49}{62}{Noether's First Theorem: A Modern Version}{equation.3.2.49}{}}
913
 
\newlabel{eq:flowDiffENoetherInvariantBending@cref}{{[equation][49][3]3.49}{62}}
914
 
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Pure spatial Symmetries}{63}{subsection.3.2.1}}
915
 
\newlabel{sec:pureSpacialSymmetry}{{3.2.1}{63}{Pure spatial Symmetries}{subsection.3.2.1}{}}
916
 
\newlabel{sec:pureSpacialSymmetry@cref}{{[subsection][1][3,2]3.2.1}{63}}
917
 
\newlabel{eq:pureSpacialAlgebra}{{3.50}{63}{Pure spatial Algebra $\mathcal {G}^\Omega $}{equation.3.2.50}{}}
918
 
\newlabel{eq:pureSpacialAlgebra@cref}{{[equation][50][3]3.50}{63}}
919
 
\newlabel{eq:pureSpacialAlgebraQphi}{{3.51}{63}{Pure spatial Symmetries}{equation.3.2.51}{}}
920
 
\newlabel{eq:pureSpacialAlgebraQphi@cref}{{[equation][51][3]3.51}{63}}
921
 
\newlabel{eq:noetherPureSpacialSymmetryQ}{{3.52}{63}{Pure spatial Symmetries}{equation.3.2.52}{}}
922
 
\newlabel{eq:noetherPureSpacialSymmetryQ@cref}{{[equation][52][3]3.52}{63}}
923
 
\newlabel{eq:pureSpacialSymmetryCanonMomentum}{{3.53}{63}{Pure spatial Symmetries}{equation.3.2.53}{}}
924
 
\newlabel{eq:pureSpacialSymmetryCanonMomentum@cref}{{[equation][53][3]3.53}{63}}
 
884
\newlabel{eq:flowSubdiffENoether}{{3.34}{60}{Noether's First Theorem: A Modern Version}{equation.3.2.34}{}}
 
885
\newlabel{eq:flowSubdiffENoether@cref}{{[equation][34][3]3.34}{60}}
 
886
\newlabel{eq:flowEulerLagrangeNoether}{{3.35}{60}{Noether's First Theorem: A Modern Version}{equation.3.2.35}{}}
 
887
\newlabel{eq:flowEulerLagrangeNoether@cref}{{[equation][35][3]3.35}{60}}
 
888
\newlabel{eq:flowBendingNoether}{{3.36}{60}{Noether's First Theorem: A Modern Version}{equation.3.2.36}{}}
 
889
\newlabel{eq:flowBendingNoether@cref}{{[equation][36][3]3.36}{60}}
 
890
\newlabel{eq:flowDiffENoetherV}{{3.37}{60}{Noether's First Theorem: A Modern Version}{equation.3.2.37}{}}
 
891
\newlabel{eq:flowDiffENoetherV@cref}{{[equation][37][3]3.37}{60}}
 
892
\newlabel{eq:eulerLagrange}{{3.38}{60}{Noether's First Theorem: A Modern Version}{equation.3.2.38}{}}
 
893
\newlabel{eq:eulerLagrange@cref}{{[equation][38][3]3.38}{60}}
 
894
\newlabel{eq:GOmegaPhiAlgebraAction}{{3.39}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.39}{}}
 
895
\newlabel{eq:GOmegaPhiAlgebraAction@cref}{{[equation][39][3]3.39}{61}}
 
896
\newlabel{eq:flowDiffENoether}{{3.40}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.40}{}}
 
897
\newlabel{eq:flowDiffENoether@cref}{{[equation][40][3]3.40}{61}}
 
898
\newlabel{eq:flowDiffENoetherBending}{{3.41}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.41}{}}
 
899
\newlabel{eq:flowDiffENoetherBending@cref}{{[equation][41][3]3.41}{61}}
 
900
\newlabel{eq:noetherDivergence}{{3.42}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.42}{}}
 
901
\newlabel{eq:noetherDivergence@cref}{{[equation][42][3]3.42}{61}}
 
902
\newlabel{eq:divergenceFreeVectors}{{3.43}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.43}{}}
 
903
\newlabel{eq:divergenceFreeVectors@cref}{{[equation][43][3]3.43}{61}}
 
904
\newlabel{eq:flowDiffENoether2}{{3.44}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.44}{}}
 
905
\newlabel{eq:flowDiffENoether2@cref}{{[equation][44][3]3.44}{61}}
 
906
\newlabel{eq:flowDiffENoetherInvariant}{{3.45}{61}{Noether's First Theorem: A Modern Version}{equation.3.2.45}{}}
 
907
\newlabel{eq:flowDiffENoetherInvariant@cref}{{[equation][45][3]3.45}{61}}
 
908
\newlabel{eq:noetherMutualIndep}{{3.46}{62}{Noether's First Theorem: A Modern Version}{equation.3.2.46}{}}
 
909
\newlabel{eq:noetherMutualIndep@cref}{{[equation][46][3]3.46}{62}}
 
910
\newlabel{eq:flowDiffENoetherInvariantBending}{{3.47}{62}{Noether's First Theorem: A Modern Version}{equation.3.2.47}{}}
 
911
\newlabel{eq:flowDiffENoetherInvariantBending@cref}{{[equation][47][3]3.47}{62}}
 
912
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Pure spatial Symmetries}{62}{subsection.3.2.1}}
 
913
\newlabel{sec:pureSpacialSymmetry}{{3.2.1}{62}{Pure spatial Symmetries}{subsection.3.2.1}{}}
 
914
\newlabel{sec:pureSpacialSymmetry@cref}{{[subsection][1][3,2]3.2.1}{62}}
 
915
\newlabel{eq:pureSpacialAlgebra}{{3.48}{62}{Pure spatial Algebra $\mathcal {G}^\Omega $}{equation.3.2.48}{}}
 
916
\newlabel{eq:pureSpacialAlgebra@cref}{{[equation][48][3]3.48}{62}}
 
917
\newlabel{eq:pureSpacialAlgebraQphi}{{3.49}{62}{Pure spatial Symmetries}{equation.3.2.49}{}}
 
918
\newlabel{eq:pureSpacialAlgebraQphi@cref}{{[equation][49][3]3.49}{62}}
925
919
\citation{Bigun1987,BigunBook,BigunSymmetryGenStructTensor}
926
 
\newlabel{eq:l2NonTrivInv}{{3.54}{64}{Symmetries of the prior $E^{prior}_{L_2}(\nabla \phi )$}{equation.3.2.54}{}}
927
 
\newlabel{eq:l2NonTrivInv@cref}{{[equation][54][3]3.54}{64}}
928
 
\@writefile{brf}{\backcite{Bigun1987}{{64}{3.2.1}{equation.3.2.55}}}
929
 
\@writefile{brf}{\backcite{BigunBook}{{64}{3.2.1}{equation.3.2.55}}}
930
 
\@writefile{brf}{\backcite{BigunSymmetryGenStructTensor}{{64}{3.2.1}{equation.3.2.55}}}
 
920
\newlabel{eq:noetherPureSpacialSymmetryQ}{{3.50}{63}{Pure spatial Symmetries}{equation.3.2.50}{}}
 
921
\newlabel{eq:noetherPureSpacialSymmetryQ@cref}{{[equation][50][3]3.50}{63}}
 
922
\newlabel{eq:pureSpacialSymmetryCanonMomentum}{{3.51}{63}{Pure spatial Symmetries}{equation.3.2.51}{}}
 
923
\newlabel{eq:pureSpacialSymmetryCanonMomentum@cref}{{[equation][51][3]3.51}{63}}
 
924
\newlabel{eq:l2NonTrivInv}{{3.52}{63}{Symmetries of the prior $E^{prior}_{L_2}(\nabla \phi )$}{equation.3.2.52}{}}
 
925
\newlabel{eq:l2NonTrivInv@cref}{{[equation][52][3]3.52}{63}}
 
926
\@writefile{brf}{\backcite{Bigun1987}{{63}{3.2.1}{equation.3.2.53}}}
 
927
\@writefile{brf}{\backcite{BigunBook}{{63}{3.2.1}{equation.3.2.53}}}
 
928
\@writefile{brf}{\backcite{BigunSymmetryGenStructTensor}{{63}{3.2.1}{equation.3.2.53}}}
931
929
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Embedding Geometrical Constraints into Prior Energies}{64}{section.3.3}}
932
 
\newlabel{eq:priorMinimmizers}{{3.56}{64}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.56}{}}
933
 
\newlabel{eq:priorMinimmizers@cref}{{[equation][56][3]3.56}{64}}
934
 
\newlabel{eq:priorMinimizersG}{{3.57}{65}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.57}{}}
935
 
\newlabel{eq:priorMinimizersG@cref}{{[equation][57][3]3.57}{65}}
936
 
\newlabel{eq:priorEnergyAlone}{{3.58}{65}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.58}{}}
937
 
\newlabel{eq:priorEnergyAlone@cref}{{[equation][58][3]3.58}{65}}
938
 
\newlabel{eq:priorMinimmizersCommBasis}{{3.59}{65}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.59}{}}
939
 
\newlabel{eq:priorMinimmizersCommBasis@cref}{{[equation][59][3]3.59}{65}}
940
 
\newlabel{eq:divergenceFreeDualVariable}{{3.60}{65}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.60}{}}
 
930
\newlabel{eq:priorMinimmizers}{{3.54}{64}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.54}{}}
 
931
\newlabel{eq:priorMinimmizers@cref}{{[equation][54][3]3.54}{64}}
 
932
\newlabel{eq:priorMinimizersG}{{3.55}{64}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.55}{}}
 
933
\newlabel{eq:priorMinimizersG@cref}{{[equation][55][3]3.55}{64}}
 
934
\newlabel{eq:priorEnergyAlone}{{3.56}{64}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.56}{}}
 
935
\newlabel{eq:priorEnergyAlone@cref}{{[equation][56][3]3.56}{64}}
 
936
\newlabel{eq:priorMinimmizersCommBasis}{{3.57}{64}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.57}{}}
 
937
\newlabel{eq:priorMinimmizersCommBasis@cref}{{[equation][57][3]3.57}{64}}
 
938
\newlabel{eq:divergenceFreeDualVariable}{{3.58}{64}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.58}{}}
 
939
\newlabel{eq:divergenceFreeDualVariable@cref}{{[equation][58][3]3.58}{64}}
 
940
\newlabel{prop:constanceDualSpace}{{4}{64}{Constance of the Dual Space}{proposition.4}{}}
 
941
\newlabel{prop:constanceDualSpace@cref}{{[proposition][4][]4}{64}}
 
942
\newlabel{eq:divergenceFreeDualVariable}{{3.60}{65}{Constance of the Dual Space}{equation.3.3.60}{}}
941
943
\newlabel{eq:divergenceFreeDualVariable@cref}{{[equation][60][3]3.60}{65}}
942
 
\newlabel{prop:constanceDualSpace}{{4}{65}{Constance of the Dual Space}{proposition.4}{}}
943
 
\newlabel{prop:constanceDualSpace@cref}{{[proposition][4][]4}{65}}
944
 
\newlabel{eq:divergenceFreeDualVariable}{{3.62}{65}{Constance of the Dual Space}{equation.3.3.62}{}}
945
 
\newlabel{eq:divergenceFreeDualVariable@cref}{{[equation][62][3]3.62}{65}}
 
944
\newlabel{eq:levelSetDualVariable3}{{3.61}{65}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.61}{}}
 
945
\newlabel{eq:levelSetDualVariable3@cref}{{[equation][61][3]3.61}{65}}
 
946
\newlabel{eq:levelSetVF2}{{3.62}{65}{Level-set}{equation.3.3.62}{}}
 
947
\newlabel{eq:levelSetVF2@cref}{{[equation][62][3]3.62}{65}}
 
948
\newlabel{eq:levelSetVF3}{{3.63}{65}{Level-set}{equation.3.3.63}{}}
 
949
\newlabel{eq:levelSetVF3@cref}{{[equation][63][3]3.63}{65}}
946
950
\citation{BigunBook,FerraroTransfInvLieGroup}
947
 
\newlabel{eq:levelSetDualVariable3}{{3.63}{66}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.63}{}}
948
 
\newlabel{eq:levelSetDualVariable3@cref}{{[equation][63][3]3.63}{66}}
949
 
\newlabel{eq:levelSetVF2}{{3.64}{66}{Level-set}{equation.3.3.64}{}}
950
 
\newlabel{eq:levelSetVF2@cref}{{[equation][64][3]3.64}{66}}
951
 
\newlabel{eq:levelSetVF3}{{3.65}{66}{Level-set}{equation.3.3.65}{}}
952
 
\newlabel{eq:levelSetVF3@cref}{{[equation][65][3]3.65}{66}}
953
 
\@writefile{brf}{\backcite{BigunBook}{{66}{3.3}{equation.3.3.65}}}
954
 
\@writefile{brf}{\backcite{FerraroTransfInvLieGroup}{{66}{3.3}{equation.3.3.65}}}
 
951
\@writefile{brf}{\backcite{BigunBook}{{66}{3.3}{equation.3.3.63}}}
 
952
\@writefile{brf}{\backcite{FerraroTransfInvLieGroup}{{66}{3.3}{equation.3.3.63}}}
955
953
\newlabel{lem:levelSetExistence}{{9}{66}{Existence of $\phi ^Z$}{lemma.9}{}}
956
954
\newlabel{lem:levelSetExistence@cref}{{[lemma][9][]9}{66}}
957
 
\newlabel{eq:levelSetVFCommutativeBasis}{{3.66}{66}{Existence of $\phi ^Z$}{equation.3.3.66}{}}
958
 
\newlabel{eq:levelSetVFCommutativeBasis@cref}{{[equation][66][3]3.66}{66}}
 
955
\newlabel{eq:levelSetVFCommutativeBasis}{{3.64}{66}{Existence of $\phi ^Z$}{equation.3.3.64}{}}
 
956
\newlabel{eq:levelSetVFCommutativeBasis@cref}{{[equation][64][3]3.64}{66}}
 
957
\newlabel{eq:translationAlgebra}{{3.68}{66}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.68}{}}
 
958
\newlabel{eq:translationAlgebra@cref}{{[equation][68][3]3.68}{66}}
 
959
\newlabel{eq:linLevelSet}{{3.69}{66}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.69}{}}
 
960
\newlabel{eq:linLevelSet@cref}{{[equation][69][3]3.69}{66}}
959
961
\citation{Bigun1987,BigunSymmetryGenStructTensor,BigunBook}
960
 
\newlabel{eq:translationAlgebra}{{3.70}{67}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.70}{}}
961
 
\newlabel{eq:translationAlgebra@cref}{{[equation][70][3]3.70}{67}}
962
 
\newlabel{eq:linLevelSet}{{3.71}{67}{Embedding Geometrical Constraints into Prior Energies}{equation.3.3.71}{}}
963
 
\newlabel{eq:linLevelSet@cref}{{[equation][71][3]3.71}{67}}
964
 
\@writefile{brf}{\backcite{Bigun1987}{{67}{3.3}{equation.3.3.72}}}
965
 
\@writefile{brf}{\backcite{BigunSymmetryGenStructTensor}{{67}{3.3}{equation.3.3.72}}}
966
 
\@writefile{brf}{\backcite{BigunBook}{{67}{3.3}{equation.3.3.72}}}
 
962
\@writefile{brf}{\backcite{Bigun1987}{{67}{3.3}{equation.3.3.70}}}
 
963
\@writefile{brf}{\backcite{BigunSymmetryGenStructTensor}{{67}{3.3}{equation.3.3.70}}}
 
964
\@writefile{brf}{\backcite{BigunBook}{{67}{3.3}{equation.3.3.70}}}
967
965
\citation{Bigun1987}
968
 
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Linearized Priors}{69}{chapter.4}}
 
966
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Linearized Priors}{68}{chapter.4}}
969
967
\@writefile{lof}{\addvspace {10\p@ }}
970
968
\@writefile{lot}{\addvspace {10\p@ }}
971
969
\@writefile{lol}{\addvspace {10\p@ }}
972
970
\@writefile{loa}{\addvspace {10\p@ }}
973
 
\newlabel{chap:GeometricalPrior}{{4}{69}{Linearized Priors}{chapter.4}{}}
974
 
\newlabel{chap:GeometricalPrior@cref}{{[chapter][4][]4}{69}}
975
 
\@writefile{toc}{\contentsline {section}{\numberline {4.1}The Linear Structure Tensor}{69}{section.4.1}}
976
 
\newlabel{eq:vectorTransAlgebra}{{4.1}{69}{The Linear Structure Tensor}{equation.4.1.1}{}}
977
 
\newlabel{eq:vectorTransAlgebra@cref}{{[equation][1][4]4.1}{69}}
978
 
\newlabel{eq:linearLevelSet}{{4.3}{69}{The Linear Structure Tensor}{equation.4.1.3}{}}
979
 
\newlabel{eq:linearLevelSet@cref}{{[equation][3][4]4.3}{69}}
980
 
\@writefile{brf}{\backcite{Bigun1987}{{69}{4.1}{equation.4.1.3}}}
981
 
\newlabel{eq:StructTensLeastSquaresEnergy}{{4.4}{69}{The Linear Structure Tensor}{equation.4.1.4}{}}
982
 
\newlabel{eq:StructTensLeastSquaresEnergy@cref}{{[equation][4][4]4.4}{69}}
983
 
\newlabel{eq:structtensDef}{{4.5}{69}{The Linear Structure Tensor}{equation.4.1.5}{}}
984
 
\newlabel{eq:structtensDef@cref}{{[equation][5][4]4.5}{69}}
985
 
\newlabel{eq:structtensEigenvalues}{{4.6}{70}{The Linear Structure Tensor}{equation.4.1.6}{}}
986
 
\newlabel{eq:structtensEigenvalues@cref}{{[equation][6][4]4.6}{70}}
987
 
\newlabel{eq:structtensRot}{{4.7}{70}{The Linear Structure Tensor}{equation.4.1.7}{}}
988
 
\newlabel{eq:structtensRot@cref}{{[equation][7][4]4.7}{70}}
989
 
\newlabel{eq:commutatorStructens}{{4.9}{70}{The Linear Structure Tensor}{equation.4.1.9}{}}
990
 
\newlabel{eq:commutatorStructens@cref}{{[equation][9][4]4.9}{70}}
991
 
\newlabel{eq:changeEigenvectors}{{4.10}{70}{The Linear Structure Tensor}{equation.4.1.10}{}}
992
 
\newlabel{eq:changeEigenvectors@cref}{{[equation][10][4]4.10}{70}}
993
 
\newlabel{eq:changeStructtens}{{4.11}{70}{The Linear Structure Tensor}{equation.4.1.11}{}}
994
 
\newlabel{eq:changeStructtens@cref}{{[equation][11][4]4.11}{70}}
995
 
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Structure Tensor Based Prior}{71}{section.4.2}}
996
 
\newlabel{sec:structureTensPrior}{{4.2}{71}{Structure Tensor Based Prior}{section.4.2}{}}
997
 
\newlabel{sec:structureTensPrior@cref}{{[section][2][4]4.2}{71}}
998
 
\newlabel{eq:structureTensorRotation}{{4.12}{71}{Structure Tensor Based Prior}{equation.4.2.12}{}}
999
 
\newlabel{eq:structureTensorRotation@cref}{{[equation][12][4]4.12}{71}}
1000
 
\newlabel{eq:structtensPrior}{{4.14}{71}{Structure Tensor Based Prior}{equation.4.2.14}{}}
1001
 
\newlabel{eq:structtensPrior@cref}{{[equation][14][4]4.14}{71}}
1002
 
\newlabel{eq:structtensPriorRot}{{4.15}{71}{Structure Tensor Based Prior}{equation.4.2.15}{}}
1003
 
\newlabel{eq:structtensPriorRot@cref}{{[equation][15][4]4.15}{71}}
1004
 
\newlabel{eq:traceTransf}{{4.16}{71}{Structure Tensor Based Prior}{equation.4.2.16}{}}
1005
 
\newlabel{eq:traceTransf@cref}{{[equation][16][4]4.16}{71}}
 
971
\newlabel{chap:GeometricalPrior}{{4}{68}{Linearized Priors}{chapter.4}{}}
 
972
\newlabel{chap:GeometricalPrior@cref}{{[chapter][4][]4}{68}}
 
973
\@writefile{toc}{\contentsline {section}{\numberline {4.1}The Linear Structure Tensor}{68}{section.4.1}}
 
974
\newlabel{eq:vectorTransAlgebra}{{4.1}{68}{The Linear Structure Tensor}{equation.4.1.1}{}}
 
975
\newlabel{eq:vectorTransAlgebra@cref}{{[equation][1][4]4.1}{68}}
 
976
\newlabel{eq:linearLevelSet}{{4.3}{68}{The Linear Structure Tensor}{equation.4.1.3}{}}
 
977
\newlabel{eq:linearLevelSet@cref}{{[equation][3][4]4.3}{68}}
 
978
\@writefile{brf}{\backcite{Bigun1987}{{68}{4.1}{equation.4.1.3}}}
 
979
\newlabel{eq:StructTensLeastSquaresEnergy}{{4.4}{68}{The Linear Structure Tensor}{equation.4.1.4}{}}
 
980
\newlabel{eq:StructTensLeastSquaresEnergy@cref}{{[equation][4][4]4.4}{68}}
 
981
\newlabel{eq:structtensDef}{{4.5}{68}{The Linear Structure Tensor}{equation.4.1.5}{}}
 
982
\newlabel{eq:structtensDef@cref}{{[equation][5][4]4.5}{68}}
 
983
\newlabel{eq:structtensEigenvalues}{{4.6}{69}{The Linear Structure Tensor}{equation.4.1.6}{}}
 
984
\newlabel{eq:structtensEigenvalues@cref}{{[equation][6][4]4.6}{69}}
 
985
\newlabel{eq:structtensRot}{{4.7}{69}{The Linear Structure Tensor}{equation.4.1.7}{}}
 
986
\newlabel{eq:structtensRot@cref}{{[equation][7][4]4.7}{69}}
 
987
\newlabel{eq:commutatorStructens}{{4.9}{69}{The Linear Structure Tensor}{equation.4.1.9}{}}
 
988
\newlabel{eq:commutatorStructens@cref}{{[equation][9][4]4.9}{69}}
 
989
\newlabel{eq:changeEigenvectors}{{4.10}{69}{The Linear Structure Tensor}{equation.4.1.10}{}}
 
990
\newlabel{eq:changeEigenvectors@cref}{{[equation][10][4]4.10}{69}}
 
991
\newlabel{eq:changeStructtens}{{4.11}{69}{The Linear Structure Tensor}{equation.4.1.11}{}}
 
992
\newlabel{eq:changeStructtens@cref}{{[equation][11][4]4.11}{69}}
 
993
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Structure Tensor Based Prior}{70}{section.4.2}}
 
994
\newlabel{sec:structureTensPrior}{{4.2}{70}{Structure Tensor Based Prior}{section.4.2}{}}
 
995
\newlabel{sec:structureTensPrior@cref}{{[section][2][4]4.2}{70}}
 
996
\newlabel{eq:structureTensorRotation}{{4.12}{70}{Structure Tensor Based Prior}{equation.4.2.12}{}}
 
997
\newlabel{eq:structureTensorRotation@cref}{{[equation][12][4]4.12}{70}}
 
998
\newlabel{eq:structtensPrior}{{4.14}{70}{Structure Tensor Based Prior}{equation.4.2.14}{}}
 
999
\newlabel{eq:structtensPrior@cref}{{[equation][14][4]4.14}{70}}
 
1000
\newlabel{eq:structtensPriorRot}{{4.15}{70}{Structure Tensor Based Prior}{equation.4.2.15}{}}
 
1001
\newlabel{eq:structtensPriorRot@cref}{{[equation][15][4]4.15}{70}}
 
1002
\newlabel{eq:traceTransf}{{4.16}{70}{Structure Tensor Based Prior}{equation.4.2.16}{}}
 
1003
\newlabel{eq:traceTransf@cref}{{[equation][16][4]4.16}{70}}
1006
1004
\citation{MaesMutualInformationRegistration}
1007
1005
\citation{Roche98CorrelRatio}
1008
1006
\citation{RocheUnifyingMaxLikelihoodRegistration}
1009
1007
\citation{HardieSpacialImageResEnhancement}
1010
1008
\citation{HardieSpacialImageResEnhancement}
1011
 
\newlabel{eq:structtensPriorRotInv}{{4.17}{72}{Structure Tensor Based Prior}{equation.4.2.17}{}}
1012
 
\newlabel{eq:structtensPriorRotInv@cref}{{[equation][17][4]4.17}{72}}
1013
 
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Geometrical Optical Flow Model}{72}{section.4.3}}
1014
 
\newlabel{chap:GeomOptFlowModel}{{4.3}{72}{Geometrical Optical Flow Model}{section.4.3}{}}
1015
 
\newlabel{chap:GeomOptFlowModel@cref}{{[section][3][4]4.3}{72}}
1016
 
\@writefile{brf}{\backcite{MaesMutualInformationRegistration}{{72}{4.3}{section.4.3}}}
1017
 
\@writefile{brf}{\backcite{Roche98CorrelRatio}{{72}{4.3}{section.4.3}}}
1018
 
\@writefile{brf}{\backcite{RocheUnifyingMaxLikelihoodRegistration}{{72}{4.3}{section.4.3}}}
1019
 
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{72}{4.3}{section.4.3}}}
1020
 
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{72}{4.3}{section.4.3}}}
 
1009
\newlabel{eq:structtensPriorRotInv}{{4.17}{71}{Structure Tensor Based Prior}{equation.4.2.17}{}}
 
1010
\newlabel{eq:structtensPriorRotInv@cref}{{[equation][17][4]4.17}{71}}
 
1011
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Geometrical Optical Flow Model}{71}{section.4.3}}
 
1012
\newlabel{chap:GeomOptFlowModel}{{4.3}{71}{Geometrical Optical Flow Model}{section.4.3}{}}
 
1013
\newlabel{chap:GeomOptFlowModel@cref}{{[section][3][4]4.3}{71}}
 
1014
\@writefile{brf}{\backcite{MaesMutualInformationRegistration}{{71}{4.3}{section.4.3}}}
 
1015
\@writefile{brf}{\backcite{Roche98CorrelRatio}{{71}{4.3}{section.4.3}}}
 
1016
\@writefile{brf}{\backcite{RocheUnifyingMaxLikelihoodRegistration}{{71}{4.3}{section.4.3}}}
 
1017
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{71}{4.3}{section.4.3}}}
 
1018
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{71}{4.3}{section.4.3}}}
1021
1019
\citation{HardieSpacialImageResEnhancement}
1022
 
\newlabel{fig:multiModalSetupDiffRes}{{4.1a}{73}{Subfigure 4 4.1a}{subfigure.4.1.1}{}}
 
1020
\newlabel{fig:multiModalSetupDiffRes}{{4.1a}{72}{Subfigure 4 4.1a}{subfigure.4.1.1}{}}
1023
1021
\newlabel{sub@fig:multiModalSetupDiffRes}{{(a)}{a}{Subfigure 4 4.1a\relax }{subfigure.4.1.1}{}}
1024
 
\newlabel{fig:multiModalSetupDiffRes@cref}{{[subfigure][1][4,1]4.1a}{73}}
1025
 
\newlabel{fig:multiModalSetupDiffResIvsc}{{4.1b}{73}{Subfigure 4 4.1b}{subfigure.4.1.2}{}}
 
1022
\newlabel{fig:multiModalSetupDiffRes@cref}{{[subfigure][1][4,1]4.1a}{72}}
 
1023
\newlabel{fig:multiModalSetupDiffResIvsc}{{4.1b}{72}{Subfigure 4 4.1b}{subfigure.4.1.2}{}}
1026
1024
\newlabel{sub@fig:multiModalSetupDiffResIvsc}{{(b)}{b}{Subfigure 4 4.1b\relax }{subfigure.4.1.2}{}}
1027
 
\newlabel{fig:multiModalSetupDiffResIvsc@cref}{{[subfigure][2][4,1]4.1b}{73}}
1028
 
\newlabel{fig:multiModalSetupDiffResYtcLow}{{4.1c}{73}{Subfigure 4 4.1c}{subfigure.4.1.3}{}}
 
1025
\newlabel{fig:multiModalSetupDiffResIvsc@cref}{{[subfigure][2][4,1]4.1b}{72}}
 
1026
\newlabel{fig:multiModalSetupDiffResYtcLow}{{4.1c}{72}{Subfigure 4 4.1c}{subfigure.4.1.3}{}}
1029
1027
\newlabel{sub@fig:multiModalSetupDiffResYtcLow}{{(c)}{c}{Subfigure 4 4.1c\relax }{subfigure.4.1.3}{}}
1030
 
\newlabel{fig:multiModalSetupDiffResYtcLow@cref}{{[subfigure][3][4,1]4.1c}{73}}
1031
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces \Cref  {fig:multiModalSetupDiffRes} shows the setup of a thermographic camera (TC), $C_{tc}$, and a visual spectrum camera (VSC), $C_{vsc}$, recording an object $O$. \Cref  {fig:multiModalSetupDiffResIvsc} shows the image $I$ which is recorded by $C_{vsc}$ and \cref  {fig:multiModalSetupDiffResYtcLow} the lower resolution image $y$ recorded by $C_{tc}$. The solid line cone of $C_{tc}$ in \cref  {fig:multiModalSetupDiffRes} which is small compared to the cone of $C_{vsc}$ indicates the low resolution of the TC compared to that of the VSC. The dotted cone indicates the high resolution of the image $Y$, which is jointly estimated together with the optical flow $\ensuremath  {\ensuremath  {{\bm  {d}}}}$ (the mapping between $I$ and $y$) by the model in eq.~(\ref  {eq:YtcToIvscDMapping}) \relax }}{73}{figure.caption.21}}
1032
 
\newlabel{fig:multiModalSetupDiffResSetup}{{4.1}{73}{\Figref {fig:multiModalSetupDiffRes} shows the setup of a thermographic camera (TC), $C_{tc}$, and a visual spectrum camera (VSC), $C_{vsc}$, recording an object $O$. \Figref {fig:multiModalSetupDiffResIvsc} shows the image $I$ which is recorded by $C_{vsc}$ and \figref {fig:multiModalSetupDiffResYtcLow} the lower resolution image $y$ recorded by $C_{tc}$. The solid line cone of $C_{tc}$ in \figref {fig:multiModalSetupDiffRes} which is small compared to the cone of $C_{vsc}$ indicates the low resolution of the TC compared to that of the VSC. The dotted cone indicates the high resolution of the image $Y$, which is jointly estimated together with the optical flow $\vd $ (the mapping between $I$ and $y$) by the model in \eqref {eq:YtcToIvscDMapping} \relax }{figure.caption.21}{}}
1033
 
\newlabel{fig:multiModalSetupDiffResSetup@cref}{{[figure][1][4]4.1}{73}}
1034
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Schematic}}}{73}{subfigure.1.1}}
1035
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$I$}}}{73}{subfigure.1.2}}
1036
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$y$}}}{73}{subfigure.1.3}}
1037
 
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Multi-Modal Optical Flow with Differing Resolutions}{73}{section.4.4}}
1038
 
\newlabel{sec:ImageFusionDisparity}{{4.4}{73}{Multi-Modal Optical Flow with Differing Resolutions}{section.4.4}{}}
1039
 
\newlabel{sec:ImageFusionDisparity@cref}{{[section][4][4]4.4}{73}}
1040
 
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{73}{4.4}{figure.caption.21}}}
1041
 
\newlabel{eq:warpedIvsc}{{4.18}{73}{Multi-Modal Optical Flow with Differing Resolutions}{equation.4.4.18}{}}
1042
 
\newlabel{eq:warpedIvsc@cref}{{[equation][18][4]4.18}{73}}
1043
 
\newlabel{eq:multiResSimMeasure}{{4.19}{73}{Multi-Modal Optical Flow with Differing Resolutions}{equation.4.4.19}{}}
1044
 
\newlabel{eq:multiResSimMeasure@cref}{{[equation][19][4]4.19}{73}}
1045
 
\newlabel{eq:YtcToLowMapping}{{4.20}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.20}{}}
1046
 
\newlabel{eq:YtcToLowMapping@cref}{{[equation][20][4]4.20}{74}}
1047
 
\newlabel{eq:YtcToIvscMapping}{{4.21}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.21}{}}
1048
 
\newlabel{eq:YtcToIvscMapping@cref}{{[equation][21][4]4.21}{74}}
1049
 
\newlabel{eq:condVarYtc}{{4.22}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.22}{}}
1050
 
\newlabel{eq:condVarYtc@cref}{{[equation][22][4]4.22}{74}}
1051
 
\newlabel{eq:condMeanYtc}{{4.23}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.23}{}}
1052
 
\newlabel{eq:condMeanYtc@cref}{{[equation][23][4]4.23}{74}}
1053
 
\newlabel{eq:YtcToLowMapping2}{{4.24}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.24}{}}
1054
 
\newlabel{eq:YtcToLowMapping2@cref}{{[equation][24][4]4.24}{74}}
1055
 
\newlabel{eq:YtcToIvscDMapping}{{4.25}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.25}{}}
1056
 
\newlabel{eq:YtcToIvscDMapping@cref}{{[equation][25][4]4.25}{74}}
1057
 
\newlabel{fig:line02}{{4.2a}{75}{Subfigure 4 4.2a}{subfigure.4.2.1}{}}
 
1028
\newlabel{fig:multiModalSetupDiffResYtcLow@cref}{{[subfigure][3][4,1]4.1c}{72}}
 
1029
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces \Cref  {fig:multiModalSetupDiffRes} shows the setup of a thermographic camera (TC), $C_{tc}$, and a visual spectrum camera (VSC), $C_{vsc}$, recording an object $O$. \Cref  {fig:multiModalSetupDiffResIvsc} shows the image $I$ which is recorded by $C_{vsc}$ and \cref  {fig:multiModalSetupDiffResYtcLow} the lower resolution image $y$ recorded by $C_{tc}$. The solid line cone of $C_{tc}$ in \cref  {fig:multiModalSetupDiffRes} which is small compared to the cone of $C_{vsc}$ indicates the low resolution of the TC compared to that of the VSC. The dotted cone indicates the high resolution of the image $Y$, which is jointly estimated together with the optical flow $\ensuremath  {\ensuremath  {{\bm  {d}}}}$ (the mapping between $I$ and $y$) by the model in eq.~(\ref  {eq:YtcToIvscDMapping}) \relax }}{72}{figure.caption.21}}
 
1030
\newlabel{fig:multiModalSetupDiffResSetup}{{4.1}{72}{\Figref {fig:multiModalSetupDiffRes} shows the setup of a thermographic camera (TC), $C_{tc}$, and a visual spectrum camera (VSC), $C_{vsc}$, recording an object $O$. \Figref {fig:multiModalSetupDiffResIvsc} shows the image $I$ which is recorded by $C_{vsc}$ and \figref {fig:multiModalSetupDiffResYtcLow} the lower resolution image $y$ recorded by $C_{tc}$. The solid line cone of $C_{tc}$ in \figref {fig:multiModalSetupDiffRes} which is small compared to the cone of $C_{vsc}$ indicates the low resolution of the TC compared to that of the VSC. The dotted cone indicates the high resolution of the image $Y$, which is jointly estimated together with the optical flow $\vd $ (the mapping between $I$ and $y$) by the model in \eqref {eq:YtcToIvscDMapping} \relax }{figure.caption.21}{}}
 
1031
\newlabel{fig:multiModalSetupDiffResSetup@cref}{{[figure][1][4]4.1}{72}}
 
1032
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Schematic}}}{72}{subfigure.1.1}}
 
1033
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$I$}}}{72}{subfigure.1.2}}
 
1034
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$y$}}}{72}{subfigure.1.3}}
 
1035
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Multi-Modal Optical Flow with Differing Resolutions}{72}{section.4.4}}
 
1036
\newlabel{sec:ImageFusionDisparity}{{4.4}{72}{Multi-Modal Optical Flow with Differing Resolutions}{section.4.4}{}}
 
1037
\newlabel{sec:ImageFusionDisparity@cref}{{[section][4][4]4.4}{72}}
 
1038
\@writefile{brf}{\backcite{HardieSpacialImageResEnhancement}{{72}{4.4}{figure.caption.21}}}
 
1039
\newlabel{eq:warpedIvsc}{{4.18}{72}{Multi-Modal Optical Flow with Differing Resolutions}{equation.4.4.18}{}}
 
1040
\newlabel{eq:warpedIvsc@cref}{{[equation][18][4]4.18}{72}}
 
1041
\newlabel{eq:multiResSimMeasure}{{4.19}{72}{Multi-Modal Optical Flow with Differing Resolutions}{equation.4.4.19}{}}
 
1042
\newlabel{eq:multiResSimMeasure@cref}{{[equation][19][4]4.19}{72}}
 
1043
\newlabel{eq:YtcToLowMapping}{{4.20}{73}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.20}{}}
 
1044
\newlabel{eq:YtcToLowMapping@cref}{{[equation][20][4]4.20}{73}}
 
1045
\newlabel{eq:YtcToIvscMapping}{{4.21}{73}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.21}{}}
 
1046
\newlabel{eq:YtcToIvscMapping@cref}{{[equation][21][4]4.21}{73}}
 
1047
\newlabel{eq:condVarYtc}{{4.22}{73}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.22}{}}
 
1048
\newlabel{eq:condVarYtc@cref}{{[equation][22][4]4.22}{73}}
 
1049
\newlabel{eq:condMeanYtc}{{4.23}{73}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.23}{}}
 
1050
\newlabel{eq:condMeanYtc@cref}{{[equation][23][4]4.23}{73}}
 
1051
\newlabel{eq:YtcToLowMapping2}{{4.24}{73}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.24}{}}
 
1052
\newlabel{eq:YtcToLowMapping2@cref}{{[equation][24][4]4.24}{73}}
 
1053
\newlabel{eq:YtcToIvscDMapping}{{4.25}{73}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.25}{}}
 
1054
\newlabel{eq:YtcToIvscDMapping@cref}{{[equation][25][4]4.25}{73}}
 
1055
\newlabel{fig:line02}{{4.2a}{74}{Subfigure 4 4.2a}{subfigure.4.2.1}{}}
1058
1056
\newlabel{sub@fig:line02}{{(a)}{a}{Subfigure 4 4.2a\relax }{subfigure.4.2.1}{}}
1059
 
\newlabel{fig:line02@cref}{{[subfigure][1][4,2]4.2a}{75}}
1060
 
\newlabel{fig:line1blurred2}{{4.2b}{75}{Subfigure 4 4.2b}{subfigure.4.2.2}{}}
 
1057
\newlabel{fig:line02@cref}{{[subfigure][1][4,2]4.2a}{74}}
 
1058
\newlabel{fig:line1blurred2}{{4.2b}{74}{Subfigure 4 4.2b}{subfigure.4.2.2}{}}
1061
1059
\newlabel{sub@fig:line1blurred2}{{(b)}{b}{Subfigure 4 4.2b\relax }{subfigure.4.2.2}{}}
1062
 
\newlabel{fig:line1blurred2@cref}{{[subfigure][2][4,2]4.2b}{75}}
1063
 
\newlabel{fig:line0warpedWithScaleDiff}{{4.2c}{75}{Subfigure 4 4.2c}{subfigure.4.2.3}{}}
 
1060
\newlabel{fig:line1blurred2@cref}{{[subfigure][2][4,2]4.2b}{74}}
 
1061
\newlabel{fig:line0warpedWithScaleDiff}{{4.2c}{74}{Subfigure 4 4.2c}{subfigure.4.2.3}{}}
1064
1062
\newlabel{sub@fig:line0warpedWithScaleDiff}{{(c)}{c}{Subfigure 4 4.2c\relax }{subfigure.4.2.3}{}}
1065
 
\newlabel{fig:line0warpedWithScaleDiff@cref}{{[subfigure][3][4,2]4.2c}{75}}
1066
 
\newlabel{fig:flowWithScaleDiff}{{4.2d}{75}{Subfigure 4 4.2d}{subfigure.4.2.4}{}}
 
1063
\newlabel{fig:line0warpedWithScaleDiff@cref}{{[subfigure][3][4,2]4.2c}{74}}
 
1064
\newlabel{fig:flowWithScaleDiff}{{4.2d}{74}{Subfigure 4 4.2d}{subfigure.4.2.4}{}}
1067
1065
\newlabel{sub@fig:flowWithScaleDiff}{{(d)}{d}{Subfigure 4 4.2d\relax }{subfigure.4.2.4}{}}
1068
 
\newlabel{fig:flowWithScaleDiff@cref}{{[subfigure][4][4,2]4.2d}{75}}
1069
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces \Cref  {fig:line02} shows a synthetic high resolution image $I^{syn}$. In \cref  {fig:line1blurred2} we show a low resolution image $y^{syn}$. $y^{syn}$ is computed by convolution of $I^{syn}$ with Gaussian $G_\ensuremath  {{\sigma ^{sc}}}$ with standard deviation $\ensuremath  {{\sigma ^{sc}}}=5$ and translated by $10$ pixels relative to $I^{syn}$. \Cref  {fig:flowWithScaleDiff} shows the flow $\ensuremath  {\ensuremath  {{\bm  {d}}}}$ computed with the model in eq.~(\ref  {eq:flowDataTerm2}), which incorporates knowledge of the scale difference between $y^{syn}$ and $I^{syn}$ and \cref  {fig:line0warpedWithScaleDiff} show the warped image $I_{\ensuremath  {\ensuremath  {{\bm  {d}}}}}$\relax }}{75}{figure.caption.23}}
1070
 
\newlabel{fig:scaleDiffProblemWithScale}{{4.2}{75}{\Figref {fig:line02} shows a synthetic high resolution image $I^{syn}$. In \figref {fig:line1blurred2} we show a low resolution image $y^{syn}$. $y^{syn}$ is computed by convolution of $I^{syn}$ with Gaussian $G_\scalediff $ with standard deviation $\scalediff =5$ and translated by $10$ pixels relative to $I^{syn}$. \Figref {fig:flowWithScaleDiff} shows the flow $\vd $ computed with the model in \eqref {eq:flowDataTerm2}, which incorporates knowledge of the scale difference between $y^{syn}$ and $I^{syn}$ and \figref {fig:line0warpedWithScaleDiff} show the warped image $I_{\vd }$\relax }{figure.caption.23}{}}
1071
 
\newlabel{fig:scaleDiffProblemWithScale@cref}{{[figure][2][4]4.2}{75}}
1072
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{75}{subfigure.2.1}}
1073
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{75}{subfigure.2.2}}
1074
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{75}{subfigure.2.3}}
1075
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{75}{subfigure.2.4}}
1076
 
\newlabel{eq:thermoSolutionOptflow}{{4.26}{75}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.26}{}}
1077
 
\newlabel{eq:thermoSolutionOptflow@cref}{{[equation][26][4]4.26}{75}}
1078
 
\newlabel{eq:flowDataTerm2}{{4.27}{75}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.27}{}}
1079
 
\newlabel{eq:flowDataTerm2@cref}{{[equation][27][4]4.27}{75}}
1080
 
\newlabel{eq:globalIntensFactor}{{4.28}{75}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.28}{}}
1081
 
\newlabel{eq:globalIntensFactor@cref}{{[equation][28][4]4.28}{75}}
1082
 
\newlabel{eq:linearRelationyI}{{4.30}{75}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.30}{}}
1083
 
\newlabel{eq:linearRelationyI@cref}{{[equation][30][4]4.30}{75}}
1084
 
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Localization}{76}{section.4.5}}
1085
 
\newlabel{sec:localSimilarityMeasure}{{4.5}{76}{Localization}{section.4.5}{}}
1086
 
\newlabel{sec:localSimilarityMeasure@cref}{{[section][5][4]4.5}{76}}
1087
 
\newlabel{eq:globalRelation}{{4.32}{76}{Localization}{equation.4.5.32}{}}
1088
 
\newlabel{eq:globalRelation@cref}{{[equation][32][4]4.32}{76}}
1089
 
\newlabel{eq:localRelation}{{4.33}{76}{Localization}{equation.4.5.33}{}}
1090
 
\newlabel{eq:localRelation@cref}{{[equation][33][4]4.33}{76}}
1091
 
\newlabel{eq:locCovariance}{{4.34}{77}{Localization}{equation.4.5.34}{}}
1092
 
\newlabel{eq:locCovariance@cref}{{[equation][34][4]4.34}{77}}
1093
 
\newlabel{eq:likelihoodWindow}{{4.35}{77}{Localization}{equation.4.5.35}{}}
1094
 
\newlabel{eq:likelihoodWindow@cref}{{[equation][35][4]4.35}{77}}
1095
 
\newlabel{eq:condVarYtcLocal}{{4.36}{77}{Localization}{equation.4.5.36}{}}
1096
 
\newlabel{eq:condVarYtcLocal@cref}{{[equation][36][4]4.36}{77}}
1097
 
\newlabel{eq:localFfactor}{{4.37}{77}{Localization}{equation.4.5.37}{}}
1098
 
\newlabel{eq:localFfactor@cref}{{[equation][37][4]4.37}{77}}
1099
 
\newlabel{eq:flowDataTermLocal}{{4.38}{77}{Localization}{equation.4.5.38}{}}
1100
 
\newlabel{eq:flowDataTermLocal@cref}{{[equation][38][4]4.38}{77}}
1101
 
\@writefile{toc}{\contentsline {section}{\numberline {4.6}The Multigrid Newton algorithm}{77}{section.4.6}}
1102
 
\newlabel{eq:optFlowModelST}{{4.39}{77}{The Multigrid Newton algorithm}{equation.4.6.39}{}}
1103
 
\newlabel{eq:optFlowModelST@cref}{{[equation][39][4]4.39}{77}}
1104
 
\newlabel{eq:optFlowModelTV}{{4.40}{77}{The Multigrid Newton algorithm}{equation.4.6.40}{}}
1105
 
\newlabel{eq:optFlowModelTV@cref}{{[equation][40][4]4.40}{77}}
1106
 
\newlabel{item:FlowAlgoWhileCond}{{6}{78}{The Multigrid Newton algorithm}{ALG@line.6}{}}
1107
 
\newlabel{item:FlowAlgoWhileCond@cref}{{[line][6][]6}{78}}
1108
 
\newlabel{item:FlowAlgoLinearStep}{{9}{78}{The Multigrid Newton algorithm}{ALG@line.9}{}}
1109
 
\newlabel{item:FlowAlgoLinearStep@cref}{{[line][9][]9}{78}}
1110
 
\@writefile{loa}{\contentsline {algorithm}{\numberline {2}{\ignorespaces Multigrid Optical Flow (MOF)\relax }}{78}{algorithm.2}}
1111
 
\newlabel{alg:MultigridOpticalFlow}{{2}{78}{Multigrid Optical Flow (MOF)\relax }{algorithm.2}{}}
1112
 
\newlabel{alg:MultigridOpticalFlow@cref}{{[algorithm][2][]2}{78}}
1113
 
\newlabel{eq:structtensPriorFuncderiv}{{4.41}{78}{The Multigrid Newton algorithm}{equation.4.6.41}{}}
1114
 
\newlabel{eq:structtensPriorFuncderiv@cref}{{[equation][41][4]4.41}{78}}
 
1066
\newlabel{fig:flowWithScaleDiff@cref}{{[subfigure][4][4,2]4.2d}{74}}
 
1067
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces \Cref  {fig:line02} shows a synthetic high resolution image $I^{syn}$. In \cref  {fig:line1blurred2} we show a low resolution image $y^{syn}$. $y^{syn}$ is computed by convolution of $I^{syn}$ with Gaussian $G_\ensuremath  {{\sigma ^{sc}}}$ with standard deviation $\ensuremath  {{\sigma ^{sc}}}=5$ and translated by $10$ pixels relative to $I^{syn}$. \Cref  {fig:flowWithScaleDiff} shows the flow $\ensuremath  {\ensuremath  {{\bm  {d}}}}$ computed with the model in eq.~(\ref  {eq:flowDataTerm2}), which incorporates knowledge of the scale difference between $y^{syn}$ and $I^{syn}$ and \cref  {fig:line0warpedWithScaleDiff} show the warped image $I_{\ensuremath  {\ensuremath  {{\bm  {d}}}}}$\relax }}{74}{figure.caption.23}}
 
1068
\newlabel{fig:scaleDiffProblemWithScale}{{4.2}{74}{\Figref {fig:line02} shows a synthetic high resolution image $I^{syn}$. In \figref {fig:line1blurred2} we show a low resolution image $y^{syn}$. $y^{syn}$ is computed by convolution of $I^{syn}$ with Gaussian $G_\scalediff $ with standard deviation $\scalediff =5$ and translated by $10$ pixels relative to $I^{syn}$. \Figref {fig:flowWithScaleDiff} shows the flow $\vd $ computed with the model in \eqref {eq:flowDataTerm2}, which incorporates knowledge of the scale difference between $y^{syn}$ and $I^{syn}$ and \figref {fig:line0warpedWithScaleDiff} show the warped image $I_{\vd }$\relax }{figure.caption.23}{}}
 
1069
\newlabel{fig:scaleDiffProblemWithScale@cref}{{[figure][2][4]4.2}{74}}
 
1070
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{74}{subfigure.2.1}}
 
1071
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{74}{subfigure.2.2}}
 
1072
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{74}{subfigure.2.3}}
 
1073
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{74}{subfigure.2.4}}
 
1074
\newlabel{eq:thermoSolutionOptflow}{{4.26}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.26}{}}
 
1075
\newlabel{eq:thermoSolutionOptflow@cref}{{[equation][26][4]4.26}{74}}
 
1076
\newlabel{eq:flowDataTerm2}{{4.27}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.27}{}}
 
1077
\newlabel{eq:flowDataTerm2@cref}{{[equation][27][4]4.27}{74}}
 
1078
\newlabel{eq:globalIntensFactor}{{4.28}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.28}{}}
 
1079
\newlabel{eq:globalIntensFactor@cref}{{[equation][28][4]4.28}{74}}
 
1080
\newlabel{eq:linearRelationyI}{{4.30}{74}{Computation of the similarity measure $E^{data}_{y,I}$}{equation.4.4.30}{}}
 
1081
\newlabel{eq:linearRelationyI@cref}{{[equation][30][4]4.30}{74}}
 
1082
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Localization}{75}{section.4.5}}
 
1083
\newlabel{sec:localSimilarityMeasure}{{4.5}{75}{Localization}{section.4.5}{}}
 
1084
\newlabel{sec:localSimilarityMeasure@cref}{{[section][5][4]4.5}{75}}
 
1085
\newlabel{eq:globalRelation}{{4.32}{75}{Localization}{equation.4.5.32}{}}
 
1086
\newlabel{eq:globalRelation@cref}{{[equation][32][4]4.32}{75}}
 
1087
\newlabel{eq:localRelation}{{4.33}{75}{Localization}{equation.4.5.33}{}}
 
1088
\newlabel{eq:localRelation@cref}{{[equation][33][4]4.33}{75}}
 
1089
\newlabel{eq:locCovariance}{{4.34}{76}{Localization}{equation.4.5.34}{}}
 
1090
\newlabel{eq:locCovariance@cref}{{[equation][34][4]4.34}{76}}
 
1091
\newlabel{eq:likelihoodWindow}{{4.35}{76}{Localization}{equation.4.5.35}{}}
 
1092
\newlabel{eq:likelihoodWindow@cref}{{[equation][35][4]4.35}{76}}
 
1093
\newlabel{eq:condVarYtcLocal}{{4.36}{76}{Localization}{equation.4.5.36}{}}
 
1094
\newlabel{eq:condVarYtcLocal@cref}{{[equation][36][4]4.36}{76}}
 
1095
\newlabel{eq:localFfactor}{{4.37}{76}{Localization}{equation.4.5.37}{}}
 
1096
\newlabel{eq:localFfactor@cref}{{[equation][37][4]4.37}{76}}
 
1097
\newlabel{eq:flowDataTermLocal}{{4.38}{76}{Localization}{equation.4.5.38}{}}
 
1098
\newlabel{eq:flowDataTermLocal@cref}{{[equation][38][4]4.38}{76}}
 
1099
\@writefile{toc}{\contentsline {section}{\numberline {4.6}The Multigrid Newton algorithm}{76}{section.4.6}}
 
1100
\newlabel{eq:optFlowModelST}{{4.39}{76}{The Multigrid Newton algorithm}{equation.4.6.39}{}}
 
1101
\newlabel{eq:optFlowModelST@cref}{{[equation][39][4]4.39}{76}}
 
1102
\newlabel{eq:optFlowModelTV}{{4.40}{76}{The Multigrid Newton algorithm}{equation.4.6.40}{}}
 
1103
\newlabel{eq:optFlowModelTV@cref}{{[equation][40][4]4.40}{76}}
 
1104
\newlabel{item:FlowAlgoWhileCond}{{6}{77}{The Multigrid Newton algorithm}{ALG@line.6}{}}
 
1105
\newlabel{item:FlowAlgoWhileCond@cref}{{[line][6][]6}{77}}
 
1106
\newlabel{item:FlowAlgoLinearStep}{{9}{77}{The Multigrid Newton algorithm}{ALG@line.9}{}}
 
1107
\newlabel{item:FlowAlgoLinearStep@cref}{{[line][9][]9}{77}}
 
1108
\@writefile{loa}{\contentsline {algorithm}{\numberline {2}{\ignorespaces Multigrid Optical Flow (MOF)\relax }}{77}{algorithm.2}}
 
1109
\newlabel{alg:MultigridOpticalFlow}{{2}{77}{Multigrid Optical Flow (MOF)\relax }{algorithm.2}{}}
 
1110
\newlabel{alg:MultigridOpticalFlow@cref}{{[algorithm][2][]2}{77}}
 
1111
\newlabel{eq:structtensPriorFuncderiv}{{4.41}{77}{The Multigrid Newton algorithm}{equation.4.6.41}{}}
 
1112
\newlabel{eq:structtensPriorFuncderiv@cref}{{[equation][41][4]4.41}{77}}
1115
1113
\citation{Middleburry}
1116
 
\newlabel{eq:structtensPriorStable}{{4.42}{79}{The Multigrid Newton algorithm}{equation.4.6.42}{}}
1117
 
\newlabel{eq:structtensPriorStable@cref}{{[equation][42][4]4.42}{79}}
1118
 
\newlabel{eq:optFlowModelSTStable}{{4.43}{79}{The Multigrid Newton algorithm}{equation.4.6.43}{}}
1119
 
\newlabel{eq:optFlowModelSTStable@cref}{{[equation][43][4]4.43}{79}}
1120
 
\@writefile{toc}{\contentsline {section}{\numberline {4.7}Results}{79}{section.4.7}}
1121
 
\@writefile{brf}{\backcite{Middleburry}{{79}{4.7}{section.4.7}}}
1122
 
\newlabel{fig:rubberWhale}{{4.3a}{80}{Subfigure 4 4.3a}{subfigure.4.3.1}{}}
 
1114
\newlabel{eq:structtensPriorStable}{{4.42}{78}{The Multigrid Newton algorithm}{equation.4.6.42}{}}
 
1115
\newlabel{eq:structtensPriorStable@cref}{{[equation][42][4]4.42}{78}}
 
1116
\newlabel{eq:optFlowModelSTStable}{{4.43}{78}{The Multigrid Newton algorithm}{equation.4.6.43}{}}
 
1117
\newlabel{eq:optFlowModelSTStable@cref}{{[equation][43][4]4.43}{78}}
 
1118
\@writefile{toc}{\contentsline {section}{\numberline {4.7}Results}{78}{section.4.7}}
 
1119
\@writefile{brf}{\backcite{Middleburry}{{78}{4.7}{section.4.7}}}
 
1120
\newlabel{fig:rubberWhale}{{4.3a}{79}{Subfigure 4 4.3a}{subfigure.4.3.1}{}}
1123
1121
\newlabel{sub@fig:rubberWhale}{{(a)}{a}{Subfigure 4 4.3a\relax }{subfigure.4.3.1}{}}
1124
 
\newlabel{fig:rubberWhale@cref}{{[subfigure][1][4,3]4.3a}{80}}
1125
 
\newlabel{fig:rubberWhale-flow}{{4.3b}{80}{Subfigure 4 4.3b}{subfigure.4.3.2}{}}
 
1122
\newlabel{fig:rubberWhale@cref}{{[subfigure][1][4,3]4.3a}{79}}
 
1123
\newlabel{fig:rubberWhale-flow}{{4.3b}{79}{Subfigure 4 4.3b}{subfigure.4.3.2}{}}
1126
1124
\newlabel{sub@fig:rubberWhale-flow}{{(b)}{b}{Subfigure 4 4.3b\relax }{subfigure.4.3.2}{}}
1127
 
\newlabel{fig:rubberWhale-flow@cref}{{[subfigure][2][4,3]4.3b}{80}}
1128
 
\newlabel{fig:rubberWhale-flowL1}{{4.3c}{80}{Subfigure 4 4.3c}{subfigure.4.3.3}{}}
 
1125
\newlabel{fig:rubberWhale-flow@cref}{{[subfigure][2][4,3]4.3b}{79}}
 
1126
\newlabel{fig:rubberWhale-flowL1}{{4.3c}{79}{Subfigure 4 4.3c}{subfigure.4.3.3}{}}
1129
1127
\newlabel{sub@fig:rubberWhale-flowL1}{{(c)}{c}{Subfigure 4 4.3c\relax }{subfigure.4.3.3}{}}
1130
 
\newlabel{fig:rubberWhale-flowL1@cref}{{[subfigure][3][4,3]4.3c}{80}}
1131
 
\newlabel{fig:rubberWhale-gt2}{{4.3d}{80}{Subfigure 4 4.3d}{subfigure.4.3.4}{}}
 
1128
\newlabel{fig:rubberWhale-flowL1@cref}{{[subfigure][3][4,3]4.3c}{79}}
 
1129
\newlabel{fig:rubberWhale-gt2}{{4.3d}{79}{Subfigure 4 4.3d}{subfigure.4.3.4}{}}
1132
1130
\newlabel{sub@fig:rubberWhale-gt2}{{(d)}{d}{Subfigure 4 4.3d\relax }{subfigure.4.3.4}{}}
1133
 
\newlabel{fig:rubberWhale-gt2@cref}{{[subfigure][4][4,3]4.3d}{80}}
1134
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Rubberwhale Sequence: Figure \ref  {fig:rubberWhale} shows one frame of the sequence. \cref  {fig:rubberWhale-flow} shows the estimated optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, \cref  {fig:rubberWhale-flowL1} the flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$ and \cref  {fig:rubberWhale-gt2} shows the provided ground truth\relax }}{80}{figure.caption.24}}
1135
 
\newlabel{fig:rubberWhaleSeq2}{{4.3}{80}{Rubberwhale Sequence: Figure \ref {fig:rubberWhale} shows one frame of the sequence. \figref {fig:rubberWhale-flow} shows the estimated optical flow $\optimalflowST $, \figref {fig:rubberWhale-flowL1} the flow $\optimalflowTV $ and \figref {fig:rubberWhale-gt2} shows the provided ground truth\relax }{figure.caption.24}{}}
1136
 
\newlabel{fig:rubberWhaleSeq2@cref}{{[figure][3][4]4.3}{80}}
1137
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{80}{subfigure.3.1}}
1138
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{80}{subfigure.3.2}}
1139
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{80}{subfigure.3.3}}
1140
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{80}{subfigure.3.4}}
1141
 
\newlabel{eq:optFlowModelSTLocal}{{4.44}{80}{Results}{equation.4.7.44}{}}
1142
 
\newlabel{eq:optFlowModelSTLocal@cref}{{[equation][44][4]4.44}{80}}
1143
 
\newlabel{eq:optFlowModelTVLocal}{{4.45}{80}{Results}{equation.4.7.45}{}}
1144
 
\newlabel{eq:optFlowModelTVLocal@cref}{{[equation][45][4]4.45}{80}}
1145
 
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.1}Uni-Modal Data}{80}{subsection.4.7.1}}
1146
 
\newlabel{sec:uniModalOpticalFlow}{{4.7.1}{80}{Uni-Modal Data}{subsection.4.7.1}{}}
1147
 
\newlabel{sec:uniModalOpticalFlow@cref}{{[subsection][1][4,7]4.7.1}{80}}
1148
 
\newlabel{eq:EPEDefinition}{{4.46}{80}{Uni-Modal Data}{equation.4.7.46}{}}
1149
 
\newlabel{eq:EPEDefinition@cref}{{[equation][46][4]4.46}{80}}
1150
 
\newlabel{fig:hydrangea}{{4.4a}{81}{Subfigure 4 4.4a}{subfigure.4.4.1}{}}
 
1131
\newlabel{fig:rubberWhale-gt2@cref}{{[subfigure][4][4,3]4.3d}{79}}
 
1132
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Rubberwhale Sequence: Figure \ref  {fig:rubberWhale} shows one frame of the sequence. \cref  {fig:rubberWhale-flow} shows the estimated optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, \cref  {fig:rubberWhale-flowL1} the flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$ and \cref  {fig:rubberWhale-gt2} shows the provided ground truth\relax }}{79}{figure.caption.24}}
 
1133
\newlabel{fig:rubberWhaleSeq2}{{4.3}{79}{Rubberwhale Sequence: Figure \ref {fig:rubberWhale} shows one frame of the sequence. \figref {fig:rubberWhale-flow} shows the estimated optical flow $\optimalflowST $, \figref {fig:rubberWhale-flowL1} the flow $\optimalflowTV $ and \figref {fig:rubberWhale-gt2} shows the provided ground truth\relax }{figure.caption.24}{}}
 
1134
\newlabel{fig:rubberWhaleSeq2@cref}{{[figure][3][4]4.3}{79}}
 
1135
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{79}{subfigure.3.1}}
 
1136
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{79}{subfigure.3.2}}
 
1137
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{79}{subfigure.3.3}}
 
1138
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{79}{subfigure.3.4}}
 
1139
\newlabel{eq:optFlowModelSTLocal}{{4.44}{79}{Results}{equation.4.7.44}{}}
 
1140
\newlabel{eq:optFlowModelSTLocal@cref}{{[equation][44][4]4.44}{79}}
 
1141
\newlabel{eq:optFlowModelTVLocal}{{4.45}{79}{Results}{equation.4.7.45}{}}
 
1142
\newlabel{eq:optFlowModelTVLocal@cref}{{[equation][45][4]4.45}{79}}
 
1143
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.1}Uni-Modal Data}{79}{subsection.4.7.1}}
 
1144
\newlabel{sec:uniModalOpticalFlow}{{4.7.1}{79}{Uni-Modal Data}{subsection.4.7.1}{}}
 
1145
\newlabel{sec:uniModalOpticalFlow@cref}{{[subsection][1][4,7]4.7.1}{79}}
 
1146
\newlabel{eq:EPEDefinition}{{4.46}{79}{Uni-Modal Data}{equation.4.7.46}{}}
 
1147
\newlabel{eq:EPEDefinition@cref}{{[equation][46][4]4.46}{79}}
 
1148
\newlabel{fig:hydrangea}{{4.4a}{80}{Subfigure 4 4.4a}{subfigure.4.4.1}{}}
1151
1149
\newlabel{sub@fig:hydrangea}{{(a)}{a}{Subfigure 4 4.4a\relax }{subfigure.4.4.1}{}}
1152
 
\newlabel{fig:hydrangea@cref}{{[subfigure][1][4,4]4.4a}{81}}
1153
 
\newlabel{fig:hydrangea-flow}{{4.4b}{81}{Subfigure 4 4.4b}{subfigure.4.4.2}{}}
 
1150
\newlabel{fig:hydrangea@cref}{{[subfigure][1][4,4]4.4a}{80}}
 
1151
\newlabel{fig:hydrangea-flow}{{4.4b}{80}{Subfigure 4 4.4b}{subfigure.4.4.2}{}}
1154
1152
\newlabel{sub@fig:hydrangea-flow}{{(b)}{b}{Subfigure 4 4.4b\relax }{subfigure.4.4.2}{}}
1155
 
\newlabel{fig:hydrangea-flow@cref}{{[subfigure][2][4,4]4.4b}{81}}
1156
 
\newlabel{fig:hydrangea-flowL1}{{4.4c}{81}{Subfigure 4 4.4c}{subfigure.4.4.3}{}}
 
1153
\newlabel{fig:hydrangea-flow@cref}{{[subfigure][2][4,4]4.4b}{80}}
 
1154
\newlabel{fig:hydrangea-flowL1}{{4.4c}{80}{Subfigure 4 4.4c}{subfigure.4.4.3}{}}
1157
1155
\newlabel{sub@fig:hydrangea-flowL1}{{(c)}{c}{Subfigure 4 4.4c\relax }{subfigure.4.4.3}{}}
1158
 
\newlabel{fig:hydrangea-flowL1@cref}{{[subfigure][3][4,4]4.4c}{81}}
1159
 
\newlabel{fig:hydrangea-gt2}{{4.4d}{81}{Subfigure 4 4.4d}{subfigure.4.4.4}{}}
 
1156
\newlabel{fig:hydrangea-flowL1@cref}{{[subfigure][3][4,4]4.4c}{80}}
 
1157
\newlabel{fig:hydrangea-gt2}{{4.4d}{80}{Subfigure 4 4.4d}{subfigure.4.4.4}{}}
1160
1158
\newlabel{sub@fig:hydrangea-gt2}{{(d)}{d}{Subfigure 4 4.4d\relax }{subfigure.4.4.4}{}}
1161
 
\newlabel{fig:hydrangea-gt2@cref}{{[subfigure][4][4,4]4.4d}{81}}
1162
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Hydrangea Sequence: Figure \ref  {fig:hydrangea} shows one frame of the sequence. \cref  {fig:hydrangea-flow} shows the estimated optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, \cref  {fig:hydrangea-flowL1} the flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$ and \cref  {fig:hydrangea-gt2} shows the provided ground truth\relax }}{81}{figure.caption.25}}
1163
 
\newlabel{fig:hydrangeaSeq2}{{4.4}{81}{Hydrangea Sequence: Figure \ref {fig:hydrangea} shows one frame of the sequence. \figref {fig:hydrangea-flow} shows the estimated optical flow $\optimalflowST $, \figref {fig:hydrangea-flowL1} the flow $\optimalflowTV $ and \figref {fig:hydrangea-gt2} shows the provided ground truth\relax }{figure.caption.25}{}}
1164
 
\newlabel{fig:hydrangeaSeq2@cref}{{[figure][4][4]4.4}{81}}
1165
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{81}{subfigure.4.1}}
1166
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{81}{subfigure.4.2}}
1167
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{81}{subfigure.4.3}}
1168
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{81}{subfigure.4.4}}
1169
 
\newlabel{eq:meanCurv2}{{4.47}{81}{Uni-Modal Data}{equation.4.7.47}{}}
1170
 
\newlabel{eq:meanCurv2@cref}{{[equation][47][4]4.47}{81}}
1171
 
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.2}Rubber Whale Sequence}{81}{subsection.4.7.2}}
1172
 
\newlabel{sec:rubberWhale}{{4.7.2}{81}{Rubber Whale Sequence}{subsection.4.7.2}{}}
1173
 
\newlabel{sec:rubberWhale@cref}{{[subsection][2][4,7]4.7.2}{81}}
1174
 
\newlabel{fig:EPEToCurvST7}{{4.5a}{82}{Subfigure 4 4.5a}{subfigure.4.5.1}{}}
 
1159
\newlabel{fig:hydrangea-gt2@cref}{{[subfigure][4][4,4]4.4d}{80}}
 
1160
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Hydrangea Sequence: Figure \ref  {fig:hydrangea} shows one frame of the sequence. \cref  {fig:hydrangea-flow} shows the estimated optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, \cref  {fig:hydrangea-flowL1} the flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$ and \cref  {fig:hydrangea-gt2} shows the provided ground truth\relax }}{80}{figure.caption.25}}
 
1161
\newlabel{fig:hydrangeaSeq2}{{4.4}{80}{Hydrangea Sequence: Figure \ref {fig:hydrangea} shows one frame of the sequence. \figref {fig:hydrangea-flow} shows the estimated optical flow $\optimalflowST $, \figref {fig:hydrangea-flowL1} the flow $\optimalflowTV $ and \figref {fig:hydrangea-gt2} shows the provided ground truth\relax }{figure.caption.25}{}}
 
1162
\newlabel{fig:hydrangeaSeq2@cref}{{[figure][4][4]4.4}{80}}
 
1163
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{80}{subfigure.4.1}}
 
1164
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{80}{subfigure.4.2}}
 
1165
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{80}{subfigure.4.3}}
 
1166
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{80}{subfigure.4.4}}
 
1167
\newlabel{eq:meanCurv2}{{4.47}{80}{Uni-Modal Data}{equation.4.7.47}{}}
 
1168
\newlabel{eq:meanCurv2@cref}{{[equation][47][4]4.47}{80}}
 
1169
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.2}Rubber Whale Sequence}{80}{subsection.4.7.2}}
 
1170
\newlabel{sec:rubberWhale}{{4.7.2}{80}{Rubber Whale Sequence}{subsection.4.7.2}{}}
 
1171
\newlabel{sec:rubberWhale@cref}{{[subsection][2][4,7]4.7.2}{80}}
 
1172
\newlabel{fig:EPEToCurvST7}{{4.5a}{81}{Subfigure 4 4.5a}{subfigure.4.5.1}{}}
1175
1173
\newlabel{sub@fig:EPEToCurvST7}{{(a)}{a}{Subfigure 4 4.5a\relax }{subfigure.4.5.1}{}}
1176
 
\newlabel{fig:EPEToCurvST7@cref}{{[subfigure][1][4,5]4.5a}{82}}
1177
 
\newlabel{fig:EPEToCurvST9}{{4.5b}{82}{Subfigure 4 4.5b}{subfigure.4.5.2}{}}
 
1174
\newlabel{fig:EPEToCurvST7@cref}{{[subfigure][1][4,5]4.5a}{81}}
 
1175
\newlabel{fig:EPEToCurvST9}{{4.5b}{81}{Subfigure 4 4.5b}{subfigure.4.5.2}{}}
1178
1176
\newlabel{sub@fig:EPEToCurvST9}{{(b)}{b}{Subfigure 4 4.5b\relax }{subfigure.4.5.2}{}}
1179
 
\newlabel{fig:EPEToCurvST9@cref}{{[subfigure][2][4,5]4.5b}{82}}
1180
 
\newlabel{fig:EPEToCurvST11}{{4.5c}{82}{Subfigure 4 4.5c}{subfigure.4.5.3}{}}
 
1177
\newlabel{fig:EPEToCurvST9@cref}{{[subfigure][2][4,5]4.5b}{81}}
 
1178
\newlabel{fig:EPEToCurvST11}{{4.5c}{81}{Subfigure 4 4.5c}{subfigure.4.5.3}{}}
1181
1179
\newlabel{sub@fig:EPEToCurvST11}{{(c)}{c}{Subfigure 4 4.5c\relax }{subfigure.4.5.3}{}}
1182
 
\newlabel{fig:EPEToCurvST11@cref}{{[subfigure][3][4,5]4.5c}{82}}
1183
 
\newlabel{fig:EPEToCurvTV}{{4.5d}{82}{Subfigure 4 4.5d}{subfigure.4.5.4}{}}
 
1180
\newlabel{fig:EPEToCurvST11@cref}{{[subfigure][3][4,5]4.5c}{81}}
 
1181
\newlabel{fig:EPEToCurvTV}{{4.5d}{81}{Subfigure 4 4.5d}{subfigure.4.5.4}{}}
1184
1182
\newlabel{sub@fig:EPEToCurvTV}{{(d)}{d}{Subfigure 4 4.5d\relax }{subfigure.4.5.4}{}}
1185
 
\newlabel{fig:EPEToCurvTV@cref}{{[subfigure][4][4,5]4.5d}{82}}
1186
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces EPE to level-set curvature: Figures \ref  {fig:EPEToCurvST7} to \ref  {fig:EPEToCurvTV} show plots of the EPE (eq.~(\ref  {eq:EPEDefinition})) against the curvature $\kappa $ (eq.~(\ref  {eq:meanCurv2})) for the rubber whale sequence (\cref  {fig:rubberWhaleSeq2}). Figures \ref  {fig:EPEToCurvST7} to \ref  {fig:EPEToCurvST11} show the results for the structure tensor model $E_{ST}$ and \cref  {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }}{82}{figure.caption.26}}
1187
 
\newlabel{fig:EPEToCurv}{{4.5}{82}{EPE to level-set curvature: Figures \ref {fig:EPEToCurvST7} to \ref {fig:EPEToCurvTV} show plots of the EPE (\eqref {eq:EPEDefinition}) against the curvature $\kappa $ (\eqref {eq:meanCurv2}) for the rubber whale sequence (\figref {fig:rubberWhaleSeq2}). Figures \ref {fig:EPEToCurvST7} to \ref {fig:EPEToCurvST11} show the results for the structure tensor model $E_{ST}$ and \figref {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }{figure.caption.26}{}}
1188
 
\newlabel{fig:EPEToCurv@cref}{{[figure][5][4]4.5}{82}}
1189
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{82}{subfigure.5.1}}
1190
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{82}{subfigure.5.2}}
1191
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{82}{subfigure.5.3}}
1192
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{82}{subfigure.5.4}}
1193
 
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces EPE for different filter-sizes $\sigma _{ST}$ for the model $E^g_{ST}$ (eq.~(\ref  {eq:optFlowModelST})) and for the TV model $E^g_{TV}$ (eq.~(\ref  {eq:optFlowModelTV})). The value shown in the column \textsl  {Median EPE} is the median EPE per ROI. The median per ROI was chosen over the average EPE per ROI due to its robustness towards outlier EPE values. The EPE values for the model $E^g_{ST}$ decrease with increasing structure tensor filtersizes $\sigma _{ST}$. However the general trend is that the ROI's with high curvatures $\kappa $ (\textsl  {Wheel} and \textsl  {Shell}) tend to have higher EPE values then the ROI's with low curvatures (\textsl  {Fence} and \textsl  {Box Edge}). \relax }}{82}{table.caption.27}}
1194
 
\newlabel{tab:rw-epeAE}{{4.1}{82}{EPE for different filter-sizes $\sigma _{ST}$ for the model $E^g_{ST}$ (\eqref {eq:optFlowModelST}) and for the TV model $E^g_{TV}$ (\eqref {eq:optFlowModelTV}). The value shown in the column \textsl {Median EPE} is the median EPE per ROI. The median per ROI was chosen over the average EPE per ROI due to its robustness towards outlier EPE values. The EPE values for the model $E^g_{ST}$ decrease with increasing structure tensor filtersizes $\sigma _{ST}$. However the general trend is that the ROI's with high curvatures $\kappa $ (\textsl {Wheel} and \textsl {Shell}) tend to have higher EPE values then the ROI's with low curvatures (\textsl {Fence} and \textsl {Box Edge}). \relax }{table.caption.27}{}}
1195
 
\newlabel{tab:rw-epeAE@cref}{{[table][1][4]4.1}{82}}
1196
 
\newlabel{fig:EPEToCurvST7hyd}{{4.6a}{83}{Subfigure 4 4.6a}{subfigure.4.6.1}{}}
 
1183
\newlabel{fig:EPEToCurvTV@cref}{{[subfigure][4][4,5]4.5d}{81}}
 
1184
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces EPE to level-set curvature: Figures \ref  {fig:EPEToCurvST7} to \ref  {fig:EPEToCurvTV} show plots of the EPE (eq.~(\ref  {eq:EPEDefinition})) against the curvature $\kappa $ (eq.~(\ref  {eq:meanCurv2})) for the rubber whale sequence (\cref  {fig:rubberWhaleSeq2}). Figures \ref  {fig:EPEToCurvST7} to \ref  {fig:EPEToCurvST11} show the results for the structure tensor model $E_{ST}$ and \cref  {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }}{81}{figure.caption.26}}
 
1185
\newlabel{fig:EPEToCurv}{{4.5}{81}{EPE to level-set curvature: Figures \ref {fig:EPEToCurvST7} to \ref {fig:EPEToCurvTV} show plots of the EPE (\eqref {eq:EPEDefinition}) against the curvature $\kappa $ (\eqref {eq:meanCurv2}) for the rubber whale sequence (\figref {fig:rubberWhaleSeq2}). Figures \ref {fig:EPEToCurvST7} to \ref {fig:EPEToCurvST11} show the results for the structure tensor model $E_{ST}$ and \figref {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }{figure.caption.26}{}}
 
1186
\newlabel{fig:EPEToCurv@cref}{{[figure][5][4]4.5}{81}}
 
1187
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{81}{subfigure.5.1}}
 
1188
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{81}{subfigure.5.2}}
 
1189
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{81}{subfigure.5.3}}
 
1190
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{81}{subfigure.5.4}}
 
1191
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces EPE for different filter-sizes $\sigma _{ST}$ for the model $E^g_{ST}$ (eq.~(\ref  {eq:optFlowModelST})) and for the TV model $E^g_{TV}$ (eq.~(\ref  {eq:optFlowModelTV})). The value shown in the column \textsl  {Median EPE} is the median EPE per ROI. The median per ROI was chosen over the average EPE per ROI due to its robustness towards outlier EPE values. The EPE values for the model $E^g_{ST}$ decrease with increasing structure tensor filtersizes $\sigma _{ST}$. However the general trend is that the ROI's with high curvatures $\kappa $ (\textsl  {Wheel} and \textsl  {Shell}) tend to have higher EPE values then the ROI's with low curvatures (\textsl  {Fence} and \textsl  {Box Edge}). \relax }}{81}{table.caption.27}}
 
1192
\newlabel{tab:rw-epeAE}{{4.1}{81}{EPE for different filter-sizes $\sigma _{ST}$ for the model $E^g_{ST}$ (\eqref {eq:optFlowModelST}) and for the TV model $E^g_{TV}$ (\eqref {eq:optFlowModelTV}). The value shown in the column \textsl {Median EPE} is the median EPE per ROI. The median per ROI was chosen over the average EPE per ROI due to its robustness towards outlier EPE values. The EPE values for the model $E^g_{ST}$ decrease with increasing structure tensor filtersizes $\sigma _{ST}$. However the general trend is that the ROI's with high curvatures $\kappa $ (\textsl {Wheel} and \textsl {Shell}) tend to have higher EPE values then the ROI's with low curvatures (\textsl {Fence} and \textsl {Box Edge}). \relax }{table.caption.27}{}}
 
1193
\newlabel{tab:rw-epeAE@cref}{{[table][1][4]4.1}{81}}
 
1194
\newlabel{fig:EPEToCurvST7hyd}{{4.6a}{82}{Subfigure 4 4.6a}{subfigure.4.6.1}{}}
1197
1195
\newlabel{sub@fig:EPEToCurvST7hyd}{{(a)}{a}{Subfigure 4 4.6a\relax }{subfigure.4.6.1}{}}
1198
 
\newlabel{fig:EPEToCurvST7hyd@cref}{{[subfigure][1][4,6]4.6a}{83}}
1199
 
\newlabel{fig:EPEToCurvST9hyd}{{4.6b}{83}{Subfigure 4 4.6b}{subfigure.4.6.2}{}}
 
1196
\newlabel{fig:EPEToCurvST7hyd@cref}{{[subfigure][1][4,6]4.6a}{82}}
 
1197
\newlabel{fig:EPEToCurvST9hyd}{{4.6b}{82}{Subfigure 4 4.6b}{subfigure.4.6.2}{}}
1200
1198
\newlabel{sub@fig:EPEToCurvST9hyd}{{(b)}{b}{Subfigure 4 4.6b\relax }{subfigure.4.6.2}{}}
1201
 
\newlabel{fig:EPEToCurvST9hyd@cref}{{[subfigure][2][4,6]4.6b}{83}}
1202
 
\newlabel{fig:EPEToCurvST11hyd}{{4.6c}{83}{Subfigure 4 4.6c}{subfigure.4.6.3}{}}
 
1199
\newlabel{fig:EPEToCurvST9hyd@cref}{{[subfigure][2][4,6]4.6b}{82}}
 
1200
\newlabel{fig:EPEToCurvST11hyd}{{4.6c}{82}{Subfigure 4 4.6c}{subfigure.4.6.3}{}}
1203
1201
\newlabel{sub@fig:EPEToCurvST11hyd}{{(c)}{c}{Subfigure 4 4.6c\relax }{subfigure.4.6.3}{}}
1204
 
\newlabel{fig:EPEToCurvST11hyd@cref}{{[subfigure][3][4,6]4.6c}{83}}
1205
 
\newlabel{fig:EPEToCurvTVhyd}{{4.6d}{83}{Subfigure 4 4.6d}{subfigure.4.6.4}{}}
 
1202
\newlabel{fig:EPEToCurvST11hyd@cref}{{[subfigure][3][4,6]4.6c}{82}}
 
1203
\newlabel{fig:EPEToCurvTVhyd}{{4.6d}{82}{Subfigure 4 4.6d}{subfigure.4.6.4}{}}
1206
1204
\newlabel{sub@fig:EPEToCurvTVhyd}{{(d)}{d}{Subfigure 4 4.6d\relax }{subfigure.4.6.4}{}}
1207
 
\newlabel{fig:EPEToCurvTVhyd@cref}{{[subfigure][4][4,6]4.6d}{83}}
1208
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces EPE to level-set curvature: Figures \ref  {fig:EPEToCurvST7hyd} to \ref  {fig:EPEToCurvTVhyd} show plots of the EPE (eq.~(\ref  {eq:EPEDefinition})) against the curvature $\kappa $ (eq.~(\ref  {eq:meanCurv2})) for the hydrangea sequence (\cref  {fig:hydrangeaSeq2}). Figures \ref  {fig:EPEToCurvST7hyd} to \ref  {fig:EPEToCurvST11hyd} show the results for the structure tensor model $E_{ST}$ and \cref  {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }}{83}{figure.caption.28}}
1209
 
\newlabel{fig:EPEToCurvHyd}{{4.6}{83}{EPE to level-set curvature: Figures \ref {fig:EPEToCurvST7hyd} to \ref {fig:EPEToCurvTVhyd} show plots of the EPE (\eqref {eq:EPEDefinition}) against the curvature $\kappa $ (\eqref {eq:meanCurv2}) for the hydrangea sequence (\figref {fig:hydrangeaSeq2}). Figures \ref {fig:EPEToCurvST7hyd} to \ref {fig:EPEToCurvST11hyd} show the results for the structure tensor model $E_{ST}$ and \figref {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }{figure.caption.28}{}}
1210
 
\newlabel{fig:EPEToCurvHyd@cref}{{[figure][6][4]4.6}{83}}
1211
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{83}{subfigure.6.1}}
1212
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{83}{subfigure.6.2}}
1213
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{83}{subfigure.6.3}}
1214
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{83}{subfigure.6.4}}
1215
 
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.3}Hydrangea Sequence}{83}{subsection.4.7.3}}
1216
 
\newlabel{sec:hydrangea}{{4.7.3}{83}{Hydrangea Sequence}{subsection.4.7.3}{}}
1217
 
\newlabel{sec:hydrangea@cref}{{[subsection][3][4,7]4.7.3}{83}}
1218
 
\newlabel{fig:synthMultModalRWFrame10}{{4.7a}{84}{Subfigure 4 4.7a}{subfigure.4.7.1}{}}
 
1205
\newlabel{fig:EPEToCurvTVhyd@cref}{{[subfigure][4][4,6]4.6d}{82}}
 
1206
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces EPE to level-set curvature: Figures \ref  {fig:EPEToCurvST7hyd} to \ref  {fig:EPEToCurvTVhyd} show plots of the EPE (eq.~(\ref  {eq:EPEDefinition})) against the curvature $\kappa $ (eq.~(\ref  {eq:meanCurv2})) for the hydrangea sequence (\cref  {fig:hydrangeaSeq2}). Figures \ref  {fig:EPEToCurvST7hyd} to \ref  {fig:EPEToCurvST11hyd} show the results for the structure tensor model $E_{ST}$ and \cref  {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }}{82}{figure.caption.28}}
 
1207
\newlabel{fig:EPEToCurvHyd}{{4.6}{82}{EPE to level-set curvature: Figures \ref {fig:EPEToCurvST7hyd} to \ref {fig:EPEToCurvTVhyd} show plots of the EPE (\eqref {eq:EPEDefinition}) against the curvature $\kappa $ (\eqref {eq:meanCurv2}) for the hydrangea sequence (\figref {fig:hydrangeaSeq2}). Figures \ref {fig:EPEToCurvST7hyd} to \ref {fig:EPEToCurvST11hyd} show the results for the structure tensor model $E_{ST}$ and \figref {fig:EPEToCurvTV} the result for the TV model $E_{TV}$. The curvature $\kappa $ was split into $40$ bins and the height of the bars is the average EPE per curvature bin. \relax }{figure.caption.28}{}}
 
1208
\newlabel{fig:EPEToCurvHyd@cref}{{[figure][6][4]4.6}{82}}
 
1209
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{82}{subfigure.6.1}}
 
1210
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{82}{subfigure.6.2}}
 
1211
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{82}{subfigure.6.3}}
 
1212
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{82}{subfigure.6.4}}
 
1213
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.3}Hydrangea Sequence}{82}{subsection.4.7.3}}
 
1214
\newlabel{sec:hydrangea}{{4.7.3}{82}{Hydrangea Sequence}{subsection.4.7.3}{}}
 
1215
\newlabel{sec:hydrangea@cref}{{[subsection][3][4,7]4.7.3}{82}}
 
1216
\newlabel{fig:synthMultModalRWFrame10}{{4.7a}{83}{Subfigure 4 4.7a}{subfigure.4.7.1}{}}
1219
1217
\newlabel{sub@fig:synthMultModalRWFrame10}{{(a)}{a}{Subfigure 4 4.7a\relax }{subfigure.4.7.1}{}}
1220
 
\newlabel{fig:synthMultModalRWFrame10@cref}{{[subfigure][1][4,7]4.7a}{84}}
1221
 
\newlabel{fig:synthMultModalRWYCoAlScale2Frame10}{{4.7b}{84}{Subfigure 4 4.7b}{subfigure.4.7.2}{}}
 
1218
\newlabel{fig:synthMultModalRWFrame10@cref}{{[subfigure][1][4,7]4.7a}{83}}
 
1219
\newlabel{fig:synthMultModalRWYCoAlScale2Frame10}{{4.7b}{83}{Subfigure 4 4.7b}{subfigure.4.7.2}{}}
1222
1220
\newlabel{sub@fig:synthMultModalRWYCoAlScale2Frame10}{{(b)}{b}{Subfigure 4 4.7b\relax }{subfigure.4.7.2}{}}
1223
 
\newlabel{fig:synthMultModalRWYCoAlScale2Frame10@cref}{{[subfigure][2][4,7]4.7b}{84}}
1224
 
\newlabel{fig:synthMultModalRWYCoAlScale4Frame10}{{4.7c}{84}{Subfigure 4 4.7c}{subfigure.4.7.3}{}}
 
1221
\newlabel{fig:synthMultModalRWYCoAlScale2Frame10@cref}{{[subfigure][2][4,7]4.7b}{83}}
 
1222
\newlabel{fig:synthMultModalRWYCoAlScale4Frame10}{{4.7c}{83}{Subfigure 4 4.7c}{subfigure.4.7.3}{}}
1225
1223
\newlabel{sub@fig:synthMultModalRWYCoAlScale4Frame10}{{(c)}{c}{Subfigure 4 4.7c\relax }{subfigure.4.7.3}{}}
1226
 
\newlabel{fig:synthMultModalRWYCoAlScale4Frame10@cref}{{[subfigure][3][4,7]4.7c}{84}}
1227
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Synthesized multi-modal data. This data simulates the camera arrangement in \cref  {fig:multiModalCoAligned}. The image $I$ in \cref  {fig:synthMultModalRWFrame10} is from the rubberwhale data set in \cref  {fig:rubberWhaleSeq2}. Figures \ref  {fig:synthMultModalRWYCoAlScale2Frame10} and \ref  {fig:synthMultModalRWYCoAlScale4Frame10} show the image $y_{{\ensuremath  {{\sigma ^{sc}}}_{test}}}$ (eq.~(\ref  {eq:synthMultiModalCoAlignedYLow})) at the scales $\ensuremath  {{\sigma ^{sc}}}_{test}=2$ and $\ensuremath  {{\sigma ^{sc}}}_{test}=4$\relax }}{84}{figure.caption.29}}
1228
 
\newlabel{fig:synthMultModalRWYCoAl}{{4.7}{84}{Synthesized multi-modal data. This data simulates the camera arrangement in \figref {fig:multiModalCoAligned}. The image $I$ in \figref {fig:synthMultModalRWFrame10} is from the rubberwhale data set in \figref {fig:rubberWhaleSeq2}. Figures \ref {fig:synthMultModalRWYCoAlScale2Frame10} and \ref {fig:synthMultModalRWYCoAlScale4Frame10} show the image $y_{{\scalediff _{test}}}$ (\eqref {eq:synthMultiModalCoAlignedYLow}) at the scales $\scalediff _{test}=2$ and $\scalediff _{test}=4$\relax }{figure.caption.29}{}}
1229
 
\newlabel{fig:synthMultModalRWYCoAl@cref}{{[figure][7][4]4.7}{84}}
1230
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$I$}}}{84}{subfigure.7.1}}
1231
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$y_2$}}}{84}{subfigure.7.2}}
1232
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$y_4$}}}{84}{subfigure.7.3}}
1233
 
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.4}Estimation of the Scale Difference $\ensuremath  {{\sigma ^{sc}}}$}{84}{subsection.4.7.4}}
1234
 
\newlabel{sec:synthMultiModalScaleDiff}{{4.7.4}{84}{Estimation of the Scale Difference $\scalediff $}{subsection.4.7.4}{}}
1235
 
\newlabel{sec:synthMultiModalScaleDiff@cref}{{[subsection][4][4,7]4.7.4}{84}}
1236
 
\newlabel{eq:synthMultiModalCoAlignedYHigh}{{4.49}{84}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.49}{}}
1237
 
\newlabel{eq:synthMultiModalCoAlignedYHigh@cref}{{[equation][49][4]4.49}{84}}
1238
 
\newlabel{eq:synthMultiModalCoAlignedYLow}{{4.50}{84}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.50}{}}
1239
 
\newlabel{eq:synthMultiModalCoAlignedYLow@cref}{{[equation][50][4]4.50}{84}}
 
1224
\newlabel{fig:synthMultModalRWYCoAlScale4Frame10@cref}{{[subfigure][3][4,7]4.7c}{83}}
 
1225
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Synthesized multi-modal data. This data simulates the camera arrangement in \cref  {fig:multiModalCoAligned}. The image $I$ in \cref  {fig:synthMultModalRWFrame10} is from the rubberwhale data set in \cref  {fig:rubberWhaleSeq2}. Figures \ref  {fig:synthMultModalRWYCoAlScale2Frame10} and \ref  {fig:synthMultModalRWYCoAlScale4Frame10} show the image $y_{{\ensuremath  {{\sigma ^{sc}}}_{test}}}$ (eq.~(\ref  {eq:synthMultiModalCoAlignedYLow})) at the scales $\ensuremath  {{\sigma ^{sc}}}_{test}=2$ and $\ensuremath  {{\sigma ^{sc}}}_{test}=4$\relax }}{83}{figure.caption.29}}
 
1226
\newlabel{fig:synthMultModalRWYCoAl}{{4.7}{83}{Synthesized multi-modal data. This data simulates the camera arrangement in \figref {fig:multiModalCoAligned}. The image $I$ in \figref {fig:synthMultModalRWFrame10} is from the rubberwhale data set in \figref {fig:rubberWhaleSeq2}. Figures \ref {fig:synthMultModalRWYCoAlScale2Frame10} and \ref {fig:synthMultModalRWYCoAlScale4Frame10} show the image $y_{{\scalediff _{test}}}$ (\eqref {eq:synthMultiModalCoAlignedYLow}) at the scales $\scalediff _{test}=2$ and $\scalediff _{test}=4$\relax }{figure.caption.29}{}}
 
1227
\newlabel{fig:synthMultModalRWYCoAl@cref}{{[figure][7][4]4.7}{83}}
 
1228
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$I$}}}{83}{subfigure.7.1}}
 
1229
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$y_2$}}}{83}{subfigure.7.2}}
 
1230
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$y_4$}}}{83}{subfigure.7.3}}
 
1231
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.4}Estimation of the Scale Difference $\ensuremath  {{\sigma ^{sc}}}$}{83}{subsection.4.7.4}}
 
1232
\newlabel{sec:synthMultiModalScaleDiff}{{4.7.4}{83}{Estimation of the Scale Difference $\scalediff $}{subsection.4.7.4}{}}
 
1233
\newlabel{sec:synthMultiModalScaleDiff@cref}{{[subsection][4][4,7]4.7.4}{83}}
 
1234
\newlabel{eq:synthMultiModalCoAlignedYHigh}{{4.49}{83}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.49}{}}
 
1235
\newlabel{eq:synthMultiModalCoAlignedYHigh@cref}{{[equation][49][4]4.49}{83}}
 
1236
\newlabel{eq:synthMultiModalCoAlignedYLow}{{4.50}{83}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.50}{}}
 
1237
\newlabel{eq:synthMultiModalCoAlignedYLow@cref}{{[equation][50][4]4.50}{83}}
1240
1238
\citation{ferreiraCFRP,khanCFRP,tehraniCFRP,FanCFRP}
1241
1239
\citation{FanCFRP}
1242
1240
\citation{wuLockIn,SpiessbergerFusionLockin,meolaLockIn}
1243
 
\newlabel{fig:EdataCoAlScale2}{{4.8a}{85}{Subfigure 4 4.8a}{subfigure.4.8.1}{}}
 
1241
\newlabel{fig:EdataCoAlScale2}{{4.8a}{84}{Subfigure 4 4.8a}{subfigure.4.8.1}{}}
1244
1242
\newlabel{sub@fig:EdataCoAlScale2}{{(a)}{a}{Subfigure 4 4.8a\relax }{subfigure.4.8.1}{}}
1245
 
\newlabel{fig:EdataCoAlScale2@cref}{{[subfigure][1][4,8]4.8a}{85}}
1246
 
\newlabel{fig:EdataCoAlScale4}{{4.8b}{85}{Subfigure 4 4.8b}{subfigure.4.8.2}{}}
 
1243
\newlabel{fig:EdataCoAlScale2@cref}{{[subfigure][1][4,8]4.8a}{84}}
 
1244
\newlabel{fig:EdataCoAlScale4}{{4.8b}{84}{Subfigure 4 4.8b}{subfigure.4.8.2}{}}
1247
1245
\newlabel{sub@fig:EdataCoAlScale4}{{(b)}{b}{Subfigure 4 4.8b\relax }{subfigure.4.8.2}{}}
1248
 
\newlabel{fig:EdataCoAlScale4@cref}{{[subfigure][2][4,8]4.8b}{85}}
1249
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Figures \ref  {fig:EdataCoAlScale2} and \ref  {fig:EdataCoAlScale4} show plots the similarity measure $E^{data}_{y,I}(\ensuremath  {{\sigma ^{sc}}},\ensuremath  {\ensuremath  {{\bm  {d}}}})$ for the cases $y=y_2$, $\ensuremath  {{\sigma ^{sc}}}_{test}=2$, and $y=y_4$, $\ensuremath  {{\sigma ^{sc}}}_{test}=4$. We can observe that $E^{data}_{y,I}(\ensuremath  {{\sigma ^{sc}}},\ensuremath  {\ensuremath  {{\bm  {d}}}})$ is minimal with respect to $\ensuremath  {{\sigma ^{sc}}}$ at the correct scales $\ensuremath  {{\sigma ^{sc}}}_{test}$\relax }}{85}{figure.caption.30}}
1250
 
\newlabel{fig:EdataCoAlScales}{{4.8}{85}{Figures \ref {fig:EdataCoAlScale2} and \ref {fig:EdataCoAlScale4} show plots the similarity measure $E^{data}_{y,I}(\scalediff ,\vd )$ for the cases $y=y_2$, $\scalediff _{test}=2$, and $y=y_4$, $\scalediff _{test}=4$. We can observe that $E^{data}_{y,I}(\scalediff ,\vd )$ is minimal with respect to $\scalediff $ at the correct scales $\scalediff _{test}$\relax }{figure.caption.30}{}}
1251
 
\newlabel{fig:EdataCoAlScales@cref}{{[figure][8][4]4.8}{85}}
1252
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$y=y_2$}}}{85}{subfigure.8.1}}
1253
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$y=y_4$}}}{85}{subfigure.8.2}}
1254
 
\newlabel{eq:flowDataTerm3}{{4.51}{85}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.51}{}}
1255
 
\newlabel{eq:flowDataTerm3@cref}{{[equation][51][4]4.51}{85}}
1256
 
\newlabel{eq:globalIntensFactor2}{{4.52}{85}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.52}{}}
1257
 
\newlabel{eq:globalIntensFactor2@cref}{{[equation][52][4]4.52}{85}}
1258
 
\newlabel{eq:likelihood2}{{4.54}{85}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.54}{}}
1259
 
\newlabel{eq:likelihood2@cref}{{[equation][54][4]4.54}{85}}
1260
 
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.5}Real Multimodal Optical Flow Data}{85}{subsection.4.7.5}}
1261
 
\newlabel{sec:realMultiModalOpticalFlow}{{4.7.5}{85}{Real Multimodal Optical Flow Data}{subsection.4.7.5}{}}
1262
 
\newlabel{sec:realMultiModalOpticalFlow@cref}{{[subsection][5][4,7]4.7.5}{85}}
1263
 
\newlabel{fig:multiModalVSC2}{{4.9a}{86}{Subfigure 4 4.9a}{subfigure.4.9.1}{}}
 
1246
\newlabel{fig:EdataCoAlScale4@cref}{{[subfigure][2][4,8]4.8b}{84}}
 
1247
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Figures \ref  {fig:EdataCoAlScale2} and \ref  {fig:EdataCoAlScale4} show plots the similarity measure $E^{data}_{y,I}(\ensuremath  {{\sigma ^{sc}}},\ensuremath  {\ensuremath  {{\bm  {d}}}})$ for the cases $y=y_2$, $\ensuremath  {{\sigma ^{sc}}}_{test}=2$, and $y=y_4$, $\ensuremath  {{\sigma ^{sc}}}_{test}=4$. We can observe that $E^{data}_{y,I}(\ensuremath  {{\sigma ^{sc}}},\ensuremath  {\ensuremath  {{\bm  {d}}}})$ is minimal with respect to $\ensuremath  {{\sigma ^{sc}}}$ at the correct scales $\ensuremath  {{\sigma ^{sc}}}_{test}$\relax }}{84}{figure.caption.30}}
 
1248
\newlabel{fig:EdataCoAlScales}{{4.8}{84}{Figures \ref {fig:EdataCoAlScale2} and \ref {fig:EdataCoAlScale4} show plots the similarity measure $E^{data}_{y,I}(\scalediff ,\vd )$ for the cases $y=y_2$, $\scalediff _{test}=2$, and $y=y_4$, $\scalediff _{test}=4$. We can observe that $E^{data}_{y,I}(\scalediff ,\vd )$ is minimal with respect to $\scalediff $ at the correct scales $\scalediff _{test}$\relax }{figure.caption.30}{}}
 
1249
\newlabel{fig:EdataCoAlScales@cref}{{[figure][8][4]4.8}{84}}
 
1250
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$y=y_2$}}}{84}{subfigure.8.1}}
 
1251
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$y=y_4$}}}{84}{subfigure.8.2}}
 
1252
\newlabel{eq:flowDataTerm3}{{4.51}{84}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.51}{}}
 
1253
\newlabel{eq:flowDataTerm3@cref}{{[equation][51][4]4.51}{84}}
 
1254
\newlabel{eq:globalIntensFactor2}{{4.52}{84}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.52}{}}
 
1255
\newlabel{eq:globalIntensFactor2@cref}{{[equation][52][4]4.52}{84}}
 
1256
\newlabel{eq:likelihood2}{{4.54}{84}{Estimation of the Scale Difference $\scalediff $}{equation.4.7.54}{}}
 
1257
\newlabel{eq:likelihood2@cref}{{[equation][54][4]4.54}{84}}
 
1258
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.5}Real Multimodal Optical Flow Data}{84}{subsection.4.7.5}}
 
1259
\newlabel{sec:realMultiModalOpticalFlow}{{4.7.5}{84}{Real Multimodal Optical Flow Data}{subsection.4.7.5}{}}
 
1260
\newlabel{sec:realMultiModalOpticalFlow@cref}{{[subsection][5][4,7]4.7.5}{84}}
 
1261
\newlabel{fig:multiModalVSC2}{{4.9a}{85}{Subfigure 4 4.9a}{subfigure.4.9.1}{}}
1264
1262
\newlabel{sub@fig:multiModalVSC2}{{(a)}{a}{Subfigure 4 4.9a\relax }{subfigure.4.9.1}{}}
1265
 
\newlabel{fig:multiModalVSC2@cref}{{[subfigure][1][4,9]4.9a}{86}}
1266
 
\newlabel{fig:multiModalTC2}{{4.9b}{86}{Subfigure 4 4.9b}{subfigure.4.9.2}{}}
 
1263
\newlabel{fig:multiModalVSC2@cref}{{[subfigure][1][4,9]4.9a}{85}}
 
1264
\newlabel{fig:multiModalTC2}{{4.9b}{85}{Subfigure 4 4.9b}{subfigure.4.9.2}{}}
1267
1265
\newlabel{sub@fig:multiModalTC2}{{(b)}{b}{Subfigure 4 4.9b\relax }{subfigure.4.9.2}{}}
1268
 
\newlabel{fig:multiModalTC2@cref}{{[subfigure][2][4,9]4.9b}{86}}
1269
 
\newlabel{fig:multiModalHisto2}{{4.9c}{86}{Subfigure 4 4.9c}{subfigure.4.9.3}{}}
 
1266
\newlabel{fig:multiModalTC2@cref}{{[subfigure][2][4,9]4.9b}{85}}
 
1267
\newlabel{fig:multiModalHisto2}{{4.9c}{85}{Subfigure 4 4.9c}{subfigure.4.9.3}{}}
1270
1268
\newlabel{sub@fig:multiModalHisto2}{{(c)}{c}{Subfigure 4 4.9c\relax }{subfigure.4.9.3}{}}
1271
 
\newlabel{fig:multiModalHisto2@cref}{{[subfigure][3][4,9]4.9c}{86}}
1272
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces \cref  {fig:multiModalVSC2} shows an image from a visual spectrum camera (VSC). The object recorded is a carbon-fiber reinforced polymer (CFRP). \Cref  {fig:multiModalTC2} shows an image of the same CFRP recorded with a thermographic camera (TC). The TC is sensitive in the infra-red domain, thus higher intensities in \cref  {fig:multiModalTC2} correspond to warmer objects (the CFRP) and lower intensities to colder objects (the background). As in \cref  {fig:multiModalSetupDiffRes} the optical centers of the VSC and the TC are physically separated so the problem that is being addressed is that of finding the optical flow field $\ensuremath  {\ensuremath  {{\bm  {d}}}(\ensuremath  {{\bm  {x}}})}$ (see eq.~(\ref  {eq:opticalFlowDef})) which maps every pixel in the TC image to the corresponding pixel in the VSC image. \Cref  {fig:multiModalHisto2} shows the joint histogram of the VSC and TC image. It shows a complex mapping of the intensities of \cref  {fig:multiModalVSC2} to those of \cref  {fig:multiModalTC2} indicating that a linearity assumption between the TC and the VSC is not valid\relax }}{86}{figure.caption.31}}
1273
 
\newlabel{fig:multiModalTCVSC2}{{4.9}{86}{\figref {fig:multiModalVSC2} shows an image from a visual spectrum camera (VSC). The object recorded is a carbon-fiber reinforced polymer (CFRP). \Figref {fig:multiModalTC2} shows an image of the same CFRP recorded with a thermographic camera (TC). The TC is sensitive in the infra-red domain, thus higher intensities in \figref {fig:multiModalTC2} correspond to warmer objects (the CFRP) and lower intensities to colder objects (the background). As in \figref {fig:multiModalSetupDiffRes} the optical centers of the VSC and the TC are physically separated so the problem that is being addressed is that of finding the optical flow field $\vdx $ (see \eqref {eq:opticalFlowDef}) which maps every pixel in the TC image to the corresponding pixel in the VSC image. \Figref {fig:multiModalHisto2} shows the joint histogram of the VSC and TC image. It shows a complex mapping of the intensities of \figref {fig:multiModalVSC2} to those of \figref {fig:multiModalTC2} indicating that a linearity assumption between the TC and the VSC is not valid\relax }{figure.caption.31}{}}
1274
 
\newlabel{fig:multiModalTCVSC2@cref}{{[figure][9][4]4.9}{86}}
1275
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{86}{subfigure.9.1}}
1276
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{86}{subfigure.9.2}}
1277
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{86}{subfigure.9.3}}
1278
 
\@writefile{brf}{\backcite{ferreiraCFRP}{{86}{4.7.5}{figure.caption.31}}}
1279
 
\@writefile{brf}{\backcite{khanCFRP}{{86}{4.7.5}{figure.caption.31}}}
1280
 
\@writefile{brf}{\backcite{tehraniCFRP}{{86}{4.7.5}{figure.caption.31}}}
1281
 
\@writefile{brf}{\backcite{FanCFRP}{{86}{4.7.5}{figure.caption.31}}}
1282
 
\@writefile{brf}{\backcite{FanCFRP}{{86}{4.7.5}{figure.caption.31}}}
1283
 
\@writefile{brf}{\backcite{wuLockIn}{{86}{4.7.5}{figure.caption.31}}}
1284
 
\@writefile{brf}{\backcite{SpiessbergerFusionLockin}{{86}{4.7.5}{figure.caption.31}}}
1285
 
\@writefile{brf}{\backcite{meolaLockIn}{{86}{4.7.5}{figure.caption.31}}}
1286
 
\newlabel{fig:EdatalocA21}{{4.10a}{87}{Subfigure 4 4.10a}{subfigure.4.10.1}{}}
 
1269
\newlabel{fig:multiModalHisto2@cref}{{[subfigure][3][4,9]4.9c}{85}}
 
1270
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces \cref  {fig:multiModalVSC2} shows an image from a visual spectrum camera (VSC). The object recorded is a carbon-fiber reinforced polymer (CFRP). \Cref  {fig:multiModalTC2} shows an image of the same CFRP recorded with a thermographic camera (TC). The TC is sensitive in the infra-red domain, thus higher intensities in \cref  {fig:multiModalTC2} correspond to warmer objects (the CFRP) and lower intensities to colder objects (the background). As in \cref  {fig:multiModalSetupDiffRes} the optical centers of the VSC and the TC are physically separated so the problem that is being addressed is that of finding the optical flow field $\ensuremath  {\ensuremath  {{\bm  {d}}}(\ensuremath  {{\bm  {x}}})}$ (see eq.~(\ref  {eq:opticalFlowDef})) which maps every pixel in the TC image to the corresponding pixel in the VSC image. \Cref  {fig:multiModalHisto2} shows the joint histogram of the VSC and TC image. It shows a complex mapping of the intensities of \cref  {fig:multiModalVSC2} to those of \cref  {fig:multiModalTC2} indicating that a linearity assumption between the TC and the VSC is not valid\relax }}{85}{figure.caption.31}}
 
1271
\newlabel{fig:multiModalTCVSC2}{{4.9}{85}{\figref {fig:multiModalVSC2} shows an image from a visual spectrum camera (VSC). The object recorded is a carbon-fiber reinforced polymer (CFRP). \Figref {fig:multiModalTC2} shows an image of the same CFRP recorded with a thermographic camera (TC). The TC is sensitive in the infra-red domain, thus higher intensities in \figref {fig:multiModalTC2} correspond to warmer objects (the CFRP) and lower intensities to colder objects (the background). As in \figref {fig:multiModalSetupDiffRes} the optical centers of the VSC and the TC are physically separated so the problem that is being addressed is that of finding the optical flow field $\vdx $ (see \eqref {eq:opticalFlowDef}) which maps every pixel in the TC image to the corresponding pixel in the VSC image. \Figref {fig:multiModalHisto2} shows the joint histogram of the VSC and TC image. It shows a complex mapping of the intensities of \figref {fig:multiModalVSC2} to those of \figref {fig:multiModalTC2} indicating that a linearity assumption between the TC and the VSC is not valid\relax }{figure.caption.31}{}}
 
1272
\newlabel{fig:multiModalTCVSC2@cref}{{[figure][9][4]4.9}{85}}
 
1273
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{85}{subfigure.9.1}}
 
1274
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{85}{subfigure.9.2}}
 
1275
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{85}{subfigure.9.3}}
 
1276
\@writefile{brf}{\backcite{ferreiraCFRP}{{85}{4.7.5}{figure.caption.31}}}
 
1277
\@writefile{brf}{\backcite{khanCFRP}{{85}{4.7.5}{figure.caption.31}}}
 
1278
\@writefile{brf}{\backcite{tehraniCFRP}{{85}{4.7.5}{figure.caption.31}}}
 
1279
\@writefile{brf}{\backcite{FanCFRP}{{85}{4.7.5}{figure.caption.31}}}
 
1280
\@writefile{brf}{\backcite{FanCFRP}{{85}{4.7.5}{figure.caption.31}}}
 
1281
\@writefile{brf}{\backcite{wuLockIn}{{85}{4.7.5}{figure.caption.31}}}
 
1282
\@writefile{brf}{\backcite{SpiessbergerFusionLockin}{{85}{4.7.5}{figure.caption.31}}}
 
1283
\@writefile{brf}{\backcite{meolaLockIn}{{85}{4.7.5}{figure.caption.31}}}
 
1284
\newlabel{fig:EdatalocA21}{{4.10a}{86}{Subfigure 4 4.10a}{subfigure.4.10.1}{}}
1287
1285
\newlabel{sub@fig:EdatalocA21}{{(a)}{a}{Subfigure 4 4.10a\relax }{subfigure.4.10.1}{}}
1288
 
\newlabel{fig:EdatalocA21@cref}{{[subfigure][1][4,10]4.10a}{87}}
1289
 
\newlabel{fig:scaleOverA}{{4.10b}{87}{Subfigure 4 4.10b}{subfigure.4.10.2}{}}
 
1286
\newlabel{fig:EdatalocA21@cref}{{[subfigure][1][4,10]4.10a}{86}}
 
1287
\newlabel{fig:scaleOverA}{{4.10b}{86}{Subfigure 4 4.10b}{subfigure.4.10.2}{}}
1290
1288
\newlabel{sub@fig:scaleOverA}{{(b)}{b}{Subfigure 4 4.10b\relax }{subfigure.4.10.2}{}}
1291
 
\newlabel{fig:scaleOverA@cref}{{[subfigure][2][4,10]4.10b}{87}}
1292
 
\newlabel{fig:EdatalocOverA}{{4.10c}{87}{Subfigure 4 4.10c}{subfigure.4.10.3}{}}
 
1289
\newlabel{fig:scaleOverA@cref}{{[subfigure][2][4,10]4.10b}{86}}
 
1290
\newlabel{fig:EdatalocOverA}{{4.10c}{86}{Subfigure 4 4.10c}{subfigure.4.10.3}{}}
1293
1291
\newlabel{sub@fig:EdatalocOverA}{{(c)}{c}{Subfigure 4 4.10c\relax }{subfigure.4.10.3}{}}
1294
 
\newlabel{fig:EdatalocOverA@cref}{{[subfigure][3][4,10]4.10c}{87}}
1295
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces \Cref  {fig:EdatalocA21}: Plot $E^{data,l}_{y_{tc},I_{vsc}}(\ensuremath  {{\sigma ^{sc}}},a,\ensuremath  {{\bm  {0}}})$ over the PSF scale difference $\ensuremath  {{\sigma ^{sc}}}$ for the images $y_{tc}$ and $I_{vsc}$ in \cref  {fig:multiModalTCVSC2} for the window size $a=25$. \Cref  {fig:scaleOverA} shows the minimum scale $\ensuremath  {{\sigma ^{sc}}}_{min}$ defined in eq.~(\ref  {eq:scaleMin}) as a function over the window size $a$ and \cref  {fig:EdatalocOverA} the similarity measure $E^{data,l}_{min}$ (eq.~(\ref  {eq:EdataScaleMin})) over $a$. The minimum scale $\ensuremath  {{\sigma ^{sc}}}_{min}$ increases or stays constant but does not decrease for larger window sizes $a$. The window size $a=21$ marks a sweet spot where $\ensuremath  {{\sigma ^{sc}}}_{min}(21)= \ensuremath  {\sigma ^{sc,\star }}=3$ while $E^{data,l}_{min}(21)$ is comparatively minimal.\relax }}{87}{figure.caption.32}}
1296
 
\newlabel{fig:EdataSigmaAdependence}{{4.10}{87}{\Figref {fig:EdatalocA21}: Plot $E^{data,l}_{y_{tc},I_{vsc}}(\scalediff ,a,\vector {0})$ over the PSF scale difference $\scalediff $ for the images $y_{tc}$ and $I_{vsc}$ in \figref {fig:multiModalTCVSC2} for the window size $a=25$. \Figref {fig:scaleOverA} shows the minimum scale $\scalediff _{min}$ defined in \eqref {eq:scaleMin} as a function over the window size $a$ and \figref {fig:EdatalocOverA} the similarity measure $E^{data,l}_{min}$ (\eqref {eq:EdataScaleMin}) over $a$. The minimum scale $\scalediff _{min}$ increases or stays constant but does not decrease for larger window sizes $a$. The window size $a=21$ marks a sweet spot where $\scalediff _{min}(21)= \optscalediff =3$ while $E^{data,l}_{min}(21)$ is comparatively minimal.\relax }{figure.caption.32}{}}
1297
 
\newlabel{fig:EdataSigmaAdependence@cref}{{[figure][10][4]4.10}{87}}
1298
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{87}{subfigure.10.1}}
1299
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{87}{subfigure.10.2}}
1300
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{87}{subfigure.10.3}}
1301
 
\newlabel{eq:flowDataTermLocal2}{{4.56}{87}{Real Multimodal Optical Flow Data}{equation.4.7.56}{}}
1302
 
\newlabel{eq:flowDataTermLocal2@cref}{{[equation][56][4]4.56}{87}}
1303
 
\newlabel{fig:flowST}{{4.11a}{88}{Subfigure 4 4.11a}{subfigure.4.11.1}{}}
 
1292
\newlabel{fig:EdatalocOverA@cref}{{[subfigure][3][4,10]4.10c}{86}}
 
1293
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces \Cref  {fig:EdatalocA21}: Plot $E^{data,l}_{y_{tc},I_{vsc}}(\ensuremath  {{\sigma ^{sc}}},a,\ensuremath  {{\bm  {0}}})$ over the PSF scale difference $\ensuremath  {{\sigma ^{sc}}}$ for the images $y_{tc}$ and $I_{vsc}$ in \cref  {fig:multiModalTCVSC2} for the window size $a=25$. \Cref  {fig:scaleOverA} shows the minimum scale $\ensuremath  {{\sigma ^{sc}}}_{min}$ defined in eq.~(\ref  {eq:scaleMin}) as a function over the window size $a$ and \cref  {fig:EdatalocOverA} the similarity measure $E^{data,l}_{min}$ (eq.~(\ref  {eq:EdataScaleMin})) over $a$. The minimum scale $\ensuremath  {{\sigma ^{sc}}}_{min}$ increases or stays constant but does not decrease for larger window sizes $a$. The window size $a=21$ marks a sweet spot where $\ensuremath  {{\sigma ^{sc}}}_{min}(21)= \ensuremath  {\sigma ^{sc,\star }}=3$ while $E^{data,l}_{min}(21)$ is comparatively minimal.\relax }}{86}{figure.caption.32}}
 
1294
\newlabel{fig:EdataSigmaAdependence}{{4.10}{86}{\Figref {fig:EdatalocA21}: Plot $E^{data,l}_{y_{tc},I_{vsc}}(\scalediff ,a,\vector {0})$ over the PSF scale difference $\scalediff $ for the images $y_{tc}$ and $I_{vsc}$ in \figref {fig:multiModalTCVSC2} for the window size $a=25$. \Figref {fig:scaleOverA} shows the minimum scale $\scalediff _{min}$ defined in \eqref {eq:scaleMin} as a function over the window size $a$ and \figref {fig:EdatalocOverA} the similarity measure $E^{data,l}_{min}$ (\eqref {eq:EdataScaleMin}) over $a$. The minimum scale $\scalediff _{min}$ increases or stays constant but does not decrease for larger window sizes $a$. The window size $a=21$ marks a sweet spot where $\scalediff _{min}(21)= \optscalediff =3$ while $E^{data,l}_{min}(21)$ is comparatively minimal.\relax }{figure.caption.32}{}}
 
1295
\newlabel{fig:EdataSigmaAdependence@cref}{{[figure][10][4]4.10}{86}}
 
1296
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{86}{subfigure.10.1}}
 
1297
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{86}{subfigure.10.2}}
 
1298
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{86}{subfigure.10.3}}
 
1299
\newlabel{eq:flowDataTermLocal2}{{4.56}{86}{Real Multimodal Optical Flow Data}{equation.4.7.56}{}}
 
1300
\newlabel{eq:flowDataTermLocal2@cref}{{[equation][56][4]4.56}{86}}
 
1301
\newlabel{fig:flowST}{{4.11a}{87}{Subfigure 4 4.11a}{subfigure.4.11.1}{}}
1304
1302
\newlabel{sub@fig:flowST}{{(a)}{a}{Subfigure 4 4.11a\relax }{subfigure.4.11.1}{}}
1305
 
\newlabel{fig:flowST@cref}{{[subfigure][1][4,11]4.11a}{88}}
1306
 
\newlabel{fig:flowTV}{{4.11b}{88}{Subfigure 4 4.11b}{subfigure.4.11.2}{}}
 
1303
\newlabel{fig:flowST@cref}{{[subfigure][1][4,11]4.11a}{87}}
 
1304
\newlabel{fig:flowTV}{{4.11b}{87}{Subfigure 4 4.11b}{subfigure.4.11.2}{}}
1307
1305
\newlabel{sub@fig:flowTV}{{(b)}{b}{Subfigure 4 4.11b\relax }{subfigure.4.11.2}{}}
1308
 
\newlabel{fig:flowTV@cref}{{[subfigure][2][4,11]4.11b}{88}}
1309
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Resulting optical flows of the local models $E^l_{ST}$ ($\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, eq.~(\ref  {eq:optFlowModelSTLocal})) and $E^l_{TV}$ ($\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$, eq.~(\ref  {eq:optFlowModelTVLocal})). We can see that the structure tensor prior in the model $E^l_{ST}$ fails to isotropically smooth the optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$ in the regions where the images $y_{tc}$ and $I_{vsc}$ are predominantly homogeneous. In these regions the TV model $E^l_{TV}$ excels due to the $L_1$ piecewise smoothing term in eq.~(\ref  {eq:TVSplit}). \relax }}{88}{figure.caption.33}}
1310
 
\newlabel{fig:multModalFlowResult}{{4.11}{88}{Resulting optical flows of the local models $E^l_{ST}$ ($\optimalflowST $, \eqref {eq:optFlowModelSTLocal}) and $E^l_{TV}$ ($\optimalflowTV $, \eqref {eq:optFlowModelTVLocal}). We can see that the structure tensor prior in the model $E^l_{ST}$ fails to isotropically smooth the optical flow $\optimalflowST $ in the regions where the images $y_{tc}$ and $I_{vsc}$ are predominantly homogeneous. In these regions the TV model $E^l_{TV}$ excels due to the $L_1$ piecewise smoothing term in \eqref {eq:TVSplit}. \relax }{figure.caption.33}{}}
1311
 
\newlabel{fig:multModalFlowResult@cref}{{[figure][11][4]4.11}{88}}
1312
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{88}{subfigure.11.1}}
1313
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{88}{subfigure.11.2}}
1314
 
\newlabel{eq:viewAnglesEqual}{{4.57}{88}{Real Multimodal Optical Flow Data}{equation.4.7.57}{}}
1315
 
\newlabel{eq:viewAnglesEqual@cref}{{[equation][57][4]4.57}{88}}
1316
 
\newlabel{eq:trueOptScale}{{4.58}{88}{Real Multimodal Optical Flow Data}{equation.4.7.58}{}}
1317
 
\newlabel{eq:trueOptScale@cref}{{[equation][58][4]4.58}{88}}
 
1306
\newlabel{fig:flowTV@cref}{{[subfigure][2][4,11]4.11b}{87}}
 
1307
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Resulting optical flows of the local models $E^l_{ST}$ ($\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$, eq.~(\ref  {eq:optFlowModelSTLocal})) and $E^l_{TV}$ ($\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$, eq.~(\ref  {eq:optFlowModelTVLocal})). We can see that the structure tensor prior in the model $E^l_{ST}$ fails to isotropically smooth the optical flow $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$ in the regions where the images $y_{tc}$ and $I_{vsc}$ are predominantly homogeneous. In these regions the TV model $E^l_{TV}$ excels due to the $L_1$ piecewise smoothing term in eq.~(\ref  {eq:TVSplit}). \relax }}{87}{figure.caption.33}}
 
1308
\newlabel{fig:multModalFlowResult}{{4.11}{87}{Resulting optical flows of the local models $E^l_{ST}$ ($\optimalflowST $, \eqref {eq:optFlowModelSTLocal}) and $E^l_{TV}$ ($\optimalflowTV $, \eqref {eq:optFlowModelTVLocal}). We can see that the structure tensor prior in the model $E^l_{ST}$ fails to isotropically smooth the optical flow $\optimalflowST $ in the regions where the images $y_{tc}$ and $I_{vsc}$ are predominantly homogeneous. In these regions the TV model $E^l_{TV}$ excels due to the $L_1$ piecewise smoothing term in \eqref {eq:TVSplit}. \relax }{figure.caption.33}{}}
 
1309
\newlabel{fig:multModalFlowResult@cref}{{[figure][11][4]4.11}{87}}
 
1310
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{87}{subfigure.11.1}}
 
1311
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{87}{subfigure.11.2}}
 
1312
\newlabel{eq:viewAnglesEqual}{{4.57}{87}{Real Multimodal Optical Flow Data}{equation.4.7.57}{}}
 
1313
\newlabel{eq:viewAnglesEqual@cref}{{[equation][57][4]4.57}{87}}
 
1314
\newlabel{eq:trueOptScale}{{4.58}{87}{Real Multimodal Optical Flow Data}{equation.4.7.58}{}}
 
1315
\newlabel{eq:trueOptScale@cref}{{[equation][58][4]4.58}{87}}
1318
1316
\citation{WassermanAllStatistics}
1319
 
\newlabel{eq:scaleMin}{{4.59}{89}{Real Multimodal Optical Flow Data}{equation.4.7.59}{}}
1320
 
\newlabel{eq:scaleMin@cref}{{[equation][59][4]4.59}{89}}
1321
 
\newlabel{eq:EdataScaleMin}{{4.60}{89}{Real Multimodal Optical Flow Data}{equation.4.7.60}{}}
1322
 
\newlabel{eq:EdataScaleMin@cref}{{[equation][60][4]4.60}{89}}
1323
 
\newlabel{eq:localRelation2}{{4.61}{89}{Real Multimodal Optical Flow Data}{equation.4.7.61}{}}
1324
 
\newlabel{eq:localRelation2@cref}{{[equation][61][4]4.61}{89}}
1325
 
\newlabel{eq:optFlowModelLocalST}{{4.62}{89}{Real Multimodal Optical Flow Data}{equation.4.7.62}{}}
1326
 
\newlabel{eq:optFlowModelLocalST@cref}{{[equation][62][4]4.62}{89}}
1327
 
\newlabel{eq:optFlowModelLocalTV}{{4.63}{89}{Real Multimodal Optical Flow Data}{equation.4.7.63}{}}
1328
 
\newlabel{eq:optFlowModelLocalTV@cref}{{[equation][63][4]4.63}{89}}
1329
 
\@writefile{brf}{\backcite{WassermanAllStatistics}{{89}{4.7.5}{equation.4.7.63}}}
1330
 
\newlabel{fig:chiSqNoFlow}{{4.12a}{90}{Subfigure 4 4.12a}{subfigure.4.12.1}{}}
 
1317
\newlabel{eq:scaleMin}{{4.59}{88}{Real Multimodal Optical Flow Data}{equation.4.7.59}{}}
 
1318
\newlabel{eq:scaleMin@cref}{{[equation][59][4]4.59}{88}}
 
1319
\newlabel{eq:EdataScaleMin}{{4.60}{88}{Real Multimodal Optical Flow Data}{equation.4.7.60}{}}
 
1320
\newlabel{eq:EdataScaleMin@cref}{{[equation][60][4]4.60}{88}}
 
1321
\newlabel{eq:localRelation2}{{4.61}{88}{Real Multimodal Optical Flow Data}{equation.4.7.61}{}}
 
1322
\newlabel{eq:localRelation2@cref}{{[equation][61][4]4.61}{88}}
 
1323
\newlabel{eq:optFlowModelLocalST}{{4.62}{88}{Real Multimodal Optical Flow Data}{equation.4.7.62}{}}
 
1324
\newlabel{eq:optFlowModelLocalST@cref}{{[equation][62][4]4.62}{88}}
 
1325
\newlabel{eq:optFlowModelLocalTV}{{4.63}{88}{Real Multimodal Optical Flow Data}{equation.4.7.63}{}}
 
1326
\newlabel{eq:optFlowModelLocalTV@cref}{{[equation][63][4]4.63}{88}}
 
1327
\@writefile{brf}{\backcite{WassermanAllStatistics}{{88}{4.7.5}{equation.4.7.63}}}
 
1328
\newlabel{fig:chiSqNoFlow}{{4.12a}{89}{Subfigure 4 4.12a}{subfigure.4.12.1}{}}
1331
1329
\newlabel{sub@fig:chiSqNoFlow}{{(a)}{a}{Subfigure 4 4.12a\relax }{subfigure.4.12.1}{}}
1332
 
\newlabel{fig:chiSqNoFlow@cref}{{[subfigure][1][4,12]4.12a}{90}}
1333
 
\newlabel{fig:chiSqSTFlow}{{4.12b}{90}{Subfigure 4 4.12b}{subfigure.4.12.2}{}}
 
1330
\newlabel{fig:chiSqNoFlow@cref}{{[subfigure][1][4,12]4.12a}{89}}
 
1331
\newlabel{fig:chiSqSTFlow}{{4.12b}{89}{Subfigure 4 4.12b}{subfigure.4.12.2}{}}
1334
1332
\newlabel{sub@fig:chiSqSTFlow}{{(b)}{b}{Subfigure 4 4.12b\relax }{subfigure.4.12.2}{}}
1335
 
\newlabel{fig:chiSqSTFlow@cref}{{[subfigure][2][4,12]4.12b}{90}}
1336
 
\newlabel{fig:chiSqTVFlow}{{4.12c}{90}{Subfigure 4 4.12c}{subfigure.4.12.3}{}}
 
1333
\newlabel{fig:chiSqSTFlow@cref}{{[subfigure][2][4,12]4.12b}{89}}
 
1334
\newlabel{fig:chiSqTVFlow}{{4.12c}{89}{Subfigure 4 4.12c}{subfigure.4.12.3}{}}
1337
1335
\newlabel{sub@fig:chiSqTVFlow}{{(c)}{c}{Subfigure 4 4.12c\relax }{subfigure.4.12.3}{}}
1338
 
\newlabel{fig:chiSqTVFlow@cref}{{[subfigure][3][4,12]4.12c}{90}}
1339
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Comparison of the p-values (eq.~(\ref  {eq:pearsonPValue})) for the hypotheses (eq.~(\ref  {eq:linConstraint})) $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ (\cref  {fig:chiSqNoFlow}), $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}}$ (\cref  {fig:chiSqSTFlow}) and $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ (\cref  {fig:chiSqTVFlow}). The p-values where computed for windows $\mathcal  {A}_{\ensuremath  {\ensuremath  {{\bm  {x}}}}_0}$ around each pixel $\ensuremath  {\ensuremath  {{\bm  {x}}}}_0\in \Omega $ and plotted over the binned values of the gradient $\nabla y$. All three diagrams show high p-values for gradients $\nabla y\approx 0$ indicating that the structureless areas in the data in \cref  {fig:multiModalTCVSC2} obey the linear relation in eq.~(\ref  {eq:linConstraint}) regardless of the optical flow $\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}$. For higher values of the gradient $\nabla y$ the hypothesis $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ in \cref  {fig:chiSqNoFlow} fails as expected since the p-values tend to zero. The p-values at higher gradients for the hypotheses $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}}$ (\cref  {fig:chiSqSTFlow}) and $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ (\cref  {fig:chiSqTVFlow}) are significantly higher then for $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ with $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ having the highest p-values meaning that the total variation model $E^l_{TV}$ in eq.~(\ref  {eq:optFlowModelTVLocal}) best fulfills the linearity hypothesis in eq.~(\ref  {eq:linConstraint}). \relax }}{90}{figure.caption.34}}
1340
 
\newlabel{fig:chiSqPValue}{{4.12}{90}{Comparison of the p-values (\eqref {eq:pearsonPValue}) for the hypotheses (\eqref {eq:linConstraint}) $H_{\hat {\vd }=\vector {0}}$ (\figref {fig:chiSqNoFlow}), $H_{\hat {\vd }=\optimalflowST }$ (\figref {fig:chiSqSTFlow}) and $H_{\hat {\vd }=\optimalflowTV }$ (\figref {fig:chiSqTVFlow}). The p-values where computed for windows $\mathcal {A}_{\vx _0}$ around each pixel $\vx _0\in \Omega $ and plotted over the binned values of the gradient $\nabla y$. All three diagrams show high p-values for gradients $\nabla y\approx 0$ indicating that the structureless areas in the data in \figref {fig:multiModalTCVSC2} obey the linear relation in \eqref {eq:linConstraint} regardless of the optical flow $\hat {\vd }$. For higher values of the gradient $\nabla y$ the hypothesis $H_{\hat {\vd }=\vector {0}}$ in \figref {fig:chiSqNoFlow} fails as expected since the p-values tend to zero. The p-values at higher gradients for the hypotheses $H_{\hat {\vd }=\optimalflowST }$ (\figref {fig:chiSqSTFlow}) and $H_{\hat {\vd }=\optimalflowTV }$ (\figref {fig:chiSqTVFlow}) are significantly higher then for $H_{\hat {\vd }=\vector {0}}$ with $H_{\hat {\vd }=\optimalflowTV }$ having the highest p-values meaning that the total variation model $E^l_{TV}$ in \eqref {eq:optFlowModelTVLocal} best fulfills the linearity hypothesis in \eqref {eq:linConstraint}. \relax }{figure.caption.34}{}}
1341
 
\newlabel{fig:chiSqPValue@cref}{{[figure][12][4]4.12}{90}}
1342
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{90}{subfigure.12.1}}
1343
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{90}{subfigure.12.2}}
1344
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{90}{subfigure.12.3}}
1345
 
\newlabel{eq:chiSqV}{{4.64}{90}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.64}{}}
1346
 
\newlabel{eq:chiSqV@cref}{{[equation][64][4]4.64}{90}}
1347
 
\newlabel{eq:pearsonCDF}{{4.65}{90}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.65}{}}
1348
 
\newlabel{eq:pearsonCDF@cref}{{[equation][65][4]4.65}{90}}
1349
 
\newlabel{eq:pearsonPValue}{{4.66}{91}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.66}{}}
1350
 
\newlabel{eq:pearsonPValue@cref}{{[equation][66][4]4.66}{91}}
1351
 
\newlabel{eq:chiSqVObs}{{4.67}{91}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.67}{}}
1352
 
\newlabel{eq:chiSqVObs@cref}{{[equation][67][4]4.67}{91}}
1353
 
\newlabel{eq:chiSqSatis}{{4.68}{91}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.68}{}}
1354
 
\newlabel{eq:chiSqSatis@cref}{{[equation][68][4]4.68}{91}}
1355
 
\newlabel{eq:linConstraint}{{4.69}{91}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.69}{}}
1356
 
\newlabel{eq:linConstraint@cref}{{[equation][69][4]4.69}{91}}
1357
 
\newlabel{eq:pearsonLocalObservation}{{4.70}{91}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.70}{}}
1358
 
\newlabel{eq:pearsonLocalObservation@cref}{{[equation][70][4]4.70}{91}}
1359
 
\newlabel{fig:subfigEdevisroi-184-397-histo}{{4.13a}{92}{Subfigure 4 4.13a}{subfigure.4.13.1}{}}
 
1336
\newlabel{fig:chiSqTVFlow@cref}{{[subfigure][3][4,12]4.12c}{89}}
 
1337
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Comparison of the p-values (eq.~(\ref  {eq:pearsonPValue})) for the hypotheses (eq.~(\ref  {eq:linConstraint})) $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ (\cref  {fig:chiSqNoFlow}), $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}}$ (\cref  {fig:chiSqSTFlow}) and $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ (\cref  {fig:chiSqTVFlow}). The p-values where computed for windows $\mathcal  {A}_{\ensuremath  {\ensuremath  {{\bm  {x}}}}_0}$ around each pixel $\ensuremath  {\ensuremath  {{\bm  {x}}}}_0\in \Omega $ and plotted over the binned values of the gradient $\nabla y$. All three diagrams show high p-values for gradients $\nabla y\approx 0$ indicating that the structureless areas in the data in \cref  {fig:multiModalTCVSC2} obey the linear relation in eq.~(\ref  {eq:linConstraint}) regardless of the optical flow $\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}$. For higher values of the gradient $\nabla y$ the hypothesis $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ in \cref  {fig:chiSqNoFlow} fails as expected since the p-values tend to zero. The p-values at higher gradients for the hypotheses $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}}$ (\cref  {fig:chiSqSTFlow}) and $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ (\cref  {fig:chiSqTVFlow}) are significantly higher then for $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {{\bm  {0}}}}$ with $H_{\mathaccentV {hat}05E{\ensuremath  {\ensuremath  {{\bm  {d}}}}}=\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}}$ having the highest p-values meaning that the total variation model $E^l_{TV}$ in eq.~(\ref  {eq:optFlowModelTVLocal}) best fulfills the linearity hypothesis in eq.~(\ref  {eq:linConstraint}). \relax }}{89}{figure.caption.34}}
 
1338
\newlabel{fig:chiSqPValue}{{4.12}{89}{Comparison of the p-values (\eqref {eq:pearsonPValue}) for the hypotheses (\eqref {eq:linConstraint}) $H_{\hat {\vd }=\vector {0}}$ (\figref {fig:chiSqNoFlow}), $H_{\hat {\vd }=\optimalflowST }$ (\figref {fig:chiSqSTFlow}) and $H_{\hat {\vd }=\optimalflowTV }$ (\figref {fig:chiSqTVFlow}). The p-values where computed for windows $\mathcal {A}_{\vx _0}$ around each pixel $\vx _0\in \Omega $ and plotted over the binned values of the gradient $\nabla y$. All three diagrams show high p-values for gradients $\nabla y\approx 0$ indicating that the structureless areas in the data in \figref {fig:multiModalTCVSC2} obey the linear relation in \eqref {eq:linConstraint} regardless of the optical flow $\hat {\vd }$. For higher values of the gradient $\nabla y$ the hypothesis $H_{\hat {\vd }=\vector {0}}$ in \figref {fig:chiSqNoFlow} fails as expected since the p-values tend to zero. The p-values at higher gradients for the hypotheses $H_{\hat {\vd }=\optimalflowST }$ (\figref {fig:chiSqSTFlow}) and $H_{\hat {\vd }=\optimalflowTV }$ (\figref {fig:chiSqTVFlow}) are significantly higher then for $H_{\hat {\vd }=\vector {0}}$ with $H_{\hat {\vd }=\optimalflowTV }$ having the highest p-values meaning that the total variation model $E^l_{TV}$ in \eqref {eq:optFlowModelTVLocal} best fulfills the linearity hypothesis in \eqref {eq:linConstraint}. \relax }{figure.caption.34}{}}
 
1339
\newlabel{fig:chiSqPValue@cref}{{[figure][12][4]4.12}{89}}
 
1340
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{89}{subfigure.12.1}}
 
1341
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{89}{subfigure.12.2}}
 
1342
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{89}{subfigure.12.3}}
 
1343
\newlabel{eq:chiSqV}{{4.64}{89}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.64}{}}
 
1344
\newlabel{eq:chiSqV@cref}{{[equation][64][4]4.64}{89}}
 
1345
\newlabel{eq:pearsonCDF}{{4.65}{89}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.65}{}}
 
1346
\newlabel{eq:pearsonCDF@cref}{{[equation][65][4]4.65}{89}}
 
1347
\newlabel{eq:pearsonPValue}{{4.66}{90}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.66}{}}
 
1348
\newlabel{eq:pearsonPValue@cref}{{[equation][66][4]4.66}{90}}
 
1349
\newlabel{eq:chiSqVObs}{{4.67}{90}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.67}{}}
 
1350
\newlabel{eq:chiSqVObs@cref}{{[equation][67][4]4.67}{90}}
 
1351
\newlabel{eq:chiSqSatis}{{4.68}{90}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.68}{}}
 
1352
\newlabel{eq:chiSqSatis@cref}{{[equation][68][4]4.68}{90}}
 
1353
\newlabel{eq:linConstraint}{{4.69}{90}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.69}{}}
 
1354
\newlabel{eq:linConstraint@cref}{{[equation][69][4]4.69}{90}}
 
1355
\newlabel{eq:pearsonLocalObservation}{{4.70}{90}{Pearson's $\chi ^{2}$ statistic}{equation.4.7.70}{}}
 
1356
\newlabel{eq:pearsonLocalObservation@cref}{{[equation][70][4]4.70}{90}}
 
1357
\newlabel{fig:subfigEdevisroi-184-397-histo}{{4.13a}{91}{Subfigure 4 4.13a}{subfigure.4.13.1}{}}
1360
1358
\newlabel{sub@fig:subfigEdevisroi-184-397-histo}{{(a)}{a}{Subfigure 4 4.13a\relax }{subfigure.4.13.1}{}}
1361
 
\newlabel{fig:subfigEdevisroi-184-397-histo@cref}{{[subfigure][1][4,13]4.13a}{92}}
1362
 
\newlabel{fig:subfigEdevisroi-184-397-im0}{{4.13b}{92}{Subfigure 4 4.13b}{subfigure.4.13.2}{}}
 
1359
\newlabel{fig:subfigEdevisroi-184-397-histo@cref}{{[subfigure][1][4,13]4.13a}{91}}
 
1360
\newlabel{fig:subfigEdevisroi-184-397-im0}{{4.13b}{91}{Subfigure 4 4.13b}{subfigure.4.13.2}{}}
1363
1361
\newlabel{sub@fig:subfigEdevisroi-184-397-im0}{{(b)}{b}{Subfigure 4 4.13b\relax }{subfigure.4.13.2}{}}
1364
 
\newlabel{fig:subfigEdevisroi-184-397-im0@cref}{{[subfigure][2][4,13]4.13b}{92}}
1365
 
\newlabel{fig:subfigEdevisroi-184-397-im0warped}{{4.13c}{92}{Subfigure 4 4.13c}{subfigure.4.13.3}{}}
 
1362
\newlabel{fig:subfigEdevisroi-184-397-im0@cref}{{[subfigure][2][4,13]4.13b}{91}}
 
1363
\newlabel{fig:subfigEdevisroi-184-397-im0warped}{{4.13c}{91}{Subfigure 4 4.13c}{subfigure.4.13.3}{}}
1366
1364
\newlabel{sub@fig:subfigEdevisroi-184-397-im0warped}{{(c)}{c}{Subfigure 4 4.13c\relax }{subfigure.4.13.3}{}}
1367
 
\newlabel{fig:subfigEdevisroi-184-397-im0warped@cref}{{[subfigure][3][4,13]4.13c}{92}}
1368
 
\newlabel{fig:subfigEdevisroi-184-397-thermo}{{4.13d}{92}{Subfigure 4 4.13d}{subfigure.4.13.4}{}}
 
1365
\newlabel{fig:subfigEdevisroi-184-397-im0warped@cref}{{[subfigure][3][4,13]4.13c}{91}}
 
1366
\newlabel{fig:subfigEdevisroi-184-397-thermo}{{4.13d}{91}{Subfigure 4 4.13d}{subfigure.4.13.4}{}}
1369
1367
\newlabel{sub@fig:subfigEdevisroi-184-397-thermo}{{(d)}{d}{Subfigure 4 4.13d\relax }{subfigure.4.13.4}{}}
1370
 
\newlabel{fig:subfigEdevisroi-184-397-thermo@cref}{{[subfigure][4][4,13]4.13d}{92}}
1371
 
\newlabel{fig:subfigEdevisroiLone-184-397-histo}{{4.13e}{92}{Subfigure 4 4.13e}{subfigure.4.13.5}{}}
 
1368
\newlabel{fig:subfigEdevisroi-184-397-thermo@cref}{{[subfigure][4][4,13]4.13d}{91}}
 
1369
\newlabel{fig:subfigEdevisroiLone-184-397-histo}{{4.13e}{91}{Subfigure 4 4.13e}{subfigure.4.13.5}{}}
1372
1370
\newlabel{sub@fig:subfigEdevisroiLone-184-397-histo}{{(e)}{e}{Subfigure 4 4.13e\relax }{subfigure.4.13.5}{}}
1373
 
\newlabel{fig:subfigEdevisroiLone-184-397-histo@cref}{{[subfigure][5][4,13]4.13e}{92}}
1374
 
\newlabel{fig:subfigEdevisroiLone-184-397-im0}{{4.13f}{92}{Subfigure 4 4.13f}{subfigure.4.13.6}{}}
 
1371
\newlabel{fig:subfigEdevisroiLone-184-397-histo@cref}{{[subfigure][5][4,13]4.13e}{91}}
 
1372
\newlabel{fig:subfigEdevisroiLone-184-397-im0}{{4.13f}{91}{Subfigure 4 4.13f}{subfigure.4.13.6}{}}
1375
1373
\newlabel{sub@fig:subfigEdevisroiLone-184-397-im0}{{(f)}{f}{Subfigure 4 4.13f\relax }{subfigure.4.13.6}{}}
1376
 
\newlabel{fig:subfigEdevisroiLone-184-397-im0@cref}{{[subfigure][6][4,13]4.13f}{92}}
1377
 
\newlabel{fig:subfigEdevisroiLone-184-397-im0warped}{{4.13g}{92}{Subfigure 4 4.13g}{subfigure.4.13.7}{}}
 
1374
\newlabel{fig:subfigEdevisroiLone-184-397-im0@cref}{{[subfigure][6][4,13]4.13f}{91}}
 
1375
\newlabel{fig:subfigEdevisroiLone-184-397-im0warped}{{4.13g}{91}{Subfigure 4 4.13g}{subfigure.4.13.7}{}}
1378
1376
\newlabel{sub@fig:subfigEdevisroiLone-184-397-im0warped}{{(g)}{g}{Subfigure 4 4.13g\relax }{subfigure.4.13.7}{}}
1379
 
\newlabel{fig:subfigEdevisroiLone-184-397-im0warped@cref}{{[subfigure][7][4,13]4.13g}{92}}
1380
 
\newlabel{fig:subfigEdevisroiLone-184-397-thermo}{{4.13h}{92}{Subfigure 4 4.13h}{subfigure.4.13.8}{}}
 
1377
\newlabel{fig:subfigEdevisroiLone-184-397-im0warped@cref}{{[subfigure][7][4,13]4.13g}{91}}
 
1378
\newlabel{fig:subfigEdevisroiLone-184-397-thermo}{{4.13h}{91}{Subfigure 4 4.13h}{subfigure.4.13.8}{}}
1381
1379
\newlabel{sub@fig:subfigEdevisroiLone-184-397-thermo}{{(h)}{h}{Subfigure 4 4.13h\relax }{subfigure.4.13.8}{}}
1382
 
\newlabel{fig:subfigEdevisroiLone-184-397-thermo@cref}{{[subfigure][8][4,13]4.13h}{92}}
1383
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Comparison of region of interests (ROI) of size $a^\star =21$. Figures \ref  {fig:subfigEdevisroi-184-397-im0} and \ref  {fig:subfigEdevisroiLone-184-397-im0} show a ROI of $I_{vsc}$ and \ref  {fig:subfigEdevisroi-184-397-thermo} and \ref  {fig:subfigEdevisroiLone-184-397-thermo} the corresponding ROI of the image $y_{tc}$. Figures \ref  {fig:subfigEdevisroi-184-397-im0warped} and \ref  {fig:subfigEdevisroiLone-184-397-im0warped} show \cref  {fig:subfigEdevisroi-184-397-im0} warped by the flows $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$ and $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$. \ref  {fig:subfigEdevisroi-184-397-histo} and \ref  {fig:subfigEdevisroiLone-184-397-histo} show the histograms between \ref  {fig:subfigEdevisroi-184-397-thermo} and the filtered roi's $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle I$}\mathaccent "0365{I}_{vsc,\ensuremath  {\ensuremath  {{\bm  {d}}}}}=W_{\ensuremath  {\sigma ^{sc,\star }}}\star I_{vsc,\ensuremath  {\ensuremath  {{\bm  {d}}}}}$ \relax }}{92}{figure.caption.36}}
1384
 
\newlabel{fig:multimodalRoi}{{4.13}{92}{Comparison of region of interests (ROI) of size $a^\star =21$. Figures \ref {fig:subfigEdevisroi-184-397-im0} and \ref {fig:subfigEdevisroiLone-184-397-im0} show a ROI of $I_{vsc}$ and \ref {fig:subfigEdevisroi-184-397-thermo} and \ref {fig:subfigEdevisroiLone-184-397-thermo} the corresponding ROI of the image $y_{tc}$. Figures \ref {fig:subfigEdevisroi-184-397-im0warped} and \ref {fig:subfigEdevisroiLone-184-397-im0warped} show \figref {fig:subfigEdevisroi-184-397-im0} warped by the flows $\optimalflowST $ and $\optimalflowTV $. \ref {fig:subfigEdevisroi-184-397-histo} and \ref {fig:subfigEdevisroiLone-184-397-histo} show the histograms between \ref {fig:subfigEdevisroi-184-397-thermo} and the filtered roi's $\tilde {I}_{vsc,\vd }=W_{\optscalediff }\star I_{vsc,\vd }$ \relax }{figure.caption.36}{}}
1385
 
\newlabel{fig:multimodalRoi@cref}{{[figure][13][4]4.13}{92}}
1386
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{92}{subfigure.13.1}}
1387
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{92}{subfigure.13.2}}
1388
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {{\bm {d}}}}=\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{92}{subfigure.13.3}}
1389
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{92}{subfigure.13.4}}
1390
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{92}{subfigure.13.5}}
1391
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{92}{subfigure.13.6}}
1392
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {$\ensuremath {\ensuremath {{\bm {d}}}}=\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{92}{subfigure.13.7}}
1393
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{92}{subfigure.13.8}}
1394
 
\newlabel{fig:QregEigVal3}{{4.14a}{93}{Subfigure 4 4.14a}{subfigure.4.14.1}{}}
 
1380
\newlabel{fig:subfigEdevisroiLone-184-397-thermo@cref}{{[subfigure][8][4,13]4.13h}{91}}
 
1381
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Comparison of region of interests (ROI) of size $a^\star =21$. Figures \ref  {fig:subfigEdevisroi-184-397-im0} and \ref  {fig:subfigEdevisroiLone-184-397-im0} show a ROI of $I_{vsc}$ and \ref  {fig:subfigEdevisroi-184-397-thermo} and \ref  {fig:subfigEdevisroiLone-184-397-thermo} the corresponding ROI of the image $y_{tc}$. Figures \ref  {fig:subfigEdevisroi-184-397-im0warped} and \ref  {fig:subfigEdevisroiLone-184-397-im0warped} show \cref  {fig:subfigEdevisroi-184-397-im0} warped by the flows $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{ST}^{\star }}$ and $\ensuremath  {\ensuremath  {\ensuremath  {{\bm  {d}}}}_{TV}^{\star }}$. \ref  {fig:subfigEdevisroi-184-397-histo} and \ref  {fig:subfigEdevisroiLone-184-397-histo} show the histograms between \ref  {fig:subfigEdevisroi-184-397-thermo} and the filtered roi's $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle I$}\mathaccent "0365{I}_{vsc,\ensuremath  {\ensuremath  {{\bm  {d}}}}}=W_{\ensuremath  {\sigma ^{sc,\star }}}\star I_{vsc,\ensuremath  {\ensuremath  {{\bm  {d}}}}}$ \relax }}{91}{figure.caption.36}}
 
1382
\newlabel{fig:multimodalRoi}{{4.13}{91}{Comparison of region of interests (ROI) of size $a^\star =21$. Figures \ref {fig:subfigEdevisroi-184-397-im0} and \ref {fig:subfigEdevisroiLone-184-397-im0} show a ROI of $I_{vsc}$ and \ref {fig:subfigEdevisroi-184-397-thermo} and \ref {fig:subfigEdevisroiLone-184-397-thermo} the corresponding ROI of the image $y_{tc}$. Figures \ref {fig:subfigEdevisroi-184-397-im0warped} and \ref {fig:subfigEdevisroiLone-184-397-im0warped} show \figref {fig:subfigEdevisroi-184-397-im0} warped by the flows $\optimalflowST $ and $\optimalflowTV $. \ref {fig:subfigEdevisroi-184-397-histo} and \ref {fig:subfigEdevisroiLone-184-397-histo} show the histograms between \ref {fig:subfigEdevisroi-184-397-thermo} and the filtered roi's $\tilde {I}_{vsc,\vd }=W_{\optscalediff }\star I_{vsc,\vd }$ \relax }{figure.caption.36}{}}
 
1383
\newlabel{fig:multimodalRoi@cref}{{[figure][13][4]4.13}{91}}
 
1384
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{91}{subfigure.13.1}}
 
1385
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{91}{subfigure.13.2}}
 
1386
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\ensuremath {\ensuremath {{\bm {d}}}}=\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{ST}^{\star }}$}}}{91}{subfigure.13.3}}
 
1387
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{91}{subfigure.13.4}}
 
1388
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{91}{subfigure.13.5}}
 
1389
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{91}{subfigure.13.6}}
 
1390
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {$\ensuremath {\ensuremath {{\bm {d}}}}=\ensuremath {\ensuremath {\ensuremath {{\bm {d}}}}_{TV}^{\star }}$}}}{91}{subfigure.13.7}}
 
1391
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{91}{subfigure.13.8}}
 
1392
\newlabel{fig:QregEigVal3}{{4.14a}{92}{Subfigure 4 4.14a}{subfigure.4.14.1}{}}
1395
1393
\newlabel{sub@fig:QregEigVal3}{{(a)}{a}{Subfigure 4 4.14a\relax }{subfigure.4.14.1}{}}
1396
 
\newlabel{fig:QregEigVal3@cref}{{[subfigure][1][4,14]4.14a}{93}}
1397
 
\newlabel{fig:QregEigVal6}{{4.14b}{93}{Subfigure 4 4.14b}{subfigure.4.14.2}{}}
 
1394
\newlabel{fig:QregEigVal3@cref}{{[subfigure][1][4,14]4.14a}{92}}
 
1395
\newlabel{fig:QregEigVal6}{{4.14b}{92}{Subfigure 4 4.14b}{subfigure.4.14.2}{}}
1398
1396
\newlabel{sub@fig:QregEigVal6}{{(b)}{b}{Subfigure 4 4.14b\relax }{subfigure.4.14.2}{}}
1399
 
\newlabel{fig:QregEigVal6@cref}{{[subfigure][2][4,14]4.14b}{93}}
1400
 
\newlabel{fig:QregEigVal9}{{4.14c}{93}{Subfigure 4 4.14c}{subfigure.4.14.3}{}}
 
1397
\newlabel{fig:QregEigVal6@cref}{{[subfigure][2][4,14]4.14b}{92}}
 
1398
\newlabel{fig:QregEigVal9}{{4.14c}{92}{Subfigure 4 4.14c}{subfigure.4.14.3}{}}
1401
1399
\newlabel{sub@fig:QregEigVal9}{{(c)}{c}{Subfigure 4 4.14c\relax }{subfigure.4.14.3}{}}
1402
 
\newlabel{fig:QregEigVal9@cref}{{[subfigure][3][4,14]4.14c}{93}}
1403
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces The largest eigenvalue $\sigma ^k_Q$ of $Q^{reg}$ plotted over the iterations $k$ for three values of $\lambda _2$ in eq.~(\ref  {eq:structtensPriorStable}). Initially we have $\sigma ^k_Q\approx 8\lambda _2$ which is the eigenvalue of the $L_2$ term in eq.~(\ref  {eq:structtensPriorStable}). For $\lambda _2=10^{-3}$ we see that $\sigma ^k_Q$ slowly rises for increasing iterations $k$ until at $k\approx 40$ a sudden jump occurs and $\sigma ^k_Q$ begins to decrease. This is the regime where the structure tensor prior $E^{prior}_{ST}$ begins to act an-isotropically. For smaller values of $\lambda _2$ (figures \ref  {fig:QregEigVal6} and \ref  {fig:QregEigVal9}) the jump occurs sooner indicating quicker an-isotropic behavior of $E^{prior}_{ST}$. \relax }}{93}{figure.caption.37}}
1404
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\lambda _2=10^{-3}$}}}{93}{subfigure.14.1}}
1405
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\lambda _2=10^{-6}$}}}{93}{subfigure.14.2}}
1406
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\lambda _2=10^{-9}$}}}{93}{subfigure.14.3}}
1407
 
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.6}Eigenvalue analysis and the stabilization parameter $\lambda _2$}{93}{subsection.4.7.6}}
1408
 
\newlabel{sec:EigenValueSTPrior}{{4.7.6}{93}{Eigenvalue analysis and the stabilization parameter $\lambda _2$}{subsection.4.7.6}{}}
1409
 
\newlabel{sec:EigenValueSTPrior@cref}{{[subsection][6][4,7]4.7.6}{93}}
 
1400
\newlabel{fig:QregEigVal9@cref}{{[subfigure][3][4,14]4.14c}{92}}
 
1401
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces The largest eigenvalue $\sigma ^k_Q$ of $Q^{reg}$ plotted over the iterations $k$ for three values of $\lambda _2$ in eq.~(\ref  {eq:structtensPriorStable}). Initially we have $\sigma ^k_Q\approx 8\lambda _2$ which is the eigenvalue of the $L_2$ term in eq.~(\ref  {eq:structtensPriorStable}). For $\lambda _2=10^{-3}$ we see that $\sigma ^k_Q$ slowly rises for increasing iterations $k$ until at $k\approx 40$ a sudden jump occurs and $\sigma ^k_Q$ begins to decrease. This is the regime where the structure tensor prior $E^{prior}_{ST}$ begins to act an-isotropically. For smaller values of $\lambda _2$ (figures \ref  {fig:QregEigVal6} and \ref  {fig:QregEigVal9}) the jump occurs sooner indicating quicker an-isotropic behavior of $E^{prior}_{ST}$. \relax }}{92}{figure.caption.37}}
 
1402
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\lambda _2=10^{-3}$}}}{92}{subfigure.14.1}}
 
1403
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\lambda _2=10^{-6}$}}}{92}{subfigure.14.2}}
 
1404
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\lambda _2=10^{-9}$}}}{92}{subfigure.14.3}}
 
1405
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.6}Eigenvalue analysis and the stabilization parameter $\lambda _2$}{92}{subsection.4.7.6}}
 
1406
\newlabel{sec:EigenValueSTPrior}{{4.7.6}{92}{Eigenvalue analysis and the stabilization parameter $\lambda _2$}{subsection.4.7.6}{}}
 
1407
\newlabel{sec:EigenValueSTPrior@cref}{{[subsection][6][4,7]4.7.6}{92}}
1410
1408
\citation{Bigun1987,BigunBook}
1411
 
\newlabel{fig:bnorm3}{{4.15a}{94}{Subfigure 4 4.15a}{subfigure.4.15.1}{}}
 
1409
\newlabel{fig:bnorm3}{{4.15a}{93}{Subfigure 4 4.15a}{subfigure.4.15.1}{}}
1412
1410
\newlabel{sub@fig:bnorm3}{{(a)}{a}{Subfigure 4 4.15a\relax }{subfigure.4.15.1}{}}
1413
 
\newlabel{fig:bnorm3@cref}{{[subfigure][1][4,15]4.15a}{94}}
1414
 
\newlabel{fig:bnorm6}{{4.15b}{94}{Subfigure 4 4.15b}{subfigure.4.15.2}{}}
 
1411
\newlabel{fig:bnorm3@cref}{{[subfigure][1][4,15]4.15a}{93}}
 
1412
\newlabel{fig:bnorm6}{{4.15b}{93}{Subfigure 4 4.15b}{subfigure.4.15.2}{}}
1415
1413
\newlabel{sub@fig:bnorm6}{{(b)}{b}{Subfigure 4 4.15b\relax }{subfigure.4.15.2}{}}
1416
 
\newlabel{fig:bnorm6@cref}{{[subfigure][2][4,15]4.15b}{94}}
1417
 
\newlabel{fig:bnorm9}{{4.15c}{94}{Subfigure 4 4.15c}{subfigure.4.15.3}{}}
 
1414
\newlabel{fig:bnorm6@cref}{{[subfigure][2][4,15]4.15b}{93}}
 
1415
\newlabel{fig:bnorm9}{{4.15c}{93}{Subfigure 4 4.15c}{subfigure.4.15.3}{}}
1418
1416
\newlabel{sub@fig:bnorm9}{{(c)}{c}{Subfigure 4 4.15c\relax }{subfigure.4.15.3}{}}
1419
 
\newlabel{fig:bnorm9@cref}{{[subfigure][3][4,15]4.15c}{94}}
1420
 
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces The residual vector $\ensuremath  {{\bm  {b}}}$ plotted over the iterations $k$ for three values of $\lambda _2$ in eq.~(\ref  {eq:structtensPriorStable}). While the norm of $\ensuremath  {{\bm  {b}}}$ is approximately equal for $\lambda _2=10^{-3}$ and $\lambda _2=10^{-6}$, it is an order of magnitude higher for $\lambda _2=10^{-9}$. This indicates a numerical instability of the MOF algorithm for $\lambda _2=10^{-9}$ \relax }}{94}{figure.caption.38}}
1421
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\lambda _2=10^{-3}$}}}{94}{subfigure.15.1}}
1422
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\lambda _2=10^{-6}$}}}{94}{subfigure.15.2}}
1423
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\lambda _2=10^{-9}$}}}{94}{subfigure.15.3}}
1424
 
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.7}Summary}{94}{subsection.4.7.7}}
1425
 
\newlabel{sec:OptFlowsummary}{{4.7.7}{94}{Summary}{subsection.4.7.7}{}}
1426
 
\newlabel{sec:OptFlowsummary@cref}{{[subsection][7][4,7]4.7.7}{94}}
1427
 
\@writefile{brf}{\backcite{Bigun1987}{{94}{4.7.7}{subsection.4.7.7}}}
1428
 
\@writefile{brf}{\backcite{BigunBook}{{94}{4.7.7}{subsection.4.7.7}}}
1429
 
\newlabel{eq:summaryGlobalLin}{{4.71}{94}{Summary}{equation.4.7.71}{}}
1430
 
\newlabel{eq:summaryGlobalLin@cref}{{[equation][71][4]4.71}{94}}
 
1417
\newlabel{fig:bnorm9@cref}{{[subfigure][3][4,15]4.15c}{93}}
 
1418
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces The residual vector $\ensuremath  {{\bm  {b}}}$ plotted over the iterations $k$ for three values of $\lambda _2$ in eq.~(\ref  {eq:structtensPriorStable}). While the norm of $\ensuremath  {{\bm  {b}}}$ is approximately equal for $\lambda _2=10^{-3}$ and $\lambda _2=10^{-6}$, it is an order of magnitude higher for $\lambda _2=10^{-9}$. This indicates a numerical instability of the MOF algorithm for $\lambda _2=10^{-9}$ \relax }}{93}{figure.caption.38}}
 
1419
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\lambda _2=10^{-3}$}}}{93}{subfigure.15.1}}
 
1420
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\lambda _2=10^{-6}$}}}{93}{subfigure.15.2}}
 
1421
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\lambda _2=10^{-9}$}}}{93}{subfigure.15.3}}
 
1422
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.7}Summary}{93}{subsection.4.7.7}}
 
1423
\newlabel{sec:OptFlowsummary}{{4.7.7}{93}{Summary}{subsection.4.7.7}{}}
 
1424
\newlabel{sec:OptFlowsummary@cref}{{[subsection][7][4,7]4.7.7}{93}}
 
1425
\@writefile{brf}{\backcite{Bigun1987}{{93}{4.7.7}{subsection.4.7.7}}}
 
1426
\@writefile{brf}{\backcite{BigunBook}{{93}{4.7.7}{subsection.4.7.7}}}
 
1427
\newlabel{eq:summaryGlobalLin}{{4.71}{93}{Summary}{equation.4.7.71}{}}
 
1428
\newlabel{eq:summaryGlobalLin@cref}{{[equation][71][4]4.71}{93}}
1431
1429
\citation{Middleburry}
1432
 
\newlabel{eq:sumoptFlowModelST}{{4.72}{95}{Summary}{equation.4.7.72}{}}
1433
 
\newlabel{eq:sumoptFlowModelST@cref}{{[equation][72][4]4.72}{95}}
1434
 
\newlabel{eq:sumoptFlowModelTV}{{4.73}{95}{Summary}{equation.4.7.73}{}}
1435
 
\newlabel{eq:sumoptFlowModelTV@cref}{{[equation][73][4]4.73}{95}}
1436
 
\@writefile{brf}{\backcite{Middleburry}{{95}{4.7.7}{equation.4.7.73}}}
1437
 
\newlabel{eq:summaryLocalRelation}{{4.74}{96}{Summary}{equation.4.7.74}{}}
1438
 
\newlabel{eq:summaryLocalRelation@cref}{{[equation][74][4]4.74}{96}}
1439
 
\newlabel{eq:sumoptFlowModelSTLocal}{{4.75}{96}{Summary}{equation.4.7.75}{}}
1440
 
\newlabel{eq:sumoptFlowModelSTLocal@cref}{{[equation][75][4]4.75}{96}}
1441
 
\newlabel{eq:sumoptFlowModelTVLocal}{{4.76}{96}{Summary}{equation.4.7.76}{}}
1442
 
\newlabel{eq:sumoptFlowModelTVLocal@cref}{{[equation][76][4]4.76}{96}}
1443
 
\@writefile{toc}{\contentsline {chapter}{\numberline {5}The Extended Least Action Algorithm}{98}{chapter.5}}
 
1430
\newlabel{eq:sumoptFlowModelST}{{4.72}{94}{Summary}{equation.4.7.72}{}}
 
1431
\newlabel{eq:sumoptFlowModelST@cref}{{[equation][72][4]4.72}{94}}
 
1432
\newlabel{eq:sumoptFlowModelTV}{{4.73}{94}{Summary}{equation.4.7.73}{}}
 
1433
\newlabel{eq:sumoptFlowModelTV@cref}{{[equation][73][4]4.73}{94}}
 
1434
\@writefile{brf}{\backcite{Middleburry}{{94}{4.7.7}{equation.4.7.73}}}
 
1435
\newlabel{eq:summaryLocalRelation}{{4.74}{95}{Summary}{equation.4.7.74}{}}
 
1436
\newlabel{eq:summaryLocalRelation@cref}{{[equation][74][4]4.74}{95}}
 
1437
\newlabel{eq:sumoptFlowModelSTLocal}{{4.75}{95}{Summary}{equation.4.7.75}{}}
 
1438
\newlabel{eq:sumoptFlowModelSTLocal@cref}{{[equation][75][4]4.75}{95}}
 
1439
\newlabel{eq:sumoptFlowModelTVLocal}{{4.76}{95}{Summary}{equation.4.7.76}{}}
 
1440
\newlabel{eq:sumoptFlowModelTVLocal@cref}{{[equation][76][4]4.76}{95}}
 
1441
\@writefile{toc}{\contentsline {chapter}{\numberline {5}The Extended Least Action Algorithm}{97}{chapter.5}}
1444
1442
\@writefile{lof}{\addvspace {10\p@ }}
1445
1443
\@writefile{lot}{\addvspace {10\p@ }}
1446
1444
\@writefile{lol}{\addvspace {10\p@ }}
1447
1445
\@writefile{loa}{\addvspace {10\p@ }}
1448
 
\newlabel{chap:GeneralizedNewtonAlgorithm}{{5}{98}{The Extended Least Action Algorithm}{chapter.5}{}}
1449
 
\newlabel{chap:GeneralizedNewtonAlgorithm@cref}{{[chapter][5][]5}{98}}
1450
 
\newlabel{eq:totEnergyGenNewton}{{5.1}{98}{The Extended Least Action Algorithm}{equation.5.0.1}{}}
1451
 
\newlabel{eq:totEnergyGenNewton@cref}{{[equation][1][5]5.1}{98}}
1452
 
\newlabel{eq:eulerLagrangeGRF2}{{5.2}{98}{The Extended Least Action Algorithm}{equation.5.0.2}{}}
1453
 
\newlabel{eq:eulerLagrangeGRF2@cref}{{[equation][2][5]5.2}{98}}
1454
 
\newlabel{eq:pureSpacialSymmetryCanonMomentum2}{{5.4}{98}{The Extended Least Action Algorithm}{equation.5.0.4}{}}
1455
 
\newlabel{eq:pureSpacialSymmetryCanonMomentum2@cref}{{[equation][4][5]5.4}{98}}
1456
 
\newlabel{fig:GNAMotivCurvImage}{{5.1a}{99}{Subfigure 5 5.1a}{subfigure.5.1.1}{}}
 
1446
\newlabel{chap:GeneralizedNewtonAlgorithm}{{5}{97}{The Extended Least Action Algorithm}{chapter.5}{}}
 
1447
\newlabel{chap:GeneralizedNewtonAlgorithm@cref}{{[chapter][5][]5}{97}}
 
1448
\newlabel{eq:totEnergyGenNewton}{{5.1}{97}{The Extended Least Action Algorithm}{equation.5.0.1}{}}
 
1449
\newlabel{eq:totEnergyGenNewton@cref}{{[equation][1][5]5.1}{97}}
 
1450
\newlabel{eq:eulerLagrangeGRF2}{{5.2}{97}{The Extended Least Action Algorithm}{equation.5.0.2}{}}
 
1451
\newlabel{eq:eulerLagrangeGRF2@cref}{{[equation][2][5]5.2}{97}}
 
1452
\newlabel{eq:pureSpacialSymmetryCanonMomentum2}{{5.4}{97}{The Extended Least Action Algorithm}{equation.5.0.4}{}}
 
1453
\newlabel{eq:pureSpacialSymmetryCanonMomentum2@cref}{{[equation][4][5]5.4}{97}}
 
1454
\newlabel{fig:GNAMotivCurvImage}{{5.1a}{98}{Subfigure 5 5.1a}{subfigure.5.1.1}{}}
1457
1455
\newlabel{sub@fig:GNAMotivCurvImage}{{(a)}{a}{Subfigure 5 5.1a\relax }{subfigure.5.1.1}{}}
1458
 
\newlabel{fig:GNAMotivCurvImage@cref}{{[subfigure][1][5,1]5.1a}{99}}
1459
 
\newlabel{fig:GNAMotivCoordFrame}{{5.1b}{99}{Subfigure 5 5.1b}{subfigure.5.1.2}{}}
 
1456
\newlabel{fig:GNAMotivCurvImage@cref}{{[subfigure][1][5,1]5.1a}{98}}
 
1457
\newlabel{fig:GNAMotivCoordFrame}{{5.1b}{98}{Subfigure 5 5.1b}{subfigure.5.1.2}{}}
1460
1458
\newlabel{sub@fig:GNAMotivCoordFrame}{{(b)}{b}{Subfigure 5 5.1b\relax }{subfigure.5.1.2}{}}
1461
 
\newlabel{fig:GNAMotivCoordFrame@cref}{{[subfigure][2][5,1]5.1b}{99}}
1462
 
\newlabel{fig:GNAMotivCurvImageStraight}{{5.1c}{99}{Subfigure 5 5.1c}{subfigure.5.1.3}{}}
 
1459
\newlabel{fig:GNAMotivCoordFrame@cref}{{[subfigure][2][5,1]5.1b}{98}}
 
1460
\newlabel{fig:GNAMotivCurvImageStraight}{{5.1c}{98}{Subfigure 5 5.1c}{subfigure.5.1.3}{}}
1463
1461
\newlabel{sub@fig:GNAMotivCurvImageStraight}{{(c)}{c}{Subfigure 5 5.1c\relax }{subfigure.5.1.3}{}}
1464
 
\newlabel{fig:GNAMotivCurvImageStraight@cref}{{[subfigure][3][5,1]5.1c}{99}}
1465
 
\newlabel{fig:GNAMotivCoordFrameStraight}{{5.1d}{99}{Subfigure 5 5.1d}{subfigure.5.1.4}{}}
 
1462
\newlabel{fig:GNAMotivCurvImageStraight@cref}{{[subfigure][3][5,1]5.1c}{98}}
 
1463
\newlabel{fig:GNAMotivCoordFrameStraight}{{5.1d}{98}{Subfigure 5 5.1d}{subfigure.5.1.4}{}}
1466
1464
\newlabel{sub@fig:GNAMotivCoordFrameStraight}{{(d)}{d}{Subfigure 5 5.1d\relax }{subfigure.5.1.4}{}}
1467
 
\newlabel{fig:GNAMotivCoordFrameStraight@cref}{{[subfigure][4][5,1]5.1d}{99}}
1468
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces \Cref  {fig:GNAMotivCurvImage} shows an image $\phi _0$ with parabolic level-sets according to eq.~(\ref  {eq:GNAMotivLevelSet}). The white line indicates the level-sets $S_{\phi _0,c}$ with $39<c<43$. In \cref  {fig:GNAMotivCoordFrame} the coordinate frame $\Omega _0$ is shown together with the level-sets $S_{\phi _0,c}$. \Cref  {fig:GNAMotivCurvImageStraight} shows the warped image $\phi _0(\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}})$ and \cref  {fig:GNAMotivCoordFrameStraight} the transformed coordinate frame $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \Omega $}\mathaccent "0365{\Omega }=\ensuremath  {T^B_t}\circ \Omega _0$. $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \Omega $}\mathaccent "0365{\Omega }$ has been deformed by the algorithm in eq.~(\ref  {eq:MotivSimpleAlgo}) in such a way that the level-set $S_{\phi _0,c}$ (indicated by the black line) appears to be straight and hence it is identified with the linear domain $\Omega ^{\epsilon }$ of the TV prior $E^{prior}_{TV}\left (\nabla \phi \right )$. \relax }}{99}{figure.caption.39}}
1469
 
\newlabel{fig:GNAMotivCurvImagesWithLevelSet}{{5.1}{99}{\Figref {fig:GNAMotivCurvImage} shows an image $\phi _0$ with parabolic level-sets according to \eqref {eq:GNAMotivLevelSet}. The white line indicates the level-sets $S_{\phi _0,c}$ with $39<c<43$. In \figref {fig:GNAMotivCoordFrame} the coordinate frame $\Omega _0$ is shown together with the level-sets $S_{\phi _0,c}$. \Figref {fig:GNAMotivCurvImageStraight} shows the warped image $\phi _0(\omegadeform \circ \vx )$ and \figref {fig:GNAMotivCoordFrameStraight} the transformed coordinate frame $\tilde {\Omega }=\omegadeform \circ \Omega _0$. $\tilde {\Omega }$ has been deformed by the algorithm in \eqref {eq:MotivSimpleAlgo} in such a way that the level-set $S_{\phi _0,c}$ (indicated by the black line) appears to be straight and hence it is identified with the linear domain $\Omega ^{\epsilon }$ of the TV prior $E^{prior}_{TV}\brackets {\nabla \phi }$. \relax }{figure.caption.39}{}}
1470
 
\newlabel{fig:GNAMotivCurvImagesWithLevelSet@cref}{{[figure][1][5]5.1}{99}}
1471
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\phi _0(\ensuremath {\ensuremath {{\bm {x}}}})$}}}{99}{subfigure.1.1}}
1472
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\Omega _0$}}}{99}{subfigure.1.2}}
1473
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \phi $}\mathaccent "0365{\phi }(\ensuremath {\ensuremath {{\bm {x}}}})=\phi _0(\ensuremath {T^B_t}\circ \ensuremath {\ensuremath {{\bm {x}}}})$}}}{99}{subfigure.1.3}}
1474
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\Omega ^{\epsilon }=\ensuremath {T^B_t}\circ \Omega _0$}}}{99}{subfigure.1.4}}
1475
 
\newlabel{sec:GNABasicIdea}{{5}{99}{The Basic Idea}{section*.40}{}}
1476
 
\newlabel{sec:GNABasicIdea@cref}{{[chapter][5][]5}{99}}
1477
 
\newlabel{eq:MotivBendingFlow}{{5.6}{100}{The Basic Idea}{equation.5.0.6}{}}
1478
 
\newlabel{eq:MotivBendingFlow@cref}{{[equation][6][5]5.6}{100}}
1479
 
\newlabel{eq:MotivBendingFlowIntegration}{{5.7}{100}{The Basic Idea}{equation.5.0.7}{}}
1480
 
\newlabel{eq:MotivBendingFlowIntegration@cref}{{[equation][7][5]5.7}{100}}
1481
 
\newlabel{eq:GNAMotivLevelSet}{{5.9}{100}{The Basic Idea}{equation.5.0.9}{}}
1482
 
\newlabel{eq:GNAMotivLevelSet@cref}{{[equation][9][5]5.9}{100}}
 
1465
\newlabel{fig:GNAMotivCoordFrameStraight@cref}{{[subfigure][4][5,1]5.1d}{98}}
 
1466
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces \Cref  {fig:GNAMotivCurvImage} shows an image $\phi _0$ with parabolic level-sets according to eq.~(\ref  {eq:GNAMotivLevelSet}). The white line indicates the level-sets $S_{\phi _0,c}$ with $39<c<43$. In \cref  {fig:GNAMotivCoordFrame} the coordinate frame $\Omega _0$ is shown together with the level-sets $S_{\phi _0,c}$. \Cref  {fig:GNAMotivCurvImageStraight} shows the warped image $\phi _0(\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}})$ and \cref  {fig:GNAMotivCoordFrameStraight} the transformed coordinate frame $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \Omega $}\mathaccent "0365{\Omega }=\ensuremath  {T^B_t}\circ \Omega _0$. $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \Omega $}\mathaccent "0365{\Omega }$ has been deformed by the algorithm in eq.~(\ref  {eq:MotivSimpleAlgo}) in such a way that the level-set $S_{\phi _0,c}$ (indicated by the black line) appears to be straight and hence it is identified with the linear domain $\Omega ^{\epsilon }$ of the TV prior $E^{prior}_{TV}\left (\nabla \phi \right )$. \relax }}{98}{figure.caption.39}}
 
1467
\newlabel{fig:GNAMotivCurvImagesWithLevelSet}{{5.1}{98}{\Figref {fig:GNAMotivCurvImage} shows an image $\phi _0$ with parabolic level-sets according to \eqref {eq:GNAMotivLevelSet}. The white line indicates the level-sets $S_{\phi _0,c}$ with $39<c<43$. In \figref {fig:GNAMotivCoordFrame} the coordinate frame $\Omega _0$ is shown together with the level-sets $S_{\phi _0,c}$. \Figref {fig:GNAMotivCurvImageStraight} shows the warped image $\phi _0(\omegadeform \circ \vx )$ and \figref {fig:GNAMotivCoordFrameStraight} the transformed coordinate frame $\tilde {\Omega }=\omegadeform \circ \Omega _0$. $\tilde {\Omega }$ has been deformed by the algorithm in \eqref {eq:MotivSimpleAlgo} in such a way that the level-set $S_{\phi _0,c}$ (indicated by the black line) appears to be straight and hence it is identified with the linear domain $\Omega ^{\epsilon }$ of the TV prior $E^{prior}_{TV}\brackets {\nabla \phi }$. \relax }{figure.caption.39}{}}
 
1468
\newlabel{fig:GNAMotivCurvImagesWithLevelSet@cref}{{[figure][1][5]5.1}{98}}
 
1469
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\phi _0(\ensuremath {\ensuremath {{\bm {x}}}})$}}}{98}{subfigure.1.1}}
 
1470
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\Omega _0$}}}{98}{subfigure.1.2}}
 
1471
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle \phi $}\mathaccent "0365{\phi }(\ensuremath {\ensuremath {{\bm {x}}}})=\phi _0(\ensuremath {T^B_t}\circ \ensuremath {\ensuremath {{\bm {x}}}})$}}}{98}{subfigure.1.3}}
 
1472
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\Omega ^{\epsilon }=\ensuremath {T^B_t}\circ \Omega _0$}}}{98}{subfigure.1.4}}
 
1473
\newlabel{sec:GNABasicIdea}{{5}{98}{The Basic Idea}{section*.40}{}}
 
1474
\newlabel{sec:GNABasicIdea@cref}{{[chapter][5][]5}{98}}
 
1475
\newlabel{eq:MotivBendingFlow}{{5.6}{99}{The Basic Idea}{equation.5.0.6}{}}
 
1476
\newlabel{eq:MotivBendingFlow@cref}{{[equation][6][5]5.6}{99}}
 
1477
\newlabel{eq:MotivBendingFlowIntegration}{{5.7}{99}{The Basic Idea}{equation.5.0.7}{}}
 
1478
\newlabel{eq:MotivBendingFlowIntegration@cref}{{[equation][7][5]5.7}{99}}
 
1479
\newlabel{eq:GNAMotivLevelSet}{{5.9}{99}{The Basic Idea}{equation.5.0.9}{}}
 
1480
\newlabel{eq:GNAMotivLevelSet@cref}{{[equation][9][5]5.9}{99}}
1483
1481
\citation{FieguthStatImProc}
1484
 
\newlabel{eq:MotivSimpleAlgo}{{5.10}{101}{The Basic Idea}{equation.5.0.10}{}}
1485
 
\newlabel{eq:MotivSimpleAlgo@cref}{{[equation][10][5]5.10}{101}}
1486
 
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.8}Newtonian Minimization}{101}{subsection.5.0.8}}
1487
 
\@writefile{brf}{\backcite{FieguthStatImProc}{{101}{5.0.8}{subsection.5.0.8}}}
1488
 
\newlabel{eq:eulerFlow}{{5.11}{101}{Newtonian Minimization}{equation.5.0.11}{}}
1489
 
\newlabel{eq:eulerFlow@cref}{{[equation][11][5]5.11}{101}}
1490
 
\newlabel{eq:steepestDescentInitialUpdate}{{5.13}{101}{Newtonian Minimization}{equation.5.0.13}{}}
1491
 
\newlabel{eq:steepestDescentInitialUpdate@cref}{{[equation][13][5]5.13}{101}}
1492
 
\newlabel{eq:steepestDescentInitialUpdate2}{{5.16}{102}{Newtonian Minimization}{equation.5.0.16}{}}
1493
 
\newlabel{eq:steepestDescentInitialUpdate2@cref}{{[equation][16][5]5.16}{102}}
1494
 
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.9}The dynamics of the level-sets $S$}{102}{subsection.5.0.9}}
1495
 
\newlabel{eq:noetherVariationChap4}{{5.18}{102}{The dynamics of the level-sets $S$}{equation.5.0.18}{}}
1496
 
\newlabel{eq:noetherVariationChap4@cref}{{[equation][18][5]5.18}{102}}
1497
 
\newlabel{eq:noetherPureIntensTransChap4}{{5.19}{102}{The dynamics of the level-sets $S$}{equation.5.0.19}{}}
1498
 
\newlabel{eq:noetherPureIntensTransChap4@cref}{{[equation][19][5]5.19}{102}}
1499
 
\newlabel{eq:noetherVariationPureSpacial}{{5.20}{102}{The dynamics of the level-sets $S$}{equation.5.0.20}{}}
1500
 
\newlabel{eq:noetherVariationPureSpacial@cref}{{[equation][20][5]5.20}{102}}
1501
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces This figure shows a transformation of the level-set $S$ to $S^\prime $ along the vector $\ensuremath  {{\bm  {W}}}_m(\ensuremath  {\ensuremath  {{\bm  {x}}}})$. The region $\mathcal  {A}\subset \Omega $ is the region a section of $S$ traverses as it is shifted along $\ensuremath  {{\bm  {W}}}_m$ to the end position $S^\prime $. If the divergence of $\ensuremath  {{\bm  {W}}}_m$ vanishes, this means that the incoming flux of $\ensuremath  {{\bm  {W}}}_m$ equals the outgoing flux (both indicated by the red arrows), $\ensuremath  {{\bm  {W}}}_m\delimiter "026A30C _{S}=\ensuremath  {{\bm  {W}}}_m\delimiter "026A30C _{S^\prime }$\relax }}{103}{figure.caption.42}}
1502
 
\newlabel{fig:divergenceLevelSetShift}{{5.2}{103}{This figure shows a transformation of the level-set $S$ to $S^\prime $ along the vector $\vector {W}_m(\vx )$. The region $\mathcal {A}\subset \Omega $ is the region a section of $S$ traverses as it is shifted along $\vector {W}_m$ to the end position $S^\prime $. If the divergence of $\vector {W}_m$ vanishes, this means that the incoming flux of $\vector {W}_m$ equals the outgoing flux (both indicated by the red arrows), $\vector {W}_m\vert _{S}=\vector {W}_m\vert _{S^\prime }$\relax }{figure.caption.42}{}}
1503
 
\newlabel{fig:divergenceLevelSetShift@cref}{{[figure][2][5]5.2}{103}}
1504
 
\newlabel{eq:divergenceSource}{{5.21}{103}{The dynamics of the level-sets $S$}{equation.5.0.21}{}}
1505
 
\newlabel{eq:divergenceSource@cref}{{[equation][21][5]5.21}{103}}
1506
 
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Dynamics of the normal vector $\ensuremath  {{\bm  {n}}}_S$}{103}{section*.41}}
1507
 
\newlabel{eq:divergenceSource2}{{5.22}{103}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.22}{}}
1508
 
\newlabel{eq:divergenceSource2@cref}{{[equation][22][5]5.22}{103}}
1509
 
\newlabel{eq:gaussLaw}{{5.23}{103}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.23}{}}
1510
 
\newlabel{eq:gaussLaw@cref}{{[equation][23][5]5.23}{103}}
1511
 
\newlabel{eq:gaussLaw2}{{5.24}{103}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.24}{}}
1512
 
\newlabel{eq:gaussLaw2@cref}{{[equation][24][5]5.24}{103}}
1513
 
\newlabel{eq:gaussLawSurface}{{5.25}{104}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.25}{}}
1514
 
\newlabel{eq:gaussLawSurface@cref}{{[equation][25][5]5.25}{104}}
1515
 
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Dynamics of the tangential vector to $S$}{104}{section*.43}}
1516
 
\newlabel{sec:dynamicsTangential}{{5.0.9}{104}{Dynamics of the tangential vector to $S$}{section*.43}{}}
1517
 
\newlabel{sec:dynamicsTangential@cref}{{[subsection][9][5,0]5.0.9}{104}}
1518
 
\newlabel{eq:BlevelSet}{{5.27}{104}{Dynamics of the tangential vector to $S$}{equation.5.0.27}{}}
1519
 
\newlabel{eq:BlevelSet@cref}{{[equation][27][5]5.27}{104}}
1520
 
\newlabel{eq:newtonLevelSetMotivation}{{5.28}{104}{Dynamics of the tangential vector to $S$}{equation.5.0.28}{}}
1521
 
\newlabel{eq:newtonLevelSetMotivation@cref}{{[equation][28][5]5.28}{104}}
1522
 
\newlabel{eq:newtonLevelSetEnergyInvariant}{{5.29}{104}{Dynamics of the tangential vector to $S$}{equation.5.0.29}{}}
1523
 
\newlabel{eq:newtonLevelSetEnergyInvariant@cref}{{[equation][29][5]5.29}{104}}
1524
 
\newlabel{fig:proofBendingEnergy}{{5.3a}{105}{Subfigure 5 5.3a}{subfigure.5.3.1}{}}
 
1482
\newlabel{eq:MotivSimpleAlgo}{{5.10}{100}{The Basic Idea}{equation.5.0.10}{}}
 
1483
\newlabel{eq:MotivSimpleAlgo@cref}{{[equation][10][5]5.10}{100}}
 
1484
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.8}Newtonian Minimization}{100}{subsection.5.0.8}}
 
1485
\@writefile{brf}{\backcite{FieguthStatImProc}{{100}{5.0.8}{subsection.5.0.8}}}
 
1486
\newlabel{eq:eulerFlow}{{5.11}{100}{Newtonian Minimization}{equation.5.0.11}{}}
 
1487
\newlabel{eq:eulerFlow@cref}{{[equation][11][5]5.11}{100}}
 
1488
\newlabel{eq:steepestDescentInitialUpdate}{{5.13}{100}{Newtonian Minimization}{equation.5.0.13}{}}
 
1489
\newlabel{eq:steepestDescentInitialUpdate@cref}{{[equation][13][5]5.13}{100}}
 
1490
\newlabel{eq:steepestDescentInitialUpdate2}{{5.16}{101}{Newtonian Minimization}{equation.5.0.16}{}}
 
1491
\newlabel{eq:steepestDescentInitialUpdate2@cref}{{[equation][16][5]5.16}{101}}
 
1492
\@writefile{toc}{\contentsline {subsection}{\numberline {5.0.9}The dynamics of the level-sets $S$}{101}{subsection.5.0.9}}
 
1493
\newlabel{eq:noetherVariationChap4}{{5.18}{101}{The dynamics of the level-sets $S$}{equation.5.0.18}{}}
 
1494
\newlabel{eq:noetherVariationChap4@cref}{{[equation][18][5]5.18}{101}}
 
1495
\newlabel{eq:noetherPureIntensTransChap4}{{5.19}{101}{The dynamics of the level-sets $S$}{equation.5.0.19}{}}
 
1496
\newlabel{eq:noetherPureIntensTransChap4@cref}{{[equation][19][5]5.19}{101}}
 
1497
\newlabel{eq:noetherVariationPureSpacial}{{5.20}{101}{The dynamics of the level-sets $S$}{equation.5.0.20}{}}
 
1498
\newlabel{eq:noetherVariationPureSpacial@cref}{{[equation][20][5]5.20}{101}}
 
1499
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces This figure shows a transformation of the level-set $S$ to $S^\prime $ along the vector $\ensuremath  {{\bm  {W}}}_m(\ensuremath  {\ensuremath  {{\bm  {x}}}})$. The region $\mathcal  {A}\subset \Omega $ is the region a section of $S$ traverses as it is shifted along $\ensuremath  {{\bm  {W}}}_m$ to the end position $S^\prime $. If the divergence of $\ensuremath  {{\bm  {W}}}_m$ vanishes, this means that the incoming flux of $\ensuremath  {{\bm  {W}}}_m$ equals the outgoing flux (both indicated by the red arrows), $\ensuremath  {{\bm  {W}}}_m\delimiter "026A30C _{S}=\ensuremath  {{\bm  {W}}}_m\delimiter "026A30C _{S^\prime }$\relax }}{102}{figure.caption.42}}
 
1500
\newlabel{fig:divergenceLevelSetShift}{{5.2}{102}{This figure shows a transformation of the level-set $S$ to $S^\prime $ along the vector $\vector {W}_m(\vx )$. The region $\mathcal {A}\subset \Omega $ is the region a section of $S$ traverses as it is shifted along $\vector {W}_m$ to the end position $S^\prime $. If the divergence of $\vector {W}_m$ vanishes, this means that the incoming flux of $\vector {W}_m$ equals the outgoing flux (both indicated by the red arrows), $\vector {W}_m\vert _{S}=\vector {W}_m\vert _{S^\prime }$\relax }{figure.caption.42}{}}
 
1501
\newlabel{fig:divergenceLevelSetShift@cref}{{[figure][2][5]5.2}{102}}
 
1502
\newlabel{eq:divergenceSource}{{5.21}{102}{The dynamics of the level-sets $S$}{equation.5.0.21}{}}
 
1503
\newlabel{eq:divergenceSource@cref}{{[equation][21][5]5.21}{102}}
 
1504
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Dynamics of the normal vector $\ensuremath  {{\bm  {n}}}_S$}{102}{section*.41}}
 
1505
\newlabel{eq:divergenceSource2}{{5.22}{102}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.22}{}}
 
1506
\newlabel{eq:divergenceSource2@cref}{{[equation][22][5]5.22}{102}}
 
1507
\newlabel{eq:gaussLaw}{{5.23}{102}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.23}{}}
 
1508
\newlabel{eq:gaussLaw@cref}{{[equation][23][5]5.23}{102}}
 
1509
\newlabel{eq:gaussLaw2}{{5.24}{102}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.24}{}}
 
1510
\newlabel{eq:gaussLaw2@cref}{{[equation][24][5]5.24}{102}}
 
1511
\newlabel{eq:gaussLawSurface}{{5.25}{103}{Dynamics of the normal vector $\vector {n}_S$}{equation.5.0.25}{}}
 
1512
\newlabel{eq:gaussLawSurface@cref}{{[equation][25][5]5.25}{103}}
 
1513
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Dynamics of the tangential vector to $S$}{103}{section*.43}}
 
1514
\newlabel{sec:dynamicsTangential}{{5.0.9}{103}{Dynamics of the tangential vector to $S$}{section*.43}{}}
 
1515
\newlabel{sec:dynamicsTangential@cref}{{[subsection][9][5,0]5.0.9}{103}}
 
1516
\newlabel{eq:BlevelSet}{{5.27}{103}{Dynamics of the tangential vector to $S$}{equation.5.0.27}{}}
 
1517
\newlabel{eq:BlevelSet@cref}{{[equation][27][5]5.27}{103}}
 
1518
\newlabel{eq:newtonLevelSetMotivation}{{5.28}{103}{Dynamics of the tangential vector to $S$}{equation.5.0.28}{}}
 
1519
\newlabel{eq:newtonLevelSetMotivation@cref}{{[equation][28][5]5.28}{103}}
 
1520
\newlabel{eq:newtonLevelSetEnergyInvariant}{{5.29}{103}{Dynamics of the tangential vector to $S$}{equation.5.0.29}{}}
 
1521
\newlabel{eq:newtonLevelSetEnergyInvariant@cref}{{[equation][29][5]5.29}{103}}
 
1522
\newlabel{fig:proofBendingEnergy}{{5.3a}{104}{Subfigure 5 5.3a}{subfigure.5.3.1}{}}
1525
1523
\newlabel{sub@fig:proofBendingEnergy}{{(a)}{a}{Subfigure 5 5.3a\relax }{subfigure.5.3.1}{}}
1526
 
\newlabel{fig:proofBendingEnergy@cref}{{[subfigure][1][5,3]5.3a}{105}}
1527
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces \Cref  {fig:proofBendingEnergy} shows an image $\phi $ in which a group of level-sets with $47<\phi <53$ (indicated by the white area) all converge into one point $P$ at the top of the image. The line sections $S_{1,2}$ and $T_{1,2}$ enclose the region $\mathcal  {R}_B$ in eq.~(\ref  {eq:divLevelSetB}) and eq.~(\ref  {eq:divLevelSetBT}). The normal vectors $\ensuremath  {{\bm  {n}}}_{S_{1,2}}$ of lines $S_{1,2}$ are orthogonal to $\ensuremath  {{\bm  {b}}}_S$, hence the corresponding line integrals on the right hand side of eq.~(\ref  {eq:divLevelSetB}) vanish. In contrast the normal vectors $\ensuremath  {{\bm  {n}}}_{T_{1,2}}$ of lines $T_{1,2}$ are parallel to $\ensuremath  {{\bm  {b}}}_S$ so that the corresponding line integrals on the right hand side of eq.~(\ref  {eq:divLevelSetB}) do not vanish \relax }}{105}{figure.caption.44}}
1528
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{105}{subfigure.3.1}}
1529
 
\newlabel{eq:divergenceSourceB}{{5.30}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.30}{}}
1530
 
\newlabel{eq:divergenceSourceB@cref}{{[equation][30][5]5.30}{105}}
1531
 
\newlabel{eq:divBVanish}{{5.31}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.31}{}}
1532
 
\newlabel{eq:divBVanish@cref}{{[equation][31][5]5.31}{105}}
1533
 
\newlabel{eq:divergenceFreeVectorsNewton}{{5.32}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.32}{}}
1534
 
\newlabel{eq:divergenceFreeVectorsNewton@cref}{{[equation][32][5]5.32}{105}}
1535
 
\newlabel{eq:divergenceFreeVectorsNewton2}{{5.33}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.33}{}}
1536
 
\newlabel{eq:divergenceFreeVectorsNewton2@cref}{{[equation][33][5]5.33}{105}}
1537
 
\newlabel{eq:divergenceFreeVectorsNewton3}{{5.34}{106}{Dynamics of the tangential vector to $S$}{equation.5.0.34}{}}
1538
 
\newlabel{eq:divergenceFreeVectorsNewton3@cref}{{[equation][34][5]5.34}{106}}
1539
 
\newlabel{eq:divLevelSetB}{{5.35}{106}{Dynamics of the tangential vector to $S$}{equation.5.0.35}{}}
1540
 
\newlabel{eq:divLevelSetB@cref}{{[equation][35][5]5.35}{106}}
1541
 
\newlabel{eq:bendingGauge}{{5.36}{106}{Dynamics of the tangential vector to $S$}{equation.5.0.36}{}}
1542
 
\newlabel{eq:bendingGauge@cref}{{[equation][36][5]5.36}{106}}
1543
 
\newlabel{eq:divLevelSetBT}{{5.37}{106}{Dynamics of the tangential vector to $S$}{equation.5.0.37}{}}
1544
 
\newlabel{eq:divLevelSetBT@cref}{{[equation][37][5]5.37}{106}}
1545
 
\newlabel{eq:divLevelSetBT2}{{5.38}{106}{Dynamics of the tangential vector to $S$}{equation.5.0.38}{}}
1546
 
\newlabel{eq:divLevelSetBT2@cref}{{[equation][38][5]5.38}{106}}
1547
 
\newlabel{eq:newtonLevelSetEnergyNonInvariant}{{5.39}{107}{Dynamics of the tangential vector to $S$}{equation.5.0.39}{}}
1548
 
\newlabel{eq:newtonLevelSetEnergyNonInvariant@cref}{{[equation][39][5]5.39}{107}}
1549
 
\newlabel{eq:flowMotivation}{{5.40}{107}{Dynamics of the tangential vector to $S$}{equation.5.0.40}{}}
1550
 
\newlabel{eq:flowMotivation@cref}{{[equation][40][5]5.40}{107}}
1551
 
\@writefile{toc}{\contentsline {section}{\numberline {5.1}The Extended Least Action Algorithm}{107}{section.5.1}}
1552
 
\newlabel{eq:noetherVariation3}{{5.43}{107}{The Extended Least Action Algorithm}{equation.5.1.43}{}}
1553
 
\newlabel{eq:noetherVariation3@cref}{{[equation][43][5]5.43}{107}}
1554
 
\newlabel{eq:eulerLagrange3}{{5.45}{108}{The Extended Least Action Algorithm}{equation.5.1.45}{}}
1555
 
\newlabel{eq:eulerLagrange3@cref}{{[equation][45][5]5.45}{108}}
1556
 
\newlabel{eq:pureSpacialSymmetry3}{{5.46}{108}{The Extended Least Action Algorithm}{equation.5.1.46}{}}
1557
 
\newlabel{eq:pureSpacialSymmetry3@cref}{{[equation][46][5]5.46}{108}}
1558
 
\newlabel{eq:firstOrderSpacialUpdate}{{5.49}{108}{The Extended Least Action Algorithm}{equation.5.1.49}{}}
1559
 
\newlabel{eq:firstOrderSpacialUpdate@cref}{{[equation][49][5]5.49}{108}}
1560
 
\newlabel{eq:bendingOperator}{{5.50}{108}{The Extended Least Action Algorithm}{equation.5.1.50}{}}
1561
 
\newlabel{eq:bendingOperator@cref}{{[equation][50][5]5.50}{108}}
1562
 
\newlabel{eq:levelSetNewton}{{5.51}{108}{The Extended Least Action Algorithm}{equation.5.1.51}{}}
1563
 
\newlabel{eq:levelSetNewton@cref}{{[equation][51][5]5.51}{108}}
1564
 
\newlabel{eq:diffusionProcess}{{5.52}{108}{The Extended Least Action Algorithm}{equation.5.1.52}{}}
1565
 
\newlabel{eq:diffusionProcess@cref}{{[equation][52][5]5.52}{108}}
1566
 
\newlabel{eq:eulerFlow2}{{5.53}{109}{The Extended Least Action Algorithm}{equation.5.1.53}{}}
1567
 
\newlabel{eq:eulerFlow2@cref}{{[equation][53][5]5.53}{109}}
1568
 
\newlabel{eq:diffusionProcess3}{{5.54}{109}{The Extended Least Action Algorithm}{equation.5.1.54}{}}
1569
 
\newlabel{eq:diffusionProcess3@cref}{{[equation][54][5]5.54}{109}}
1570
 
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline The Curvature Operator $\ensuremath  {{\bm  {K}}}$}{109}{section*.45}}
1571
 
\newlabel{sec:curvatureOperator}{{5.1}{109}{The Curvature Operator $\vector {K}$}{section*.45}{}}
1572
 
\newlabel{sec:curvatureOperator@cref}{{[section][1][5]5.1}{109}}
1573
 
\newlabel{eq:GNAdivergenceP}{{5.57}{109}{The Curvature Operator $\vector {K}$}{equation.5.1.57}{}}
1574
 
\newlabel{eq:GNAdivergenceP@cref}{{[equation][57][5]5.57}{109}}
1575
 
\newlabel{fig:curvatureOperator1}{{5.4a}{110}{Subfigure 5 5.4a}{subfigure.5.4.1}{}}
 
1524
\newlabel{fig:proofBendingEnergy@cref}{{[subfigure][1][5,3]5.3a}{104}}
 
1525
\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces \Cref  {fig:proofBendingEnergy} shows an image $\phi $ in which a group of level-sets with $47<\phi <53$ (indicated by the white area) all converge into one point $P$ at the top of the image. The line sections $S_{1,2}$ and $T_{1,2}$ enclose the region $\mathcal  {R}_B$ in eq.~(\ref  {eq:divLevelSetB}) and eq.~(\ref  {eq:divLevelSetBT}). The normal vectors $\ensuremath  {{\bm  {n}}}_{S_{1,2}}$ of lines $S_{1,2}$ are orthogonal to $\ensuremath  {{\bm  {b}}}_S$, hence the corresponding line integrals on the right hand side of eq.~(\ref  {eq:divLevelSetB}) vanish. In contrast the normal vectors $\ensuremath  {{\bm  {n}}}_{T_{1,2}}$ of lines $T_{1,2}$ are parallel to $\ensuremath  {{\bm  {b}}}_S$ so that the corresponding line integrals on the right hand side of eq.~(\ref  {eq:divLevelSetB}) do not vanish \relax }}{104}{figure.caption.44}}
 
1526
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{104}{subfigure.3.1}}
 
1527
\newlabel{eq:divergenceSourceB}{{5.30}{104}{Dynamics of the tangential vector to $S$}{equation.5.0.30}{}}
 
1528
\newlabel{eq:divergenceSourceB@cref}{{[equation][30][5]5.30}{104}}
 
1529
\newlabel{eq:divBVanish}{{5.31}{104}{Dynamics of the tangential vector to $S$}{equation.5.0.31}{}}
 
1530
\newlabel{eq:divBVanish@cref}{{[equation][31][5]5.31}{104}}
 
1531
\newlabel{eq:divergenceFreeVectorsNewton}{{5.32}{104}{Dynamics of the tangential vector to $S$}{equation.5.0.32}{}}
 
1532
\newlabel{eq:divergenceFreeVectorsNewton@cref}{{[equation][32][5]5.32}{104}}
 
1533
\newlabel{eq:divergenceFreeVectorsNewton2}{{5.33}{104}{Dynamics of the tangential vector to $S$}{equation.5.0.33}{}}
 
1534
\newlabel{eq:divergenceFreeVectorsNewton2@cref}{{[equation][33][5]5.33}{104}}
 
1535
\newlabel{eq:divergenceFreeVectorsNewton3}{{5.34}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.34}{}}
 
1536
\newlabel{eq:divergenceFreeVectorsNewton3@cref}{{[equation][34][5]5.34}{105}}
 
1537
\newlabel{eq:divLevelSetB}{{5.35}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.35}{}}
 
1538
\newlabel{eq:divLevelSetB@cref}{{[equation][35][5]5.35}{105}}
 
1539
\newlabel{eq:bendingGauge}{{5.36}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.36}{}}
 
1540
\newlabel{eq:bendingGauge@cref}{{[equation][36][5]5.36}{105}}
 
1541
\newlabel{eq:divLevelSetBT}{{5.37}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.37}{}}
 
1542
\newlabel{eq:divLevelSetBT@cref}{{[equation][37][5]5.37}{105}}
 
1543
\newlabel{eq:divLevelSetBT2}{{5.38}{105}{Dynamics of the tangential vector to $S$}{equation.5.0.38}{}}
 
1544
\newlabel{eq:divLevelSetBT2@cref}{{[equation][38][5]5.38}{105}}
 
1545
\newlabel{eq:newtonLevelSetEnergyNonInvariant}{{5.39}{106}{Dynamics of the tangential vector to $S$}{equation.5.0.39}{}}
 
1546
\newlabel{eq:newtonLevelSetEnergyNonInvariant@cref}{{[equation][39][5]5.39}{106}}
 
1547
\newlabel{eq:flowMotivation}{{5.40}{106}{Dynamics of the tangential vector to $S$}{equation.5.0.40}{}}
 
1548
\newlabel{eq:flowMotivation@cref}{{[equation][40][5]5.40}{106}}
 
1549
\@writefile{toc}{\contentsline {section}{\numberline {5.1}The Extended Least Action Algorithm}{106}{section.5.1}}
 
1550
\newlabel{eq:noetherVariation3}{{5.43}{106}{The Extended Least Action Algorithm}{equation.5.1.43}{}}
 
1551
\newlabel{eq:noetherVariation3@cref}{{[equation][43][5]5.43}{106}}
 
1552
\newlabel{eq:eulerLagrange3}{{5.45}{107}{The Extended Least Action Algorithm}{equation.5.1.45}{}}
 
1553
\newlabel{eq:eulerLagrange3@cref}{{[equation][45][5]5.45}{107}}
 
1554
\newlabel{eq:pureSpacialSymmetry3}{{5.46}{107}{The Extended Least Action Algorithm}{equation.5.1.46}{}}
 
1555
\newlabel{eq:pureSpacialSymmetry3@cref}{{[equation][46][5]5.46}{107}}
 
1556
\newlabel{eq:firstOrderSpacialUpdate}{{5.49}{107}{The Extended Least Action Algorithm}{equation.5.1.49}{}}
 
1557
\newlabel{eq:firstOrderSpacialUpdate@cref}{{[equation][49][5]5.49}{107}}
 
1558
\newlabel{eq:bendingOperator}{{5.50}{107}{The Extended Least Action Algorithm}{equation.5.1.50}{}}
 
1559
\newlabel{eq:bendingOperator@cref}{{[equation][50][5]5.50}{107}}
 
1560
\newlabel{eq:levelSetNewton}{{5.51}{107}{The Extended Least Action Algorithm}{equation.5.1.51}{}}
 
1561
\newlabel{eq:levelSetNewton@cref}{{[equation][51][5]5.51}{107}}
 
1562
\newlabel{eq:diffusionProcess}{{5.52}{107}{The Extended Least Action Algorithm}{equation.5.1.52}{}}
 
1563
\newlabel{eq:diffusionProcess@cref}{{[equation][52][5]5.52}{107}}
 
1564
\newlabel{eq:eulerFlow2}{{5.53}{108}{The Extended Least Action Algorithm}{equation.5.1.53}{}}
 
1565
\newlabel{eq:eulerFlow2@cref}{{[equation][53][5]5.53}{108}}
 
1566
\newlabel{eq:diffusionProcess3}{{5.54}{108}{The Extended Least Action Algorithm}{equation.5.1.54}{}}
 
1567
\newlabel{eq:diffusionProcess3@cref}{{[equation][54][5]5.54}{108}}
 
1568
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline The Curvature Operator $\ensuremath  {{\bm  {K}}}$}{108}{section*.45}}
 
1569
\newlabel{sec:curvatureOperator}{{5.1}{108}{The Curvature Operator $\vector {K}$}{section*.45}{}}
 
1570
\newlabel{sec:curvatureOperator@cref}{{[section][1][5]5.1}{108}}
 
1571
\newlabel{eq:GNAdivergenceP}{{5.57}{108}{The Curvature Operator $\vector {K}$}{equation.5.1.57}{}}
 
1572
\newlabel{eq:GNAdivergenceP@cref}{{[equation][57][5]5.57}{108}}
 
1573
\newlabel{fig:curvatureOperator1}{{5.4a}{109}{Subfigure 5 5.4a}{subfigure.5.4.1}{}}
1576
1574
\newlabel{sub@fig:curvatureOperator1}{{(a)}{a}{Subfigure 5 5.4a\relax }{subfigure.5.4.1}{}}
1577
 
\newlabel{fig:curvatureOperator1@cref}{{[subfigure][1][5,4]5.4a}{110}}
1578
 
\newlabel{fig:curvatureOperator2}{{5.4b}{110}{Subfigure 5 5.4b}{subfigure.5.4.2}{}}
 
1575
\newlabel{fig:curvatureOperator1@cref}{{[subfigure][1][5,4]5.4a}{109}}
 
1576
\newlabel{fig:curvatureOperator2}{{5.4b}{109}{Subfigure 5 5.4b}{subfigure.5.4.2}{}}
1579
1577
\newlabel{sub@fig:curvatureOperator2}{{(b)}{b}{Subfigure 5 5.4b\relax }{subfigure.5.4.2}{}}
1580
 
\newlabel{fig:curvatureOperator2@cref}{{[subfigure][2][5,4]5.4b}{110}}
1581
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces Effect of the diffusion $\ensuremath  {\ensuremath  {{\bm  {x}}}}^\prime =\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}}$ (eq.~(\ref  {eq:diffusionProcess})) on the canonical momentum $\ensuremath  {{\bm  {P}}}$. \Cref  {fig:curvatureOperator1} shows a schematic picture of a region $\mathcal  {R}_B\subset \Omega $ between two level-sets $S_1$ and $S_2$. The canonical momentum (the vectors on the level-sets $S_{1,2}$) is denoted by $\ensuremath  {{\bm  {P}}}_{S_{1,2}}$. $\ensuremath  {{\bm  {P}}}$ changes its orientation when shifted along the level-sets $S_1$ and $S_2$ since the norm of the curvature operator $\ensuremath  {{\bm  {K}}}$ (eq.~(\ref  {eq:GNACurvatureDef})) is non zero. In \cref  {fig:curvatureOperator2} the level-sets $S_{1,2}$ have been deformed according to $\ensuremath  {\ensuremath  {{\bm  {x}}}}^\prime =\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}}$ such that the canonical momentum $\ensuremath  {{\bm  {P}}}$ becomes invariant with respect to shifts along $S_{1,2}$. In this case the norm of the curvature operator $\ensuremath  {{\bm  {K}}}$ vanishes\relax }}{110}{figure.caption.46}}
1582
 
\newlabel{fig:curvatureOperator}{{5.4}{110}{Effect of the diffusion $\vx ^\prime =\omegadeform \circ \vx $ (\eqref {eq:diffusionProcess}) on the canonical momentum $\vector {P}$. \Figref {fig:curvatureOperator1} shows a schematic picture of a region $\mathcal {R}_B\subset \Omega $ between two level-sets $S_1$ and $S_2$. The canonical momentum (the vectors on the level-sets $S_{1,2}$) is denoted by $\vector {P}_{S_{1,2}}$. $\vector {P}$ changes its orientation when shifted along the level-sets $S_1$ and $S_2$ since the norm of the curvature operator $\vector {K}$ (\eqref {eq:GNACurvatureDef}) is non zero. In \figref {fig:curvatureOperator2} the level-sets $S_{1,2}$ have been deformed according to $\vx ^\prime =\omegadeform \circ \vx $ such that the canonical momentum $\vector {P}$ becomes invariant with respect to shifts along $S_{1,2}$. In this case the norm of the curvature operator $\vector {K}$ vanishes\relax }{figure.caption.46}{}}
1583
 
\newlabel{fig:curvatureOperator@cref}{{[figure][4][5]5.4}{110}}
1584
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{110}{subfigure.4.1}}
1585
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{110}{subfigure.4.2}}
1586
 
\newlabel{eq:GNAdivergencePintegral}{{5.58}{110}{The Curvature Operator $\vector {K}$}{equation.5.1.58}{}}
1587
 
\newlabel{eq:GNAdivergencePintegral@cref}{{[equation][58][5]5.58}{110}}
1588
 
\newlabel{eq:GNACurvatureDef}{{5.59}{110}{The Curvature Operator $\vector {K}$}{equation.5.1.59}{}}
1589
 
\newlabel{eq:GNACurvatureDef@cref}{{[equation][59][5]5.59}{110}}
1590
 
\@writefile{loa}{\contentsline {algorithm}{\numberline {3}{\ignorespaces Basic Newton Algorithm (BNA)\relax }}{111}{algorithm.3}}
1591
 
\newlabel{alg:basicNewtonMethod}{{3}{111}{Basic Newton Algorithm (BNA)\relax }{algorithm.3}{}}
1592
 
\newlabel{alg:basicNewtonMethod@cref}{{[algorithm][3][]3}{111}}
1593
 
\@writefile{loa}{\contentsline {algorithm}{\numberline {4}{\ignorespaces Diffusion Algorithm (DA) \relax }}{111}{algorithm.4}}
1594
 
\newlabel{alg:warpOnlyMethod}{{4}{111}{Diffusion Algorithm (DA) \relax }{algorithm.4}{}}
1595
 
\newlabel{alg:warpOnlyMethod@cref}{{[algorithm][4][]4}{111}}
1596
 
\@writefile{loa}{\contentsline {algorithm}{\numberline {5}{\ignorespaces Extended Least Action Algorithm (ELAA)\relax }}{111}{algorithm.5}}
1597
 
\newlabel{alg:GeneralizedNewtonMethod}{{5}{111}{Extended Least Action Algorithm (ELAA)\relax }{algorithm.5}{}}
1598
 
\newlabel{alg:GeneralizedNewtonMethod@cref}{{[algorithm][5][]5}{111}}
1599
 
\@writefile{loa}{\contentsline {algorithm}{\numberline {6}{\ignorespaces Chambolle Pock Primal-Dual Splitting\relax }}{112}{algorithm.6}}
1600
 
\newlabel{alg:chambollePock2}{{6}{112}{Chambolle Pock Primal-Dual Splitting\relax }{algorithm.6}{}}
1601
 
\newlabel{alg:chambollePock2@cref}{{[algorithm][6][]6}{112}}
1602
 
\@writefile{loa}{\contentsline {algorithm}{\numberline {7}{\ignorespaces Extended Primal-Dual Splitting\relax }}{112}{algorithm.7}}
1603
 
\newlabel{alg:extendedchambollePock}{{7}{112}{Extended Primal-Dual Splitting\relax }{algorithm.7}{}}
1604
 
\newlabel{alg:extendedchambollePock@cref}{{[algorithm][7][]7}{112}}
1605
 
\newlabel{fig:Army}{{5.5a}{113}{Subfigure 5 5.5a}{subfigure.5.5.1}{}}
 
1578
\newlabel{fig:curvatureOperator2@cref}{{[subfigure][2][5,4]5.4b}{109}}
 
1579
\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces Effect of the diffusion $\ensuremath  {\ensuremath  {{\bm  {x}}}}^\prime =\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}}$ (eq.~(\ref  {eq:diffusionProcess})) on the canonical momentum $\ensuremath  {{\bm  {P}}}$. \Cref  {fig:curvatureOperator1} shows a schematic picture of a region $\mathcal  {R}_B\subset \Omega $ between two level-sets $S_1$ and $S_2$. The canonical momentum (the vectors on the level-sets $S_{1,2}$) is denoted by $\ensuremath  {{\bm  {P}}}_{S_{1,2}}$. $\ensuremath  {{\bm  {P}}}$ changes its orientation when shifted along the level-sets $S_1$ and $S_2$ since the norm of the curvature operator $\ensuremath  {{\bm  {K}}}$ (eq.~(\ref  {eq:GNACurvatureDef})) is non zero. In \cref  {fig:curvatureOperator2} the level-sets $S_{1,2}$ have been deformed according to $\ensuremath  {\ensuremath  {{\bm  {x}}}}^\prime =\ensuremath  {T^B_t}\circ \ensuremath  {\ensuremath  {{\bm  {x}}}}$ such that the canonical momentum $\ensuremath  {{\bm  {P}}}$ becomes invariant with respect to shifts along $S_{1,2}$. In this case the norm of the curvature operator $\ensuremath  {{\bm  {K}}}$ vanishes\relax }}{109}{figure.caption.46}}
 
1580
\newlabel{fig:curvatureOperator}{{5.4}{109}{Effect of the diffusion $\vx ^\prime =\omegadeform \circ \vx $ (\eqref {eq:diffusionProcess}) on the canonical momentum $\vector {P}$. \Figref {fig:curvatureOperator1} shows a schematic picture of a region $\mathcal {R}_B\subset \Omega $ between two level-sets $S_1$ and $S_2$. The canonical momentum (the vectors on the level-sets $S_{1,2}$) is denoted by $\vector {P}_{S_{1,2}}$. $\vector {P}$ changes its orientation when shifted along the level-sets $S_1$ and $S_2$ since the norm of the curvature operator $\vector {K}$ (\eqref {eq:GNACurvatureDef}) is non zero. In \figref {fig:curvatureOperator2} the level-sets $S_{1,2}$ have been deformed according to $\vx ^\prime =\omegadeform \circ \vx $ such that the canonical momentum $\vector {P}$ becomes invariant with respect to shifts along $S_{1,2}$. In this case the norm of the curvature operator $\vector {K}$ vanishes\relax }{figure.caption.46}{}}
 
1581
\newlabel{fig:curvatureOperator@cref}{{[figure][4][5]5.4}{109}}
 
1582
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{109}{subfigure.4.1}}
 
1583
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{109}{subfigure.4.2}}
 
1584
\newlabel{eq:GNAdivergencePintegral}{{5.58}{109}{The Curvature Operator $\vector {K}$}{equation.5.1.58}{}}
 
1585
\newlabel{eq:GNAdivergencePintegral@cref}{{[equation][58][5]5.58}{109}}
 
1586
\newlabel{eq:GNACurvatureDef}{{5.59}{109}{The Curvature Operator $\vector {K}$}{equation.5.1.59}{}}
 
1587
\newlabel{eq:GNACurvatureDef@cref}{{[equation][59][5]5.59}{109}}
 
1588
\@writefile{loa}{\contentsline {algorithm}{\numberline {3}{\ignorespaces Basic Newton Algorithm (BNA)\relax }}{110}{algorithm.3}}
 
1589
\newlabel{alg:basicNewtonMethod}{{3}{110}{Basic Newton Algorithm (BNA)\relax }{algorithm.3}{}}
 
1590
\newlabel{alg:basicNewtonMethod@cref}{{[algorithm][3][]3}{110}}
 
1591
\@writefile{loa}{\contentsline {algorithm}{\numberline {4}{\ignorespaces Diffusion Algorithm (DA) \relax }}{110}{algorithm.4}}
 
1592
\newlabel{alg:warpOnlyMethod}{{4}{110}{Diffusion Algorithm (DA) \relax }{algorithm.4}{}}
 
1593
\newlabel{alg:warpOnlyMethod@cref}{{[algorithm][4][]4}{110}}
 
1594
\@writefile{loa}{\contentsline {algorithm}{\numberline {5}{\ignorespaces Extended Least Action Algorithm (ELAA)\relax }}{110}{algorithm.5}}
 
1595
\newlabel{alg:GeneralizedNewtonMethod}{{5}{110}{Extended Least Action Algorithm (ELAA)\relax }{algorithm.5}{}}
 
1596
\newlabel{alg:GeneralizedNewtonMethod@cref}{{[algorithm][5][]5}{110}}
 
1597
\@writefile{loa}{\contentsline {algorithm}{\numberline {6}{\ignorespaces Chambolle Pock Primal-Dual Splitting\relax }}{111}{algorithm.6}}
 
1598
\newlabel{alg:chambollePock2}{{6}{111}{Chambolle Pock Primal-Dual Splitting\relax }{algorithm.6}{}}
 
1599
\newlabel{alg:chambollePock2@cref}{{[algorithm][6][]6}{111}}
 
1600
\@writefile{loa}{\contentsline {algorithm}{\numberline {7}{\ignorespaces Extended Primal-Dual Splitting\relax }}{111}{algorithm.7}}
 
1601
\newlabel{alg:extendedchambollePock}{{7}{111}{Extended Primal-Dual Splitting\relax }{algorithm.7}{}}
 
1602
\newlabel{alg:extendedchambollePock@cref}{{[algorithm][7][]7}{111}}
 
1603
\newlabel{fig:Army}{{5.5a}{112}{Subfigure 5 5.5a}{subfigure.5.5.1}{}}
1606
1604
\newlabel{sub@fig:Army}{{(a)}{a}{Subfigure 5 5.5a\relax }{subfigure.5.5.1}{}}
1607
 
\newlabel{fig:Army@cref}{{[subfigure][1][5,5]5.5a}{113}}
1608
 
\newlabel{fig:ArmyNoise}{{5.5b}{113}{Subfigure 5 5.5b}{subfigure.5.5.2}{}}
 
1605
\newlabel{fig:Army@cref}{{[subfigure][1][5,5]5.5a}{112}}
 
1606
\newlabel{fig:ArmyNoise}{{5.5b}{112}{Subfigure 5 5.5b}{subfigure.5.5.2}{}}
1609
1607
\newlabel{sub@fig:ArmyNoise}{{(b)}{b}{Subfigure 5 5.5b\relax }{subfigure.5.5.2}{}}
1610
 
\newlabel{fig:ArmyNoise@cref}{{[subfigure][2][5,5]5.5b}{113}}
1611
 
\newlabel{fig:ArmyGNA}{{5.5c}{113}{Subfigure 5 5.5c}{subfigure.5.5.3}{}}
 
1608
\newlabel{fig:ArmyNoise@cref}{{[subfigure][2][5,5]5.5b}{112}}
 
1609
\newlabel{fig:ArmyGNA}{{5.5c}{112}{Subfigure 5 5.5c}{subfigure.5.5.3}{}}
1612
1610
\newlabel{sub@fig:ArmyGNA}{{(c)}{c}{Subfigure 5 5.5c\relax }{subfigure.5.5.3}{}}
1613
 
\newlabel{fig:ArmyGNA@cref}{{[subfigure][3][5,5]5.5c}{113}}
1614
 
\newlabel{fig:ArmyBNA}{{5.5d}{113}{Subfigure 5 5.5d}{subfigure.5.5.4}{}}
 
1611
\newlabel{fig:ArmyGNA@cref}{{[subfigure][3][5,5]5.5c}{112}}
 
1612
\newlabel{fig:ArmyBNA}{{5.5d}{112}{Subfigure 5 5.5d}{subfigure.5.5.4}{}}
1615
1613
\newlabel{sub@fig:ArmyBNA}{{(d)}{d}{Subfigure 5 5.5d\relax }{subfigure.5.5.4}{}}
1616
 
\newlabel{fig:ArmyBNA@cref}{{[subfigure][4][5,5]5.5d}{113}}
1617
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces \Cref  {fig:Army} shows a picture $\phi ^c$ of a person. $\phi ^c$ is taken to be free of noise. \Cref  {fig:ArmyNoise} is a noise corrupted version of $\phi ^c$ in \cref  {fig:Army}, $\phi ^d=\phi ^c+n$ where $n$ is iid Gaussian noise with a standard deviation $\sigma =100$. \Cref  {fig:ArmyGNA} shows the result of the ELAA (alg. \ref  {alg:GeneralizedNewtonMethod}) and \cref  {fig:ArmyBNA} the result of the BNA (alg. \ref  {alg:basicNewtonMethod})\relax }}{113}{figure.caption.47}}
1618
 
\newlabel{fig:ArmyTotal}{{5.5}{113}{\Figref {fig:Army} shows a picture $\phi ^c$ of a person. $\phi ^c$ is taken to be free of noise. \Figref {fig:ArmyNoise} is a noise corrupted version of $\phi ^c$ in \figref {fig:Army}, $\phi ^d=\phi ^c+n$ where $n$ is iid Gaussian noise with a standard deviation $\sigma =100$. \Figref {fig:ArmyGNA} shows the result of the ELAA (alg. \ref {alg:GeneralizedNewtonMethod}) and \figref {fig:ArmyBNA} the result of the BNA (alg. \ref {alg:basicNewtonMethod})\relax }{figure.caption.47}{}}
1619
 
\newlabel{fig:ArmyTotal@cref}{{[figure][5][5]5.5}{113}}
1620
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{113}{subfigure.5.1}}
1621
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{113}{subfigure.5.2}}
1622
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{113}{subfigure.5.3}}
1623
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{113}{subfigure.5.4}}
1624
 
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}Image De-noising}{113}{subsection.5.1.1}}
1625
 
\newlabel{eq:cameraLikelihood2}{{5.60}{113}{Image De-noising}{equation.5.1.60}{}}
1626
 
\newlabel{eq:cameraLikelihood2@cref}{{[equation][60][5]5.60}{113}}
1627
 
\newlabel{eq:minimizationIO2}{{5.61}{113}{Image De-noising}{equation.5.1.61}{}}
1628
 
\newlabel{eq:minimizationIO2@cref}{{[equation][61][5]5.61}{113}}
 
1614
\newlabel{fig:ArmyBNA@cref}{{[subfigure][4][5,5]5.5d}{112}}
 
1615
\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces \Cref  {fig:Army} shows a picture $\phi ^c$ of a person. $\phi ^c$ is taken to be free of noise. \Cref  {fig:ArmyNoise} is a noise corrupted version of $\phi ^c$ in \cref  {fig:Army}, $\phi ^d=\phi ^c+n$ where $n$ is iid Gaussian noise with a standard deviation $\sigma =100$. \Cref  {fig:ArmyGNA} shows the result of the ELAA (alg. \ref  {alg:GeneralizedNewtonMethod}) and \cref  {fig:ArmyBNA} the result of the BNA (alg. \ref  {alg:basicNewtonMethod})\relax }}{112}{figure.caption.47}}
 
1616
\newlabel{fig:ArmyTotal}{{5.5}{112}{\Figref {fig:Army} shows a picture $\phi ^c$ of a person. $\phi ^c$ is taken to be free of noise. \Figref {fig:ArmyNoise} is a noise corrupted version of $\phi ^c$ in \figref {fig:Army}, $\phi ^d=\phi ^c+n$ where $n$ is iid Gaussian noise with a standard deviation $\sigma =100$. \Figref {fig:ArmyGNA} shows the result of the ELAA (alg. \ref {alg:GeneralizedNewtonMethod}) and \figref {fig:ArmyBNA} the result of the BNA (alg. \ref {alg:basicNewtonMethod})\relax }{figure.caption.47}{}}
 
1617
\newlabel{fig:ArmyTotal@cref}{{[figure][5][5]5.5}{112}}
 
1618
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{112}{subfigure.5.1}}
 
1619
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{112}{subfigure.5.2}}
 
1620
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{112}{subfigure.5.3}}
 
1621
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{112}{subfigure.5.4}}
 
1622
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}Image De-noising}{112}{subsection.5.1.1}}
 
1623
\newlabel{eq:cameraLikelihood2}{{5.60}{112}{Image De-noising}{equation.5.1.60}{}}
 
1624
\newlabel{eq:cameraLikelihood2@cref}{{[equation][60][5]5.60}{112}}
 
1625
\newlabel{eq:minimizationIO2}{{5.61}{112}{Image De-noising}{equation.5.1.61}{}}
 
1626
\newlabel{eq:minimizationIO2@cref}{{[equation][61][5]5.61}{112}}
1629
1627
\citation{Middleburry}
1630
 
\@writefile{loa}{\contentsline {algorithm}{\numberline {8}{\ignorespaces Image de-noising analysis\relax }}{114}{algorithm.8}}
1631
 
\newlabel{alg:ImageDenoisingAnalysis}{{8}{114}{Image de-noising analysis\relax }{algorithm.8}{}}
1632
 
\newlabel{alg:ImageDenoisingAnalysis@cref}{{[algorithm][8][]8}{114}}
1633
 
\newlabel{eq:DenoiseFunctional}{{5.62}{114}{Image De-noising}{equation.5.1.62}{}}
1634
 
\newlabel{eq:DenoiseFunctional@cref}{{[equation][62][5]5.62}{114}}
1635
 
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Analysis Method}{114}{section*.48}}
1636
 
\@writefile{brf}{\backcite{Middleburry}{{115}{5.1.1}{ALG@line.7}}}
1637
 
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Total Variation based Image De-Noising}{115}{section*.49}}
1638
 
\newlabel{eq:DenoiseFunctionalTV}{{5.64}{115}{Total Variation based Image De-Noising}{equation.5.1.64}{}}
1639
 
\newlabel{eq:DenoiseFunctionalTV@cref}{{[equation][64][5]5.64}{115}}
1640
 
\newlabel{eq:bendingTV}{{5.66}{115}{Total Variation based Image De-Noising}{equation.5.1.66}{}}
1641
 
\newlabel{eq:bendingTV@cref}{{[equation][66][5]5.66}{115}}
1642
 
\newlabel{fig:ArmyMeanEnergy}{{5.6a}{116}{Subfigure 5 5.6a}{subfigure.5.6.1}{}}
 
1628
\@writefile{loa}{\contentsline {algorithm}{\numberline {8}{\ignorespaces Image de-noising analysis\relax }}{113}{algorithm.8}}
 
1629
\newlabel{alg:ImageDenoisingAnalysis}{{8}{113}{Image de-noising analysis\relax }{algorithm.8}{}}
 
1630
\newlabel{alg:ImageDenoisingAnalysis@cref}{{[algorithm][8][]8}{113}}
 
1631
\newlabel{eq:DenoiseFunctional}{{5.62}{113}{Image De-noising}{equation.5.1.62}{}}
 
1632
\newlabel{eq:DenoiseFunctional@cref}{{[equation][62][5]5.62}{113}}
 
1633
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Analysis Method}{113}{section*.48}}
 
1634
\@writefile{brf}{\backcite{Middleburry}{{114}{5.1.1}{ALG@line.7}}}
 
1635
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Total Variation based Image De-Noising}{114}{section*.49}}
 
1636
\newlabel{eq:DenoiseFunctionalTV}{{5.64}{114}{Total Variation based Image De-Noising}{equation.5.1.64}{}}
 
1637
\newlabel{eq:DenoiseFunctionalTV@cref}{{[equation][64][5]5.64}{114}}
 
1638
\newlabel{eq:bendingTV}{{5.66}{114}{Total Variation based Image De-Noising}{equation.5.1.66}{}}
 
1639
\newlabel{eq:bendingTV@cref}{{[equation][66][5]5.66}{114}}
 
1640
\newlabel{fig:ArmyMeanEnergy}{{5.6a}{115}{Subfigure 5 5.6a}{subfigure.5.6.1}{}}
1643
1641
\newlabel{sub@fig:ArmyMeanEnergy}{{(a)}{a}{Subfigure 5 5.6a\relax }{subfigure.5.6.1}{}}
1644
 
\newlabel{fig:ArmyMeanEnergy@cref}{{[subfigure][1][5,6]5.6a}{116}}
1645
 
\newlabel{fig:ArmyStdDevEnergy}{{5.6b}{116}{Subfigure 5 5.6b}{subfigure.5.6.2}{}}
 
1642
\newlabel{fig:ArmyMeanEnergy@cref}{{[subfigure][1][5,6]5.6a}{115}}
 
1643
\newlabel{fig:ArmyStdDevEnergy}{{5.6b}{115}{Subfigure 5 5.6b}{subfigure.5.6.2}{}}
1646
1644
\newlabel{sub@fig:ArmyStdDevEnergy}{{(b)}{b}{Subfigure 5 5.6b\relax }{subfigure.5.6.2}{}}
1647
 
\newlabel{fig:ArmyStdDevEnergy@cref}{{[subfigure][2][5,6]5.6b}{116}}
1648
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces \Cref  {fig:ArmyMeanEnergy} shows the mean energy $\delimiter "426830A E^k\delimiter "526930B $ and \cref  {fig:ArmyStdDevEnergy} the standard deviation $\sigma _{E^k}$ per iteration $k$ for the Army image in \cref  {fig:Army}. The the ELAA (solid line) converges about twice as fast as the BNA (dashed line) according to \cref  {fig:ArmyMeanEnergy}. The standard deviation $\sigma _{E^k}$ in \cref  {fig:ArmyStdDevEnergy} converges approximately three times faster for the ELAA then for the BNA indicating that the ELAA is robuster to noise at every iteration $k$ \relax }}{116}{figure.caption.50}}
1649
 
\newlabel{fig:ArmyEnergy}{{5.6}{116}{\Figref {fig:ArmyMeanEnergy} shows the mean energy $\langle E^k\rangle $ and \figref {fig:ArmyStdDevEnergy} the standard deviation $\sigma _{E^k}$ per iteration $k$ for the Army image in \figref {fig:Army}. The the ELAA (solid line) converges about twice as fast as the BNA (dashed line) according to \figref {fig:ArmyMeanEnergy}. The standard deviation $\sigma _{E^k}$ in \figref {fig:ArmyStdDevEnergy} converges approximately three times faster for the ELAA then for the BNA indicating that the ELAA is robuster to noise at every iteration $k$ \relax }{figure.caption.50}{}}
1650
 
\newlabel{fig:ArmyEnergy@cref}{{[figure][6][5]5.6}{116}}
1651
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{116}{subfigure.6.1}}
1652
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{116}{subfigure.6.2}}
1653
 
\newlabel{eq:expCurv}{{5.67}{116}{Total Variation based Image De-Noising}{equation.5.1.67}{}}
1654
 
\newlabel{eq:expCurv@cref}{{[equation][67][5]5.67}{116}}
1655
 
\newlabel{eq:expCurvParameter}{{5.68}{116}{Total Variation based Image De-Noising}{equation.5.1.68}{}}
1656
 
\newlabel{eq:expCurvParameter@cref}{{[equation][68][5]5.68}{116}}
1657
 
\newlabel{fig:ArmyMeanCurvature}{{5.7a}{117}{Subfigure 5 5.7a}{subfigure.5.7.1}{}}
 
1645
\newlabel{fig:ArmyStdDevEnergy@cref}{{[subfigure][2][5,6]5.6b}{115}}
 
1646
\@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces \Cref  {fig:ArmyMeanEnergy} shows the mean energy $\delimiter "426830A E^k\delimiter "526930B $ and \cref  {fig:ArmyStdDevEnergy} the standard deviation $\sigma _{E^k}$ per iteration $k$ for the Army image in \cref  {fig:Army}. The the ELAA (solid line) converges about twice as fast as the BNA (dashed line) according to \cref  {fig:ArmyMeanEnergy}. The standard deviation $\sigma _{E^k}$ in \cref  {fig:ArmyStdDevEnergy} converges approximately three times faster for the ELAA then for the BNA indicating that the ELAA is robuster to noise at every iteration $k$ \relax }}{115}{figure.caption.50}}
 
1647
\newlabel{fig:ArmyEnergy}{{5.6}{115}{\Figref {fig:ArmyMeanEnergy} shows the mean energy $\langle E^k\rangle $ and \figref {fig:ArmyStdDevEnergy} the standard deviation $\sigma _{E^k}$ per iteration $k$ for the Army image in \figref {fig:Army}. The the ELAA (solid line) converges about twice as fast as the BNA (dashed line) according to \figref {fig:ArmyMeanEnergy}. The standard deviation $\sigma _{E^k}$ in \figref {fig:ArmyStdDevEnergy} converges approximately three times faster for the ELAA then for the BNA indicating that the ELAA is robuster to noise at every iteration $k$ \relax }{figure.caption.50}{}}
 
1648
\newlabel{fig:ArmyEnergy@cref}{{[figure][6][5]5.6}{115}}
 
1649
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{115}{subfigure.6.1}}
 
1650
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{115}{subfigure.6.2}}
 
1651
\newlabel{eq:expCurv}{{5.67}{115}{Total Variation based Image De-Noising}{equation.5.1.67}{}}
 
1652
\newlabel{eq:expCurv@cref}{{[equation][67][5]5.67}{115}}
 
1653
\newlabel{eq:expCurvParameter}{{5.68}{115}{Total Variation based Image De-Noising}{equation.5.1.68}{}}
 
1654
\newlabel{eq:expCurvParameter@cref}{{[equation][68][5]5.68}{115}}
 
1655
\newlabel{fig:ArmyMeanCurvature}{{5.7a}{116}{Subfigure 5 5.7a}{subfigure.5.7.1}{}}
1658
1656
\newlabel{sub@fig:ArmyMeanCurvature}{{(a)}{a}{Subfigure 5 5.7a\relax }{subfigure.5.7.1}{}}
1659
 
\newlabel{fig:ArmyMeanCurvature@cref}{{[subfigure][1][5,7]5.7a}{117}}
1660
 
\newlabel{fig:ArmyStdDevcurvature}{{5.7b}{117}{Subfigure 5 5.7b}{subfigure.5.7.2}{}}
 
1657
\newlabel{fig:ArmyMeanCurvature@cref}{{[subfigure][1][5,7]5.7a}{116}}
 
1658
\newlabel{fig:ArmyStdDevcurvature}{{5.7b}{116}{Subfigure 5 5.7b}{subfigure.5.7.2}{}}
1661
1659
\newlabel{sub@fig:ArmyStdDevcurvature}{{(b)}{b}{Subfigure 5 5.7b\relax }{subfigure.5.7.2}{}}
1662
 
\newlabel{fig:ArmyStdDevcurvature@cref}{{[subfigure][2][5,7]5.7b}{117}}
1663
 
\newlabel{fig:ArmyCurvatureFit}{{5.7c}{117}{Subfigure 5 5.7c}{subfigure.5.7.3}{}}
 
1660
\newlabel{fig:ArmyStdDevcurvature@cref}{{[subfigure][2][5,7]5.7b}{116}}
 
1661
\newlabel{fig:ArmyCurvatureFit}{{5.7c}{116}{Subfigure 5 5.7c}{subfigure.5.7.3}{}}
1664
1662
\newlabel{sub@fig:ArmyCurvatureFit}{{(c)}{c}{Subfigure 5 5.7c\relax }{subfigure.5.7.3}{}}
1665
 
\newlabel{fig:ArmyCurvatureFit@cref}{{[subfigure][3][5,7]5.7c}{117}}
1666
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.7}{\ignorespaces \Cref  {fig:ArmyMeanCurvature} shows the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }^k\delimiter "526930B $ and \cref  {fig:ArmyStdDevcurvature} the standard deviation $\sigma _{\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }^k}$ per iteration $k$ for the Army image in \cref  {fig:Army}. For the DA (dotted line), which only depends on the TV prior $E^{prior}_{TV}$, $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ has an exponential decay. For the ELAA (solid line) $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ drops faster then for the DA, until a point where the data term $E^{data}$ prohibits further smoothing of the level-sets $S$. Then $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ rises slightly and converges at a higher value. The BNA falls off slower then the ELAA and the DA and converging at a slightly higher value then the ELAA. The standard deviation $\sigma _{\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }}$ is for both the ELAA and the BNA comparatively of equal order and small and two orders of magnitude smaller then $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $. When comparing the ELAA and the BNA to the DA (dotted line) we can see that the data term $E^{data}$ has an impact on the noise distribution of the curvature $\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }$ particularly at later iterations $k>100$. \Cref  {fig:ArmyCurvatureFit} shows a fit of the exponential function in eq.~(\ref  {eq:expCurv}) to the curvature of the DA algorithm. The difference between the DA (solid line) and the fit (dashed line) is of the order $10^{4}$, an order of magnitude smaller then $\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }$ \relax }}{117}{figure.caption.51}}
1667
 
\newlabel{fig:ArmyCurvature}{{5.7}{117}{\Figref {fig:ArmyMeanCurvature} shows the mean curvature $\langle \norm {\vector {K}}^k\rangle $ and \figref {fig:ArmyStdDevcurvature} the standard deviation $\sigma _{\norm {\vector {K}}^k}$ per iteration $k$ for the Army image in \figref {fig:Army}. For the DA (dotted line), which only depends on the TV prior $E^{prior}_{TV}$, $\langle \norm {\vector {K}}\rangle $ has an exponential decay. For the ELAA (solid line) $\langle \norm {\vector {K}}\rangle $ drops faster then for the DA, until a point where the data term $E^{data}$ prohibits further smoothing of the level-sets $S$. Then $\langle \norm {\vector {K}}\rangle $ rises slightly and converges at a higher value. The BNA falls off slower then the ELAA and the DA and converging at a slightly higher value then the ELAA. The standard deviation $\sigma _{\norm {\vector {K}}}$ is for both the ELAA and the BNA comparatively of equal order and small and two orders of magnitude smaller then $\langle \norm {\vector {K}}\rangle $. When comparing the ELAA and the BNA to the DA (dotted line) we can see that the data term $E^{data}$ has an impact on the noise distribution of the curvature $\norm {\vector {K}}$ particularly at later iterations $k>100$. \Figref {fig:ArmyCurvatureFit} shows a fit of the exponential function in \eqref {eq:expCurv} to the curvature of the DA algorithm. The difference between the DA (solid line) and the fit (dashed line) is of the order $10^{4}$, an order of magnitude smaller then $\norm {\vector {K}}$ \relax }{figure.caption.51}{}}
1668
 
\newlabel{fig:ArmyCurvature@cref}{{[figure][7][5]5.7}{117}}
1669
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{117}{subfigure.7.1}}
1670
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{117}{subfigure.7.2}}
1671
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{117}{subfigure.7.3}}
1672
 
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Structure Tensor Prior}{117}{section*.52}}
1673
 
\newlabel{eq:DenoiseFunctionalST}{{5.70}{117}{Structure Tensor Prior}{equation.5.1.70}{}}
1674
 
\newlabel{eq:DenoiseFunctionalST@cref}{{[equation][70][5]5.70}{117}}
1675
 
\newlabel{eq:structtensPriorRotInv2}{{5.71}{117}{Structure Tensor Prior}{equation.5.1.71}{}}
1676
 
\newlabel{eq:structtensPriorRotInv2@cref}{{[equation][71][5]5.71}{117}}
1677
 
\newlabel{fig:ArmyMeanEnergyGnaDaST}{{5.8a}{118}{Subfigure 5 5.8a}{subfigure.5.8.1}{}}
 
1663
\newlabel{fig:ArmyCurvatureFit@cref}{{[subfigure][3][5,7]5.7c}{116}}
 
1664
\@writefile{lof}{\contentsline {figure}{\numberline {5.7}{\ignorespaces \Cref  {fig:ArmyMeanCurvature} shows the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }^k\delimiter "526930B $ and \cref  {fig:ArmyStdDevcurvature} the standard deviation $\sigma _{\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }^k}$ per iteration $k$ for the Army image in \cref  {fig:Army}. For the DA (dotted line), which only depends on the TV prior $E^{prior}_{TV}$, $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ has an exponential decay. For the ELAA (solid line) $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ drops faster then for the DA, until a point where the data term $E^{data}$ prohibits further smoothing of the level-sets $S$. Then $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $ rises slightly and converges at a higher value. The BNA falls off slower then the ELAA and the DA and converging at a slightly higher value then the ELAA. The standard deviation $\sigma _{\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }}$ is for both the ELAA and the BNA comparatively of equal order and small and two orders of magnitude smaller then $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }\delimiter "526930B $. When comparing the ELAA and the BNA to the DA (dotted line) we can see that the data term $E^{data}$ has an impact on the noise distribution of the curvature $\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }$ particularly at later iterations $k>100$. \Cref  {fig:ArmyCurvatureFit} shows a fit of the exponential function in eq.~(\ref  {eq:expCurv}) to the curvature of the DA algorithm. The difference between the DA (solid line) and the fit (dashed line) is of the order $10^{4}$, an order of magnitude smaller then $\ensuremath  {\left \delimiter 69645069 \ensuremath  {{\bm  {K}}} \right \delimiter 86422285 }$ \relax }}{116}{figure.caption.51}}
 
1665
\newlabel{fig:ArmyCurvature}{{5.7}{116}{\Figref {fig:ArmyMeanCurvature} shows the mean curvature $\langle \norm {\vector {K}}^k\rangle $ and \figref {fig:ArmyStdDevcurvature} the standard deviation $\sigma _{\norm {\vector {K}}^k}$ per iteration $k$ for the Army image in \figref {fig:Army}. For the DA (dotted line), which only depends on the TV prior $E^{prior}_{TV}$, $\langle \norm {\vector {K}}\rangle $ has an exponential decay. For the ELAA (solid line) $\langle \norm {\vector {K}}\rangle $ drops faster then for the DA, until a point where the data term $E^{data}$ prohibits further smoothing of the level-sets $S$. Then $\langle \norm {\vector {K}}\rangle $ rises slightly and converges at a higher value. The BNA falls off slower then the ELAA and the DA and converging at a slightly higher value then the ELAA. The standard deviation $\sigma _{\norm {\vector {K}}}$ is for both the ELAA and the BNA comparatively of equal order and small and two orders of magnitude smaller then $\langle \norm {\vector {K}}\rangle $. When comparing the ELAA and the BNA to the DA (dotted line) we can see that the data term $E^{data}$ has an impact on the noise distribution of the curvature $\norm {\vector {K}}$ particularly at later iterations $k>100$. \Figref {fig:ArmyCurvatureFit} shows a fit of the exponential function in \eqref {eq:expCurv} to the curvature of the DA algorithm. The difference between the DA (solid line) and the fit (dashed line) is of the order $10^{4}$, an order of magnitude smaller then $\norm {\vector {K}}$ \relax }{figure.caption.51}{}}
 
1666
\newlabel{fig:ArmyCurvature@cref}{{[figure][7][5]5.7}{116}}
 
1667
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{116}{subfigure.7.1}}
 
1668
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{116}{subfigure.7.2}}
 
1669
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{116}{subfigure.7.3}}
 
1670
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Structure Tensor Prior}{116}{section*.52}}
 
1671
\newlabel{eq:DenoiseFunctionalST}{{5.70}{116}{Structure Tensor Prior}{equation.5.1.70}{}}
 
1672
\newlabel{eq:DenoiseFunctionalST@cref}{{[equation][70][5]5.70}{116}}
 
1673
\newlabel{eq:structtensPriorRotInv2}{{5.71}{116}{Structure Tensor Prior}{equation.5.1.71}{}}
 
1674
\newlabel{eq:structtensPriorRotInv2@cref}{{[equation][71][5]5.71}{116}}
 
1675
\newlabel{fig:ArmyMeanEnergyGnaDaST}{{5.8a}{117}{Subfigure 5 5.8a}{subfigure.5.8.1}{}}
1678
1676
\newlabel{sub@fig:ArmyMeanEnergyGnaDaST}{{(a)}{a}{Subfigure 5 5.8a\relax }{subfigure.5.8.1}{}}
1679
 
\newlabel{fig:ArmyMeanEnergyGnaDaST@cref}{{[subfigure][1][5,8]5.8a}{118}}
1680
 
\newlabel{fig:ArmyMeanEnergyGnaST}{{5.8b}{118}{Subfigure 5 5.8b}{subfigure.5.8.2}{}}
 
1677
\newlabel{fig:ArmyMeanEnergyGnaDaST@cref}{{[subfigure][1][5,8]5.8a}{117}}
 
1678
\newlabel{fig:ArmyMeanEnergyGnaST}{{5.8b}{117}{Subfigure 5 5.8b}{subfigure.5.8.2}{}}
1681
1679
\newlabel{sub@fig:ArmyMeanEnergyGnaST}{{(b)}{b}{Subfigure 5 5.8b\relax }{subfigure.5.8.2}{}}
1682
 
\newlabel{fig:ArmyMeanEnergyGnaST@cref}{{[subfigure][2][5,8]5.8b}{118}}
1683
 
\newlabel{fig:ArmyMeanEnergyGnaBnaDiffST}{{5.8c}{118}{Subfigure 5 5.8c}{subfigure.5.8.3}{}}
 
1680
\newlabel{fig:ArmyMeanEnergyGnaST@cref}{{[subfigure][2][5,8]5.8b}{117}}
 
1681
\newlabel{fig:ArmyMeanEnergyGnaBnaDiffST}{{5.8c}{117}{Subfigure 5 5.8c}{subfigure.5.8.3}{}}
1684
1682
\newlabel{sub@fig:ArmyMeanEnergyGnaBnaDiffST}{{(c)}{c}{Subfigure 5 5.8c\relax }{subfigure.5.8.3}{}}
1685
 
\newlabel{fig:ArmyMeanEnergyGnaBnaDiffST@cref}{{[subfigure][3][5,8]5.8c}{118}}
1686
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces \Cref  {fig:ArmyMeanEnergyGnaDaST} shows the mean energy $\delimiter "426830A E\delimiter "526930B $ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Cref  {fig:ArmyMeanEnergyGnaST} shows a close up of $\delimiter "426830A E\delimiter "526930B _{ELAA}$ for $k\geq 10$ and \cref  {fig:ArmyMeanEnergyGnaBnaDiffST} shows the difference between $\delimiter "426830A E\delimiter "526930B _{BNA}$ and $\delimiter "426830A E\delimiter "526930B _{ELAA}$. From \cref  {fig:ArmyMeanEnergyGnaST} we can see that the mean energy for the ELAA $\delimiter "426830A E\delimiter "526930B _{ELAA}$ is $2$ orders of magnitude smaller then the mean energy for the DA and by \cref  {fig:ArmyMeanEnergyGnaBnaDiffST} only slightly smaller then $\delimiter "426830A E\delimiter "526930B _{BNA}$. Thus the effect of the diffusion process in eq.~(\ref  {eq:diffusionProcess}) on the minimization of the energy $E$ in eq.~(\ref  {eq:DenoiseFunctionalST}) is at most marginal\relax }}{118}{figure.caption.53}}
1687
 
\newlabel{fig:MeanEnergyST}{{5.8}{118}{\Figref {fig:ArmyMeanEnergyGnaDaST} shows the mean energy $\langle E\rangle $ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Figref {fig:ArmyMeanEnergyGnaST} shows a close up of $\langle E\rangle _{ELAA}$ for $k\geq 10$ and \figref {fig:ArmyMeanEnergyGnaBnaDiffST} shows the difference between $\langle E\rangle _{BNA}$ and $\langle E\rangle _{ELAA}$. From \figref {fig:ArmyMeanEnergyGnaST} we can see that the mean energy for the ELAA $\langle E\rangle _{ELAA}$ is $2$ orders of magnitude smaller then the mean energy for the DA and by \figref {fig:ArmyMeanEnergyGnaBnaDiffST} only slightly smaller then $\langle E\rangle _{BNA}$. Thus the effect of the diffusion process in \eqref {eq:diffusionProcess} on the minimization of the energy $E$ in \eqref {eq:DenoiseFunctionalST} is at most marginal\relax }{figure.caption.53}{}}
1688
 
\newlabel{fig:MeanEnergyST@cref}{{[figure][8][5]5.8}{118}}
1689
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{118}{subfigure.8.1}}
1690
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{118}{subfigure.8.2}}
1691
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{118}{subfigure.8.3}}
1692
 
\newlabel{eq:BlevelSetST}{{5.72}{118}{Structure Tensor Prior}{equation.5.1.72}{}}
1693
 
\newlabel{eq:BlevelSetST@cref}{{[equation][72][5]5.72}{118}}
1694
 
\newlabel{eq:bendingOperatorST0}{{5.73}{118}{Structure Tensor Prior}{equation.5.1.73}{}}
1695
 
\newlabel{eq:bendingOperatorST0@cref}{{[equation][73][5]5.73}{118}}
1696
 
\newlabel{fig:ArmyStdDevEnergyGnaDaST}{{5.9a}{119}{Subfigure 5 5.9a}{subfigure.5.9.1}{}}
 
1683
\newlabel{fig:ArmyMeanEnergyGnaBnaDiffST@cref}{{[subfigure][3][5,8]5.8c}{117}}
 
1684
\@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces \Cref  {fig:ArmyMeanEnergyGnaDaST} shows the mean energy $\delimiter "426830A E\delimiter "526930B $ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Cref  {fig:ArmyMeanEnergyGnaST} shows a close up of $\delimiter "426830A E\delimiter "526930B _{ELAA}$ for $k\geq 10$ and \cref  {fig:ArmyMeanEnergyGnaBnaDiffST} shows the difference between $\delimiter "426830A E\delimiter "526930B _{BNA}$ and $\delimiter "426830A E\delimiter "526930B _{ELAA}$. From \cref  {fig:ArmyMeanEnergyGnaST} we can see that the mean energy for the ELAA $\delimiter "426830A E\delimiter "526930B _{ELAA}$ is $2$ orders of magnitude smaller then the mean energy for the DA and by \cref  {fig:ArmyMeanEnergyGnaBnaDiffST} only slightly smaller then $\delimiter "426830A E\delimiter "526930B _{BNA}$. Thus the effect of the diffusion process in eq.~(\ref  {eq:diffusionProcess}) on the minimization of the energy $E$ in eq.~(\ref  {eq:DenoiseFunctionalST}) is at most marginal\relax }}{117}{figure.caption.53}}
 
1685
\newlabel{fig:MeanEnergyST}{{5.8}{117}{\Figref {fig:ArmyMeanEnergyGnaDaST} shows the mean energy $\langle E\rangle $ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Figref {fig:ArmyMeanEnergyGnaST} shows a close up of $\langle E\rangle _{ELAA}$ for $k\geq 10$ and \figref {fig:ArmyMeanEnergyGnaBnaDiffST} shows the difference between $\langle E\rangle _{BNA}$ and $\langle E\rangle _{ELAA}$. From \figref {fig:ArmyMeanEnergyGnaST} we can see that the mean energy for the ELAA $\langle E\rangle _{ELAA}$ is $2$ orders of magnitude smaller then the mean energy for the DA and by \figref {fig:ArmyMeanEnergyGnaBnaDiffST} only slightly smaller then $\langle E\rangle _{BNA}$. Thus the effect of the diffusion process in \eqref {eq:diffusionProcess} on the minimization of the energy $E$ in \eqref {eq:DenoiseFunctionalST} is at most marginal\relax }{figure.caption.53}{}}
 
1686
\newlabel{fig:MeanEnergyST@cref}{{[figure][8][5]5.8}{117}}
 
1687
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{117}{subfigure.8.1}}
 
1688
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{117}{subfigure.8.2}}
 
1689
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{117}{subfigure.8.3}}
 
1690
\newlabel{eq:BlevelSetST}{{5.72}{117}{Structure Tensor Prior}{equation.5.1.72}{}}
 
1691
\newlabel{eq:BlevelSetST@cref}{{[equation][72][5]5.72}{117}}
 
1692
\newlabel{eq:bendingOperatorST0}{{5.73}{117}{Structure Tensor Prior}{equation.5.1.73}{}}
 
1693
\newlabel{eq:bendingOperatorST0@cref}{{[equation][73][5]5.73}{117}}
 
1694
\newlabel{fig:ArmyStdDevEnergyGnaDaST}{{5.9a}{118}{Subfigure 5 5.9a}{subfigure.5.9.1}{}}
1697
1695
\newlabel{sub@fig:ArmyStdDevEnergyGnaDaST}{{(a)}{a}{Subfigure 5 5.9a\relax }{subfigure.5.9.1}{}}
1698
 
\newlabel{fig:ArmyStdDevEnergyGnaDaST@cref}{{[subfigure][1][5,9]5.9a}{119}}
1699
 
\newlabel{fig:ArmyStdDevEnergyGnaST}{{5.9b}{119}{Subfigure 5 5.9b}{subfigure.5.9.2}{}}
 
1696
\newlabel{fig:ArmyStdDevEnergyGnaDaST@cref}{{[subfigure][1][5,9]5.9a}{118}}
 
1697
\newlabel{fig:ArmyStdDevEnergyGnaST}{{5.9b}{118}{Subfigure 5 5.9b}{subfigure.5.9.2}{}}
1700
1698
\newlabel{sub@fig:ArmyStdDevEnergyGnaST}{{(b)}{b}{Subfigure 5 5.9b\relax }{subfigure.5.9.2}{}}
1701
 
\newlabel{fig:ArmyStdDevEnergyGnaST@cref}{{[subfigure][2][5,9]5.9b}{119}}
1702
 
\newlabel{fig:ArmyStdDevEnergyGnaBnaDiffST}{{5.9c}{119}{Subfigure 5 5.9c}{subfigure.5.9.3}{}}
 
1699
\newlabel{fig:ArmyStdDevEnergyGnaST@cref}{{[subfigure][2][5,9]5.9b}{118}}
 
1700
\newlabel{fig:ArmyStdDevEnergyGnaBnaDiffST}{{5.9c}{118}{Subfigure 5 5.9c}{subfigure.5.9.3}{}}
1703
1701
\newlabel{sub@fig:ArmyStdDevEnergyGnaBnaDiffST}{{(c)}{c}{Subfigure 5 5.9c\relax }{subfigure.5.9.3}{}}
1704
 
\newlabel{fig:ArmyStdDevEnergyGnaBnaDiffST@cref}{{[subfigure][3][5,9]5.9c}{119}}
1705
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.9}{\ignorespaces \Cref  {fig:ArmyStdDevEnergyGnaDaST} shows the standard deviation $\sigma _E$ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Cref  {fig:ArmyStdDevEnergyGnaST} shows a close up of $\sigma _{E,ELAA}$ for $k\geq 10$ and \cref  {fig:ArmyStdDevEnergyGnaBnaDiffST} shows the difference between $\sigma _{E,BNA}$ and $\sigma _{E,ELAA}$. We essentially see the same behavior for the standard deviation $\sigma _E$ as for the mean energy in \cref  {fig:MeanEnergyST}: By \cref  {fig:ArmyStdDevEnergyGnaST} the standard deviation energy for the ELAA $\sigma _{E,ELAA}$ is $1$ order of magnitude smaller that of the DA and by \cref  {fig:ArmyStdDevEnergyGnaBnaDiffST} only slightly smaller then $\sigma _{E,BNA}$. Hence the diffusion process eq.~(\ref  {eq:diffusionProcess}) has a marginal contribution to the statistical robustness of the minimizers of $E$ in eq.~(\ref  {eq:DenoiseFunctionalST})\relax }}{119}{figure.caption.54}}
1706
 
\newlabel{fig:StdDevEnergyST}{{5.9}{119}{\Figref {fig:ArmyStdDevEnergyGnaDaST} shows the standard deviation $\sigma _E$ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Figref {fig:ArmyStdDevEnergyGnaST} shows a close up of $\sigma _{E,ELAA}$ for $k\geq 10$ and \figref {fig:ArmyStdDevEnergyGnaBnaDiffST} shows the difference between $\sigma _{E,BNA}$ and $\sigma _{E,ELAA}$. We essentially see the same behavior for the standard deviation $\sigma _E$ as for the mean energy in \figref {fig:MeanEnergyST}: By \figref {fig:ArmyStdDevEnergyGnaST} the standard deviation energy for the ELAA $\sigma _{E,ELAA}$ is $1$ order of magnitude smaller that of the DA and by \figref {fig:ArmyStdDevEnergyGnaBnaDiffST} only slightly smaller then $\sigma _{E,BNA}$. Hence the diffusion process \eqref {eq:diffusionProcess} has a marginal contribution to the statistical robustness of the minimizers of $E$ in \eqref {eq:DenoiseFunctionalST}\relax }{figure.caption.54}{}}
1707
 
\newlabel{fig:StdDevEnergyST@cref}{{[figure][9][5]5.9}{119}}
1708
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{119}{subfigure.9.1}}
1709
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{119}{subfigure.9.2}}
1710
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{119}{subfigure.9.3}}
1711
 
\newlabel{eq:bendingOperatorST1}{{5.74}{119}{Structure Tensor Prior}{equation.5.1.74}{}}
1712
 
\newlabel{eq:bendingOperatorST1@cref}{{[equation][74][5]5.74}{119}}
1713
 
\newlabel{eq:bendingOperatorST}{{5.75}{119}{Structure Tensor Prior}{equation.5.1.75}{}}
1714
 
\newlabel{eq:bendingOperatorST@cref}{{[equation][75][5]5.75}{119}}
1715
 
\newlabel{fig:EnergyWsizeGnaST}{{5.10a}{120}{Subfigure 5 5.10a}{subfigure.5.10.1}{}}
 
1702
\newlabel{fig:ArmyStdDevEnergyGnaBnaDiffST@cref}{{[subfigure][3][5,9]5.9c}{118}}
 
1703
\@writefile{lof}{\contentsline {figure}{\numberline {5.9}{\ignorespaces \Cref  {fig:ArmyStdDevEnergyGnaDaST} shows the standard deviation $\sigma _E$ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Cref  {fig:ArmyStdDevEnergyGnaST} shows a close up of $\sigma _{E,ELAA}$ for $k\geq 10$ and \cref  {fig:ArmyStdDevEnergyGnaBnaDiffST} shows the difference between $\sigma _{E,BNA}$ and $\sigma _{E,ELAA}$. We essentially see the same behavior for the standard deviation $\sigma _E$ as for the mean energy in \cref  {fig:MeanEnergyST}: By \cref  {fig:ArmyStdDevEnergyGnaST} the standard deviation energy for the ELAA $\sigma _{E,ELAA}$ is $1$ order of magnitude smaller that of the DA and by \cref  {fig:ArmyStdDevEnergyGnaBnaDiffST} only slightly smaller then $\sigma _{E,BNA}$. Hence the diffusion process eq.~(\ref  {eq:diffusionProcess}) has a marginal contribution to the statistical robustness of the minimizers of $E$ in eq.~(\ref  {eq:DenoiseFunctionalST})\relax }}{118}{figure.caption.54}}
 
1704
\newlabel{fig:StdDevEnergyST}{{5.9}{118}{\Figref {fig:ArmyStdDevEnergyGnaDaST} shows the standard deviation $\sigma _E$ as a function of the iteration $k$ for the ELAA (solid line) and the DA (dotted line) for the structure tensor model. \Figref {fig:ArmyStdDevEnergyGnaST} shows a close up of $\sigma _{E,ELAA}$ for $k\geq 10$ and \figref {fig:ArmyStdDevEnergyGnaBnaDiffST} shows the difference between $\sigma _{E,BNA}$ and $\sigma _{E,ELAA}$. We essentially see the same behavior for the standard deviation $\sigma _E$ as for the mean energy in \figref {fig:MeanEnergyST}: By \figref {fig:ArmyStdDevEnergyGnaST} the standard deviation energy for the ELAA $\sigma _{E,ELAA}$ is $1$ order of magnitude smaller that of the DA and by \figref {fig:ArmyStdDevEnergyGnaBnaDiffST} only slightly smaller then $\sigma _{E,BNA}$. Hence the diffusion process \eqref {eq:diffusionProcess} has a marginal contribution to the statistical robustness of the minimizers of $E$ in \eqref {eq:DenoiseFunctionalST}\relax }{figure.caption.54}{}}
 
1705
\newlabel{fig:StdDevEnergyST@cref}{{[figure][9][5]5.9}{118}}
 
1706
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{118}{subfigure.9.1}}
 
1707
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{118}{subfigure.9.2}}
 
1708
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{118}{subfigure.9.3}}
 
1709
\newlabel{eq:bendingOperatorST1}{{5.74}{118}{Structure Tensor Prior}{equation.5.1.74}{}}
 
1710
\newlabel{eq:bendingOperatorST1@cref}{{[equation][74][5]5.74}{118}}
 
1711
\newlabel{eq:bendingOperatorST}{{5.75}{118}{Structure Tensor Prior}{equation.5.1.75}{}}
 
1712
\newlabel{eq:bendingOperatorST@cref}{{[equation][75][5]5.75}{118}}
 
1713
\newlabel{fig:EnergyWsizeGnaST}{{5.10a}{119}{Subfigure 5 5.10a}{subfigure.5.10.1}{}}
1716
1714
\newlabel{sub@fig:EnergyWsizeGnaST}{{(a)}{a}{Subfigure 5 5.10a\relax }{subfigure.5.10.1}{}}
1717
 
\newlabel{fig:EnergyWsizeGnaST@cref}{{[subfigure][1][5,10]5.10a}{120}}
1718
 
\newlabel{fig:CurvatureWsizeGnaST}{{5.10b}{120}{Subfigure 5 5.10b}{subfigure.5.10.2}{}}
 
1715
\newlabel{fig:EnergyWsizeGnaST@cref}{{[subfigure][1][5,10]5.10a}{119}}
 
1716
\newlabel{fig:CurvatureWsizeGnaST}{{5.10b}{119}{Subfigure 5 5.10b}{subfigure.5.10.2}{}}
1719
1717
\newlabel{sub@fig:CurvatureWsizeGnaST}{{(b)}{b}{Subfigure 5 5.10b\relax }{subfigure.5.10.2}{}}
1720
 
\newlabel{fig:CurvatureWsizeGnaST@cref}{{[subfigure][2][5,10]5.10b}{120}}
1721
 
\newlabel{fig:InitialEnergyGnaST}{{5.10c}{120}{Subfigure 5 5.10c}{subfigure.5.10.3}{}}
 
1718
\newlabel{fig:CurvatureWsizeGnaST@cref}{{[subfigure][2][5,10]5.10b}{119}}
 
1719
\newlabel{fig:InitialEnergyGnaST}{{5.10c}{119}{Subfigure 5 5.10c}{subfigure.5.10.3}{}}
1722
1720
\newlabel{sub@fig:InitialEnergyGnaST}{{(c)}{c}{Subfigure 5 5.10c\relax }{subfigure.5.10.3}{}}
1723
 
\newlabel{fig:InitialEnergyGnaST@cref}{{[subfigure][3][5,10]5.10c}{120}}
1724
 
\newlabel{fig:InitialCurvatureGnaST}{{5.10d}{120}{Subfigure 5 5.10d}{subfigure.5.10.4}{}}
 
1721
\newlabel{fig:InitialEnergyGnaST@cref}{{[subfigure][3][5,10]5.10c}{119}}
 
1722
\newlabel{fig:InitialCurvatureGnaST}{{5.10d}{119}{Subfigure 5 5.10d}{subfigure.5.10.4}{}}
1725
1723
\newlabel{sub@fig:InitialCurvatureGnaST}{{(d)}{d}{Subfigure 5 5.10d\relax }{subfigure.5.10.4}{}}
1726
 
\newlabel{fig:InitialCurvatureGnaST@cref}{{[subfigure][4][5,10]5.10d}{120}}
1727
 
\@writefile{lof}{\contentsline {figure}{\numberline {5.10}{\ignorespaces Study of the dependency the mean energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ and the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ on the window size $\sigma _{ST}$ of the structure tensor prior $E^{prior}_{ST}$. \Cref  {fig:EnergyWsizeGnaST} shows the mean energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ per iteration $k\geq 100$ for various $\sigma _{ST}$ and \cref  {fig:CurvatureWsizeGnaST} the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $, also for various $\sigma _{ST}$. Figures \ref  {fig:InitialEnergyGnaST} and \ref  {fig:InitialCurvatureGnaST} show the initial energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ and the initial curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ for $k=0$. In \cref  {fig:EnergyWsizeGnaST} we can see that for smaller $\sigma _{ST}$ the energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ converges to lower values. Conversely for larger window sizes $\sigma _{ST}$ the mean energy profiles $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ per $\sigma _{ST}$ converge. In \cref  {fig:CurvatureWsizeGnaST} we observe a similar behavior for the curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $: For small $\sigma _{ST}$ the curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ is comparatively large. As $\sigma _{ST}$ rises the profile of $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ per $\sigma _{ST}$ converge, albeit at lower values. Figures \ref  {fig:InitialEnergyGnaST} and \ref  {fig:InitialCurvatureGnaST} show that the initial energy and the initial curvature for $\sigma _{ST}=3$ have half the values then for the larger window sizes $\sigma _{ST}=13\cdots  63$\relax }}{120}{figure.caption.55}}
1728
 
\newlabel{fig:WsizeGnaST}{{5.10}{120}{Study of the dependency the mean energy $\langle E^k\rangle _{ELAA}$ and the mean curvature $\langle \norm {K}\rangle $ on the window size $\sigma _{ST}$ of the structure tensor prior $E^{prior}_{ST}$. \Figref {fig:EnergyWsizeGnaST} shows the mean energy $\langle E^k\rangle _{ELAA}$ per iteration $k\geq 100$ for various $\sigma _{ST}$ and \figref {fig:CurvatureWsizeGnaST} the mean curvature $\langle \norm {K}\rangle $, also for various $\sigma _{ST}$. Figures \ref {fig:InitialEnergyGnaST} and \ref {fig:InitialCurvatureGnaST} show the initial energy $\langle E^k\rangle _{ELAA}$ and the initial curvature $\langle \norm {K}\rangle $ for $k=0$. In \figref {fig:EnergyWsizeGnaST} we can see that for smaller $\sigma _{ST}$ the energy $\langle E^k\rangle _{ELAA}$ converges to lower values. Conversely for larger window sizes $\sigma _{ST}$ the mean energy profiles $\langle E^k\rangle _{ELAA}$ per $\sigma _{ST}$ converge. In \figref {fig:CurvatureWsizeGnaST} we observe a similar behavior for the curvature $\langle \norm {K}\rangle $: For small $\sigma _{ST}$ the curvature $\langle \norm {K}\rangle $ is comparatively large. As $\sigma _{ST}$ rises the profile of $\langle \norm {K}\rangle $ per $\sigma _{ST}$ converge, albeit at lower values. Figures \ref {fig:InitialEnergyGnaST} and \ref {fig:InitialCurvatureGnaST} show that the initial energy and the initial curvature for $\sigma _{ST}=3$ have half the values then for the larger window sizes $\sigma _{ST}=13\cdots 63$\relax }{figure.caption.55}{}}
1729
 
\newlabel{fig:WsizeGnaST@cref}{{[figure][10][5]5.10}{120}}
1730
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{120}{subfigure.10.1}}
1731
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{120}{subfigure.10.2}}
1732
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{120}{subfigure.10.3}}
1733
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{120}{subfigure.10.4}}
1734
 
\newlabel{eq:RelativeEnergyST}{{5.76}{121}{Structure Tensor Prior}{equation.5.1.76}{}}
1735
 
\newlabel{eq:RelativeEnergyST@cref}{{[equation][76][5]5.76}{121}}
1736
 
\@writefile{toc}{\contentsline {section}{\numberline {5.2}summary}{121}{section.5.2}}
1737
 
\newlabel{eq:totEnergyGenNewton2}{{5.77}{122}{summary}{equation.5.2.77}{}}
1738
 
\newlabel{eq:totEnergyGenNewton2@cref}{{[equation][77][5]5.77}{122}}
1739
 
\newlabel{eq:eulerLagrangeGRF3}{{5.78}{122}{summary}{equation.5.2.78}{}}
1740
 
\newlabel{eq:eulerLagrangeGRF3@cref}{{[equation][78][5]5.78}{122}}
1741
 
\newlabel{eq:diffusionProcess2}{{5.79}{122}{summary}{equation.5.2.79}{}}
1742
 
\newlabel{eq:diffusionProcess2@cref}{{[equation][79][5]5.79}{122}}
 
1724
\newlabel{fig:InitialCurvatureGnaST@cref}{{[subfigure][4][5,10]5.10d}{119}}
 
1725
\@writefile{lof}{\contentsline {figure}{\numberline {5.10}{\ignorespaces Study of the dependency the mean energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ and the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ on the window size $\sigma _{ST}$ of the structure tensor prior $E^{prior}_{ST}$. \Cref  {fig:EnergyWsizeGnaST} shows the mean energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ per iteration $k\geq 100$ for various $\sigma _{ST}$ and \cref  {fig:CurvatureWsizeGnaST} the mean curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $, also for various $\sigma _{ST}$. Figures \ref  {fig:InitialEnergyGnaST} and \ref  {fig:InitialCurvatureGnaST} show the initial energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ and the initial curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ for $k=0$. In \cref  {fig:EnergyWsizeGnaST} we can see that for smaller $\sigma _{ST}$ the energy $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ converges to lower values. Conversely for larger window sizes $\sigma _{ST}$ the mean energy profiles $\delimiter "426830A E^k\delimiter "526930B _{ELAA}$ per $\sigma _{ST}$ converge. In \cref  {fig:CurvatureWsizeGnaST} we observe a similar behavior for the curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $: For small $\sigma _{ST}$ the curvature $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ is comparatively large. As $\sigma _{ST}$ rises the profile of $\delimiter "426830A \ensuremath  {\left \delimiter 69645069 K \right \delimiter 86422285 }\delimiter "526930B $ per $\sigma _{ST}$ converge, albeit at lower values. Figures \ref  {fig:InitialEnergyGnaST} and \ref  {fig:InitialCurvatureGnaST} show that the initial energy and the initial curvature for $\sigma _{ST}=3$ have half the values then for the larger window sizes $\sigma _{ST}=13\cdots  63$\relax }}{119}{figure.caption.55}}
 
1726
\newlabel{fig:WsizeGnaST}{{5.10}{119}{Study of the dependency the mean energy $\langle E^k\rangle _{ELAA}$ and the mean curvature $\langle \norm {K}\rangle $ on the window size $\sigma _{ST}$ of the structure tensor prior $E^{prior}_{ST}$. \Figref {fig:EnergyWsizeGnaST} shows the mean energy $\langle E^k\rangle _{ELAA}$ per iteration $k\geq 100$ for various $\sigma _{ST}$ and \figref {fig:CurvatureWsizeGnaST} the mean curvature $\langle \norm {K}\rangle $, also for various $\sigma _{ST}$. Figures \ref {fig:InitialEnergyGnaST} and \ref {fig:InitialCurvatureGnaST} show the initial energy $\langle E^k\rangle _{ELAA}$ and the initial curvature $\langle \norm {K}\rangle $ for $k=0$. In \figref {fig:EnergyWsizeGnaST} we can see that for smaller $\sigma _{ST}$ the energy $\langle E^k\rangle _{ELAA}$ converges to lower values. Conversely for larger window sizes $\sigma _{ST}$ the mean energy profiles $\langle E^k\rangle _{ELAA}$ per $\sigma _{ST}$ converge. In \figref {fig:CurvatureWsizeGnaST} we observe a similar behavior for the curvature $\langle \norm {K}\rangle $: For small $\sigma _{ST}$ the curvature $\langle \norm {K}\rangle $ is comparatively large. As $\sigma _{ST}$ rises the profile of $\langle \norm {K}\rangle $ per $\sigma _{ST}$ converge, albeit at lower values. Figures \ref {fig:InitialEnergyGnaST} and \ref {fig:InitialCurvatureGnaST} show that the initial energy and the initial curvature for $\sigma _{ST}=3$ have half the values then for the larger window sizes $\sigma _{ST}=13\cdots 63$\relax }{figure.caption.55}{}}
 
1727
\newlabel{fig:WsizeGnaST@cref}{{[figure][10][5]5.10}{119}}
 
1728
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{119}{subfigure.10.1}}
 
1729
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{119}{subfigure.10.2}}
 
1730
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{119}{subfigure.10.3}}
 
1731
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{119}{subfigure.10.4}}
 
1732
\newlabel{eq:RelativeEnergyST}{{5.76}{120}{Structure Tensor Prior}{equation.5.1.76}{}}
 
1733
\newlabel{eq:RelativeEnergyST@cref}{{[equation][76][5]5.76}{120}}
 
1734
\@writefile{toc}{\contentsline {section}{\numberline {5.2}summary}{120}{section.5.2}}
 
1735
\newlabel{eq:totEnergyGenNewton2}{{5.77}{121}{summary}{equation.5.2.77}{}}
 
1736
\newlabel{eq:totEnergyGenNewton2@cref}{{[equation][77][5]5.77}{121}}
 
1737
\newlabel{eq:eulerLagrangeGRF3}{{5.78}{121}{summary}{equation.5.2.78}{}}
 
1738
\newlabel{eq:eulerLagrangeGRF3@cref}{{[equation][78][5]5.78}{121}}
 
1739
\newlabel{eq:diffusionProcess2}{{5.79}{121}{summary}{equation.5.2.79}{}}
 
1740
\newlabel{eq:diffusionProcess2@cref}{{[equation][79][5]5.79}{121}}
1743
1741
\citation{NoetherTheoremDeu,NoetherTheroemEng}
1744
 
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Conclusions}{124}{chapter.6}}
 
1742
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Conclusions}{123}{chapter.6}}
1745
1743
\@writefile{lof}{\addvspace {10\p@ }}
1746
1744
\@writefile{lot}{\addvspace {10\p@ }}
1747
1745
\@writefile{lol}{\addvspace {10\p@ }}
1748
1746
\@writefile{loa}{\addvspace {10\p@ }}
1749
 
\@writefile{brf}{\backcite{NoetherTheoremDeu}{{124}{6}{chapter.6}}}
1750
 
\@writefile{brf}{\backcite{NoetherTheroemEng}{{124}{6}{chapter.6}}}
1751
 
\newlabel{eq:noetherTheoremConclusion}{{6.1}{124}{Conclusions}{equation.6.0.1}{}}
1752
 
\newlabel{eq:noetherTheoremConclusion@cref}{{[equation][1][6]6.1}{124}}
 
1747
\@writefile{brf}{\backcite{NoetherTheoremDeu}{{123}{6}{chapter.6}}}
 
1748
\@writefile{brf}{\backcite{NoetherTheroemEng}{{123}{6}{chapter.6}}}
 
1749
\newlabel{eq:noetherTheoremConclusion}{{6.1}{123}{Conclusions}{equation.6.0.1}{}}
 
1750
\newlabel{eq:noetherTheoremConclusion@cref}{{[equation][1][6]6.1}{123}}
1753
1751
\citation{Bigun1987,BigunBook}
1754
 
\newlabel{eq:noetherTheoremConclusionLeftInv}{{6.2}{125}{Conclusions}{equation.6.0.2}{}}
1755
 
\newlabel{eq:noetherTheoremConclusionLeftInv@cref}{{[equation][2][6]6.2}{125}}
1756
 
\@writefile{brf}{\backcite{Bigun1987}{{125}{6}{equation.6.0.2}}}
1757
 
\@writefile{brf}{\backcite{BigunBook}{{125}{6}{equation.6.0.2}}}
 
1752
\newlabel{eq:noetherTheoremConclusionLeftInv}{{6.2}{124}{Conclusions}{equation.6.0.2}{}}
 
1753
\newlabel{eq:noetherTheoremConclusionLeftInv@cref}{{[equation][2][6]6.2}{124}}
 
1754
\@writefile{brf}{\backcite{Bigun1987}{{124}{6}{equation.6.0.2}}}
 
1755
\@writefile{brf}{\backcite{BigunBook}{{124}{6}{equation.6.0.2}}}
1758
1756
\citation{FieguthStatImProc}
1759
 
\newlabel{eq:flowEulerConclusion}{{6.5}{126}{Conclusions}{equation.6.0.5}{}}
1760
 
\newlabel{eq:flowEulerConclusion@cref}{{[equation][5][6]6.5}{126}}
1761
 
\newlabel{eq:flowBabetteConclusion}{{6.6}{126}{Conclusions}{equation.6.0.6}{}}
1762
 
\newlabel{eq:flowBabetteConclusion@cref}{{[equation][6][6]6.6}{126}}
1763
 
\@writefile{brf}{\backcite{FieguthStatImProc}{{126}{6}{equation.6.0.6}}}
1764
 
\newlabel{eq:curvaturePriorConclusion}{{6.7}{126}{Conclusions}{equation.6.0.7}{}}
1765
 
\newlabel{eq:curvaturePriorConclusion@cref}{{[equation][7][6]6.7}{126}}
1766
 
\newlabel{eq:curvatureConclusion}{{6.8}{127}{Conclusions}{equation.6.0.8}{}}
1767
 
\newlabel{eq:curvatureConclusion@cref}{{[equation][8][6]6.8}{127}}
1768
 
\newlabel{eq:curvatureTVConclusion}{{6.9}{127}{Conclusions}{equation.6.0.9}{}}
1769
 
\newlabel{eq:curvatureTVConclusion@cref}{{[equation][9][6]6.9}{127}}
 
1757
\newlabel{eq:flowEulerConclusion}{{6.5}{125}{Conclusions}{equation.6.0.5}{}}
 
1758
\newlabel{eq:flowEulerConclusion@cref}{{[equation][5][6]6.5}{125}}
 
1759
\newlabel{eq:flowBabetteConclusion}{{6.6}{125}{Conclusions}{equation.6.0.6}{}}
 
1760
\newlabel{eq:flowBabetteConclusion@cref}{{[equation][6][6]6.6}{125}}
 
1761
\@writefile{brf}{\backcite{FieguthStatImProc}{{125}{6}{equation.6.0.6}}}
 
1762
\newlabel{eq:curvaturePriorConclusion}{{6.7}{125}{Conclusions}{equation.6.0.7}{}}
 
1763
\newlabel{eq:curvaturePriorConclusion@cref}{{[equation][7][6]6.7}{125}}
 
1764
\newlabel{eq:curvatureConclusion}{{6.8}{126}{Conclusions}{equation.6.0.8}{}}
 
1765
\newlabel{eq:curvatureConclusion@cref}{{[equation][8][6]6.8}{126}}
 
1766
\newlabel{eq:curvatureTVConclusion}{{6.9}{126}{Conclusions}{equation.6.0.9}{}}
 
1767
\newlabel{eq:curvatureTVConclusion@cref}{{[equation][9][6]6.9}{126}}
1770
1768
\citation{PeskinQFT}
1771
1769
\citation{misner1973gravitation}
1772
1770
\citation{rovelli2007quantum}
1773
1771
\citation{becker2006string}
1774
 
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Outlook}{128}{section.6.1}}
1775
 
\@writefile{brf}{\backcite{PeskinQFT}{{128}{6.1}{section.6.1}}}
1776
 
\@writefile{brf}{\backcite{misner1973gravitation}{{128}{6.1}{section.6.1}}}
1777
 
\@writefile{brf}{\backcite{rovelli2007quantum}{{128}{6.1}{section.6.1}}}
1778
 
\@writefile{brf}{\backcite{becker2006string}{{128}{6.1}{section.6.1}}}
 
1772
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Outlook}{127}{section.6.1}}
 
1773
\@writefile{brf}{\backcite{PeskinQFT}{{127}{6.1}{section.6.1}}}
 
1774
\@writefile{brf}{\backcite{misner1973gravitation}{{127}{6.1}{section.6.1}}}
 
1775
\@writefile{brf}{\backcite{rovelli2007quantum}{{127}{6.1}{section.6.1}}}
 
1776
\@writefile{brf}{\backcite{becker2006string}{{127}{6.1}{section.6.1}}}
1779
1777
\citation{LeeSmoothManifolds}
1780
 
\@writefile{toc}{\contentsline {chapter}{\numberline {A}Smooth Manifolds}{129}{appendix.A}}
 
1778
\@writefile{toc}{\contentsline {chapter}{\numberline {A}Smooth Manifolds}{128}{appendix.A}}
1781
1779
\@writefile{lof}{\addvspace {10\p@ }}
1782
1780
\@writefile{lot}{\addvspace {10\p@ }}
1783
1781
\@writefile{lol}{\addvspace {10\p@ }}
1784
1782
\@writefile{loa}{\addvspace {10\p@ }}
1785
 
\newlabel{App:SmoothManifolds}{{A}{129}{Smooth Manifolds}{appendix.A}{}}
1786
 
\newlabel{App:SmoothManifolds@cref}{{[appendix][1][2147483647]A}{129}}
1787
 
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{129}{A}{appendix.A}}}
1788
 
\@writefile{toc}{\contentsline {subsection}{\numberline {A.0.1}Topological Spaces}{129}{subsection.A.0.1}}
1789
 
\newlabel{def:TopManifold}{{26}{130}{Topological Manifold}{definition.26}{}}
1790
 
\newlabel{def:TopManifold@cref}{{[definition][26][2147483647]26}{130}}
1791
 
\citation{LeeSmoothManifolds}
1792
 
\newlabel{lem:countBasis}{{10}{131}{Countable Basis of a topological Manifold}{lemma.10}{}}
1793
 
\newlabel{lem:countBasis@cref}{{[lemma][10][2147483647]10}{131}}
1794
 
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{131}{A.0.1}{equation.A.0.1}}}
1795
 
\newlabel{enum:ConnectLocPath}{{1}{131}{Connectivity of a Manifold}{Item.3}{}}
1796
 
\newlabel{enum:ConnectLocPath@cref}{{[enumi][1][2147483647]1}{131}}
1797
 
\newlabel{enum:ConnectGlobPath}{{2}{131}{Connectivity of a Manifold}{Item.4}{}}
1798
 
\newlabel{enum:ConnectGlobPath@cref}{{[enumi][2][2147483647]2}{131}}
1799
 
\@writefile{toc}{\contentsline {subsection}{\numberline {A.0.2}Smooth Manifolds}{132}{subsection.A.0.2}}
1800
 
\newlabel{def:smoothAtlas}{{29}{132}{Atlas and Smooth Manifold}{definition.29}{}}
1801
 
\newlabel{def:smoothAtlas@cref}{{[definition][29][2147483647]29}{132}}
1802
 
\newlabel{eq:localCoordinates}{{A.4}{133}{Smooth Manifolds}{equation.A.0.4}{}}
1803
 
\newlabel{eq:localCoordinates@cref}{{[equation][4][2147483647,1]A.4}{133}}
1804
 
\newlabel{eq:coordinateTransform}{{A.6}{133}{Coordinate Transformation}{equation.A.0.6}{}}
1805
 
\newlabel{eq:coordinateTransform@cref}{{[equation][6][2147483647,1]A.6}{133}}
1806
 
\@writefile{toc}{\contentsline {section}{\numberline {A.1}The Tangent Space $T_p M$}{134}{section.A.1}}
1807
 
\newlabel{eq:derivationDef}{{A.7}{134}{Derivation}{equation.A.1.7}{}}
1808
 
\newlabel{eq:derivationDef@cref}{{[equation][7][2147483647,1]A.7}{134}}
1809
 
\newlabel{eq:derivationDef2}{{A.8}{134}{Derivation}{equation.A.1.8}{}}
1810
 
\newlabel{eq:derivationDef2@cref}{{[equation][8][2147483647,1]A.8}{134}}
1811
 
\newlabel{def:tangSpace}{{32}{134}{Tangential Space}{definition.32}{}}
1812
 
\newlabel{def:tangSpace@cref}{{[definition][32][2147483647]32}{134}}
1813
 
\newlabel{lem:tangentSpaceLinear}{{12}{135}{Linearity}{lemma.12}{}}
1814
 
\newlabel{lem:tangentSpaceLinear@cref}{{[lemma][12][2147483647]12}{135}}
1815
 
\newlabel{lem:derivationProp}{{13}{135}{Properties of Derivations}{lemma.13}{}}
1816
 
\newlabel{lem:derivationProp@cref}{{[lemma][13][2147483647]13}{135}}
1817
 
\newlabel{item:PropDeriv1}{{1}{135}{Properties of Derivations}{Item.5}{}}
1818
 
\newlabel{item:PropDeriv1@cref}{{[enumi][1][2147483647]1}{135}}
1819
 
\newlabel{item:PropDeriv2}{{2}{135}{Properties of Derivations}{Item.6}{}}
1820
 
\newlabel{item:PropDeriv2@cref}{{[enumi][2][2147483647]2}{135}}
1821
 
\newlabel{proof:PropDeriv1}{{A.13}{135}{The Tangent Space $T_p M$}{equation.A.1.13}{}}
1822
 
\newlabel{proof:PropDeriv1@cref}{{[equation][13][2147483647,1]A.13}{135}}
1823
 
\@writefile{toc}{\contentsline {subsection}{\numberline {A.1.1}The Push-Forward}{136}{subsection.A.1.1}}
1824
 
\newlabel{def:pushForward}{{33}{136}{Push-Forward}{definition.33}{}}
1825
 
\newlabel{def:pushForward@cref}{{[definition][33][2147483647]33}{136}}
1826
 
\newlabel{eq:pushForward}{{A.14}{136}{Push-Forward}{equation.A.1.14}{}}
1827
 
\newlabel{eq:pushForward@cref}{{[equation][14][2147483647,1]A.14}{136}}
1828
 
\newlabel{lem:pushForwardproperties}{{14}{136}{Properties of Push-Forwards}{lemma.14}{}}
1829
 
\newlabel{lem:pushForwardproperties@cref}{{[lemma][14][2147483647]14}{136}}
1830
 
\newlabel{item:linPushForward}{{1}{136}{Properties of Push-Forwards}{Item.7}{}}
1831
 
\newlabel{item:linPushForward@cref}{{[enumi][1][2147483647]1}{136}}
1832
 
\newlabel{item:chainPushForward}{{2}{136}{Properties of Push-Forwards}{Item.8}{}}
1833
 
\newlabel{item:chainPushForward@cref}{{[enumi][2][2147483647]2}{136}}
1834
 
\newlabel{item:identPushForward}{{3}{136}{Properties of Push-Forwards}{Item.9}{}}
1835
 
\newlabel{item:identPushForward@cref}{{[enumi][3][2147483647]3}{136}}
1836
 
\newlabel{item:diffeoPushForward}{{4}{136}{Properties of Push-Forwards}{Item.10}{}}
1837
 
\newlabel{item:diffeoPushForward@cref}{{[enumi][4][2147483647]4}{136}}
1838
 
\newlabel{proof:linPushForward}{{A.15}{136}{The Push-Forward}{equation.A.1.15}{}}
1839
 
\newlabel{proof:linPushForward@cref}{{[equation][15][2147483647,1]A.15}{136}}
1840
 
\newlabel{prop:equivRelation}{{6}{137}{Equivalence Relation}{proposition.6}{}}
1841
 
\newlabel{prop:equivRelation@cref}{{[proposition][6][2147483647]6}{137}}
1842
 
\newlabel{eq:equivalenceRelationDerivation}{{A.18}{137}{Equivalence Relation}{equation.A.1.18}{}}
1843
 
\newlabel{eq:equivalenceRelationDerivation@cref}{{[equation][18][2147483647,1]A.18}{137}}
1844
 
\citation{LeeSmoothManifolds}
1845
 
\newlabel{def:inclusionMap}{{34}{138}{Inclusion Map}{definition.34}{}}
1846
 
\newlabel{def:inclusionMap@cref}{{[definition][34][2147483647]34}{138}}
1847
 
\newlabel{prop:tangentialInclusion}{{7}{138}{Tangential Inclusion Map $\iota _\star $}{proposition.7}{}}
1848
 
\newlabel{prop:tangentialInclusion@cref}{{[proposition][7][2147483647]7}{138}}
1849
 
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{138}{A.1.1}{equation.A.1.21}}}
1850
 
\newlabel{eq:inclMapSurjective}{{A.24}{138}{The Push-Forward}{equation.A.1.24}{}}
1851
 
\newlabel{eq:inclMapSurjective@cref}{{[equation][24][2147483647,1]A.24}{138}}
1852
 
\@writefile{toc}{\contentsline {section}{\numberline {A.2}The Basis of $T_p M$}{139}{section.A.2}}
1853
 
\newlabel{def:euclDirectionalDeriv}{{35}{139}{Euclidean Directional Derivative}{definition.35}{}}
1854
 
\newlabel{def:euclDirectionalDeriv@cref}{{[definition][35][2147483647]35}{139}}
1855
 
\newlabel{eq:euclDirectionalDeriv}{{A.27}{139}{Euclidean Directional Derivative}{equation.A.2.27}{}}
1856
 
\newlabel{eq:euclDirectionalDeriv@cref}{{[equation][27][2147483647,1]A.27}{139}}
1857
 
\newlabel{eq:euclDirectionMap}{{A.28}{139}{The Basis of $T_p M$}{equation.A.2.28}{}}
1858
 
\newlabel{eq:euclDirectionMap@cref}{{[equation][28][2147483647,1]A.28}{139}}
1859
 
\newlabel{lem:basisOfTRn}{{15}{140}{Basis of $T_a\mathbb {R}^n$}{lemma.15}{}}
1860
 
\newlabel{lem:basisOfTRn@cref}{{[lemma][15][2147483647]15}{140}}
1861
 
\newlabel{eq:directionalDerivative}{{A.32}{140}{}{equation.A.2.32}{}}
1862
 
\newlabel{eq:directionalDerivative@cref}{{[equation][32][2147483647,1]A.32}{140}}
1863
 
\newlabel{eq:vectorOperatorRep}{{A.33}{140}{The Basis of $T_p M$}{equation.A.2.33}{}}
1864
 
\newlabel{eq:vectorOperatorRep@cref}{{[equation][33][2147483647,1]A.33}{140}}
1865
 
\newlabel{eq:pushForwardCoordinates}{{A.35}{141}{The Basis of $T_p M$}{equation.A.2.35}{}}
1866
 
\newlabel{eq:pushForwardCoordinates@cref}{{[equation][35][2147483647,1]A.35}{141}}
1867
 
\newlabel{eq:coordinateTransformTp}{{A.36}{141}{The Basis of $T_p M$}{equation.A.2.36}{}}
1868
 
\newlabel{eq:coordinateTransformTp@cref}{{[equation][36][2147483647,1]A.36}{141}}
1869
 
\@writefile{toc}{\contentsline {section}{\numberline {A.3}Vector Fields}{141}{section.A.3}}
1870
 
\citation{LeeSmoothManifolds}
1871
 
\newlabel{eq:tangentialBundle}{{A.37}{142}{Tangential Bundle}{equation.A.3.37}{}}
1872
 
\newlabel{eq:tangentialBundle@cref}{{[equation][37][2147483647,1]A.37}{142}}
1873
 
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{142}{A.3}{lemma.16}}}
1874
 
\newlabel{lem:smoothVectorFields}{{17}{143}{Smooth Vector Fields}{lemma.17}{}}
1875
 
\newlabel{lem:smoothVectorFields@cref}{{[lemma][17][2147483647]17}{143}}
1876
 
\@writefile{toc}{\contentsline {section}{\numberline {A.4}Push-Forwards on $\mathcal  {T}(M)$}{143}{section.A.4}}
1877
 
\newlabel{eq:FRelated1}{{A.43}{143}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.43}{}}
1878
 
\newlabel{eq:FRelated1@cref}{{[equation][43][2147483647,1]A.43}{143}}
1879
 
\newlabel{eq:FRelated2}{{A.44}{144}{$F$-Related}{equation.A.4.44}{}}
1880
 
\newlabel{eq:FRelated2@cref}{{[equation][44][2147483647,1]A.44}{144}}
1881
 
\newlabel{prop:vectorFieldPushForward}{{8}{144}{Push-Forward on $\mathcal {T}(M)$}{proposition.8}{}}
1882
 
\newlabel{prop:vectorFieldPushForward@cref}{{[proposition][8][2147483647]8}{144}}
1883
 
\newlabel{eq:FRelated3}{{A.45}{144}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.45}{}}
1884
 
\newlabel{eq:FRelated3@cref}{{[equation][45][2147483647,1]A.45}{144}}
1885
 
\newlabel{eq:pushForwardCoordinatesVectorField}{{A.47}{144}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.47}{}}
1886
 
\newlabel{eq:pushForwardCoordinatesVectorField@cref}{{[equation][47][2147483647,1]A.47}{144}}
1887
 
\@writefile{toc}{\contentsline {section}{\numberline {A.5}Integral Curves and Flows}{145}{section.A.5}}
1888
 
\newlabel{eq:fundamentalTheoremMotiv}{{A.48}{145}{Integral Curves and Flows}{equation.A.5.48}{}}
1889
 
\newlabel{eq:fundamentalTheoremMotiv@cref}{{[equation][48][2147483647,1]A.48}{145}}
1890
 
\newlabel{def:integralCurve}{{40}{145}{Integral Curve}{definition.40}{}}
1891
 
\newlabel{def:integralCurve@cref}{{[definition][40][2147483647]40}{145}}
1892
 
\newlabel{eq:integralCurveDerivative}{{A.50}{145}{Integral Curve}{equation.A.5.50}{}}
1893
 
\newlabel{eq:integralCurveDerivative@cref}{{[equation][50][2147483647,1]A.50}{145}}
1894
 
\citation{LeeSmoothManifolds}
1895
 
\newlabel{eq:integralCurveDerivative2}{{A.53}{146}{Integral Curves and Flows}{equation.A.5.53}{}}
1896
 
\newlabel{eq:integralCurveDerivative2@cref}{{[equation][53][2147483647,1]A.53}{146}}
1897
 
\newlabel{eq:integralCurveDerivativeDiffEq}{{A.54}{146}{Integral Curves and Flows}{equation.A.5.54}{}}
1898
 
\newlabel{eq:integralCurveDerivativeDiffEq@cref}{{[equation][54][2147483647,1]A.54}{146}}
1899
 
\newlabel{theorem:ODE}{{3}{146}{ODE Existence, Uniqueness and Smoothness}{theorem.3}{}}
1900
 
\newlabel{theorem:ODE@cref}{{[theorem][3][2147483647]3}{146}}
1901
 
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{146}{A.5}{theorem.3}}}
1902
 
\newlabel{eq:curveFlow}{{A.57}{147}{Integral Curves and Flows}{equation.A.5.57}{}}
1903
 
\newlabel{eq:curveFlow@cref}{{[equation][57][2147483647,1]A.57}{147}}
1904
 
\newlabel{eq:diffeoFlow}{{A.58}{147}{Integral Curves and Flows}{equation.A.5.58}{}}
1905
 
\newlabel{eq:diffeoFlow@cref}{{[equation][58][2147483647,1]A.58}{147}}
1906
 
\newlabel{eq:flowDiffEq}{{A.59}{147}{Integral Curves and Flows}{equation.A.5.59}{}}
1907
 
\newlabel{eq:flowDiffEq@cref}{{[equation][59][2147483647,1]A.59}{147}}
1908
 
\newlabel{theorem:FundamentalTheoremOnFlows}{{4}{147}{Fundamental Theorem on Flows}{theorem.4}{}}
1909
 
\newlabel{theorem:FundamentalTheoremOnFlows@cref}{{[theorem][4][2147483647]4}{147}}
1910
 
\citation{LeeSmoothManifolds}
1911
 
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{148}{A.5}{theorem.4}}}
1912
 
\newlabel{eq:invariantVectorField}{{A.60}{148}{Integral Curves and Flows}{equation.A.5.60}{}}
1913
 
\newlabel{eq:invariantVectorField@cref}{{[equation][60][2147483647,1]A.60}{148}}
1914
 
\@writefile{toc}{\contentsline {subsection}{\numberline {A.5.1}The Lie Derivative}{148}{subsection.A.5.1}}
1915
 
\newlabel{eq:naiveLieDerivative}{{A.61}{149}{The Lie Derivative}{equation.A.5.61}{}}
1916
 
\newlabel{eq:naiveLieDerivative@cref}{{[equation][61][2147483647,1]A.61}{149}}
1917
 
\newlabel{eq:lieDerivative}{{A.62}{149}{Lie Derivative}{equation.A.5.62}{}}
1918
 
\newlabel{eq:lieDerivative@cref}{{[equation][62][2147483647,1]A.62}{149}}
1919
 
\newlabel{prop:Commutator}{{9}{149}{Commutator}{proposition.9}{}}
1920
 
\newlabel{prop:Commutator@cref}{{[proposition][9][2147483647]9}{149}}
1921
 
\newlabel{eq:commutatorApp}{{A.63}{149}{Commutator}{equation.A.5.63}{}}
1922
 
\newlabel{eq:commutatorApp@cref}{{[equation][63][2147483647,1]A.63}{149}}
1923
 
\newlabel{eq:lieDerivCommutator}{{A.64}{149}{Commutator}{equation.A.5.64}{}}
1924
 
\newlabel{eq:lieDerivCommutator@cref}{{[equation][64][2147483647,1]A.64}{149}}
1925
 
\newlabel{eq:fundamentalTheoremPartdLieDeriv}{{A.71}{150}{The Lie Derivative}{equation.A.5.71}{}}
1926
 
\newlabel{eq:fundamentalTheoremPartdLieDeriv@cref}{{[equation][71][2147483647,1]A.71}{150}}
 
1783
\newlabel{App:SmoothManifolds}{{A}{128}{Smooth Manifolds}{appendix.A}{}}
 
1784
\newlabel{App:SmoothManifolds@cref}{{[appendix][1][2147483647]A}{128}}
 
1785
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{128}{A}{appendix.A}}}
 
1786
\@writefile{toc}{\contentsline {subsection}{\numberline {A.0.1}Topological Spaces}{128}{subsection.A.0.1}}
 
1787
\newlabel{def:TopManifold}{{26}{129}{Topological Manifold}{definition.26}{}}
 
1788
\newlabel{def:TopManifold@cref}{{[definition][26][2147483647]26}{129}}
 
1789
\citation{LeeSmoothManifolds}
 
1790
\newlabel{lem:countBasis}{{10}{130}{Countable Basis of a topological Manifold}{lemma.10}{}}
 
1791
\newlabel{lem:countBasis@cref}{{[lemma][10][2147483647]10}{130}}
 
1792
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{130}{A.0.1}{equation.A.0.1}}}
 
1793
\newlabel{enum:ConnectLocPath}{{1}{130}{Connectivity of a Manifold}{Item.3}{}}
 
1794
\newlabel{enum:ConnectLocPath@cref}{{[enumi][1][2147483647]1}{130}}
 
1795
\newlabel{enum:ConnectGlobPath}{{2}{130}{Connectivity of a Manifold}{Item.4}{}}
 
1796
\newlabel{enum:ConnectGlobPath@cref}{{[enumi][2][2147483647]2}{130}}
 
1797
\@writefile{toc}{\contentsline {subsection}{\numberline {A.0.2}Smooth Manifolds}{131}{subsection.A.0.2}}
 
1798
\newlabel{def:smoothAtlas}{{29}{131}{Atlas and Smooth Manifold}{definition.29}{}}
 
1799
\newlabel{def:smoothAtlas@cref}{{[definition][29][2147483647]29}{131}}
 
1800
\newlabel{eq:localCoordinates}{{A.4}{132}{Smooth Manifolds}{equation.A.0.4}{}}
 
1801
\newlabel{eq:localCoordinates@cref}{{[equation][4][2147483647,1]A.4}{132}}
 
1802
\newlabel{eq:coordinateTransform}{{A.6}{132}{Coordinate Transformation}{equation.A.0.6}{}}
 
1803
\newlabel{eq:coordinateTransform@cref}{{[equation][6][2147483647,1]A.6}{132}}
 
1804
\@writefile{toc}{\contentsline {section}{\numberline {A.1}The Tangent Space $T_p M$}{133}{section.A.1}}
 
1805
\newlabel{eq:derivationDef}{{A.7}{133}{Derivation}{equation.A.1.7}{}}
 
1806
\newlabel{eq:derivationDef@cref}{{[equation][7][2147483647,1]A.7}{133}}
 
1807
\newlabel{eq:derivationDef2}{{A.8}{133}{Derivation}{equation.A.1.8}{}}
 
1808
\newlabel{eq:derivationDef2@cref}{{[equation][8][2147483647,1]A.8}{133}}
 
1809
\newlabel{def:tangSpace}{{32}{133}{Tangential Space}{definition.32}{}}
 
1810
\newlabel{def:tangSpace@cref}{{[definition][32][2147483647]32}{133}}
 
1811
\newlabel{lem:tangentSpaceLinear}{{12}{134}{Linearity}{lemma.12}{}}
 
1812
\newlabel{lem:tangentSpaceLinear@cref}{{[lemma][12][2147483647]12}{134}}
 
1813
\newlabel{lem:derivationProp}{{13}{134}{Properties of Derivations}{lemma.13}{}}
 
1814
\newlabel{lem:derivationProp@cref}{{[lemma][13][2147483647]13}{134}}
 
1815
\newlabel{item:PropDeriv1}{{1}{134}{Properties of Derivations}{Item.5}{}}
 
1816
\newlabel{item:PropDeriv1@cref}{{[enumi][1][2147483647]1}{134}}
 
1817
\newlabel{item:PropDeriv2}{{2}{134}{Properties of Derivations}{Item.6}{}}
 
1818
\newlabel{item:PropDeriv2@cref}{{[enumi][2][2147483647]2}{134}}
 
1819
\newlabel{proof:PropDeriv1}{{A.13}{134}{The Tangent Space $T_p M$}{equation.A.1.13}{}}
 
1820
\newlabel{proof:PropDeriv1@cref}{{[equation][13][2147483647,1]A.13}{134}}
 
1821
\@writefile{toc}{\contentsline {subsection}{\numberline {A.1.1}The Push-Forward}{135}{subsection.A.1.1}}
 
1822
\newlabel{def:pushForward}{{33}{135}{Push-Forward}{definition.33}{}}
 
1823
\newlabel{def:pushForward@cref}{{[definition][33][2147483647]33}{135}}
 
1824
\newlabel{eq:pushForward}{{A.14}{135}{Push-Forward}{equation.A.1.14}{}}
 
1825
\newlabel{eq:pushForward@cref}{{[equation][14][2147483647,1]A.14}{135}}
 
1826
\newlabel{lem:pushForwardproperties}{{14}{135}{Properties of Push-Forwards}{lemma.14}{}}
 
1827
\newlabel{lem:pushForwardproperties@cref}{{[lemma][14][2147483647]14}{135}}
 
1828
\newlabel{item:linPushForward}{{1}{135}{Properties of Push-Forwards}{Item.7}{}}
 
1829
\newlabel{item:linPushForward@cref}{{[enumi][1][2147483647]1}{135}}
 
1830
\newlabel{item:chainPushForward}{{2}{135}{Properties of Push-Forwards}{Item.8}{}}
 
1831
\newlabel{item:chainPushForward@cref}{{[enumi][2][2147483647]2}{135}}
 
1832
\newlabel{item:identPushForward}{{3}{135}{Properties of Push-Forwards}{Item.9}{}}
 
1833
\newlabel{item:identPushForward@cref}{{[enumi][3][2147483647]3}{135}}
 
1834
\newlabel{item:diffeoPushForward}{{4}{135}{Properties of Push-Forwards}{Item.10}{}}
 
1835
\newlabel{item:diffeoPushForward@cref}{{[enumi][4][2147483647]4}{135}}
 
1836
\newlabel{proof:linPushForward}{{A.15}{135}{The Push-Forward}{equation.A.1.15}{}}
 
1837
\newlabel{proof:linPushForward@cref}{{[equation][15][2147483647,1]A.15}{135}}
 
1838
\newlabel{prop:equivRelation}{{6}{136}{Equivalence Relation}{proposition.6}{}}
 
1839
\newlabel{prop:equivRelation@cref}{{[proposition][6][2147483647]6}{136}}
 
1840
\newlabel{eq:equivalenceRelationDerivation}{{A.18}{136}{Equivalence Relation}{equation.A.1.18}{}}
 
1841
\newlabel{eq:equivalenceRelationDerivation@cref}{{[equation][18][2147483647,1]A.18}{136}}
 
1842
\citation{LeeSmoothManifolds}
 
1843
\newlabel{def:inclusionMap}{{34}{137}{Inclusion Map}{definition.34}{}}
 
1844
\newlabel{def:inclusionMap@cref}{{[definition][34][2147483647]34}{137}}
 
1845
\newlabel{prop:tangentialInclusion}{{7}{137}{Tangential Inclusion Map $\iota _\star $}{proposition.7}{}}
 
1846
\newlabel{prop:tangentialInclusion@cref}{{[proposition][7][2147483647]7}{137}}
 
1847
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{137}{A.1.1}{equation.A.1.21}}}
 
1848
\newlabel{eq:inclMapSurjective}{{A.24}{137}{The Push-Forward}{equation.A.1.24}{}}
 
1849
\newlabel{eq:inclMapSurjective@cref}{{[equation][24][2147483647,1]A.24}{137}}
 
1850
\@writefile{toc}{\contentsline {section}{\numberline {A.2}The Basis of $T_p M$}{138}{section.A.2}}
 
1851
\newlabel{def:euclDirectionalDeriv}{{35}{138}{Euclidean Directional Derivative}{definition.35}{}}
 
1852
\newlabel{def:euclDirectionalDeriv@cref}{{[definition][35][2147483647]35}{138}}
 
1853
\newlabel{eq:euclDirectionalDeriv}{{A.27}{138}{Euclidean Directional Derivative}{equation.A.2.27}{}}
 
1854
\newlabel{eq:euclDirectionalDeriv@cref}{{[equation][27][2147483647,1]A.27}{138}}
 
1855
\newlabel{eq:euclDirectionMap}{{A.28}{138}{The Basis of $T_p M$}{equation.A.2.28}{}}
 
1856
\newlabel{eq:euclDirectionMap@cref}{{[equation][28][2147483647,1]A.28}{138}}
 
1857
\newlabel{lem:basisOfTRn}{{15}{139}{Basis of $T_a\mathbb {R}^n$}{lemma.15}{}}
 
1858
\newlabel{lem:basisOfTRn@cref}{{[lemma][15][2147483647]15}{139}}
 
1859
\newlabel{eq:directionalDerivative}{{A.32}{139}{}{equation.A.2.32}{}}
 
1860
\newlabel{eq:directionalDerivative@cref}{{[equation][32][2147483647,1]A.32}{139}}
 
1861
\newlabel{eq:vectorOperatorRep}{{A.33}{139}{The Basis of $T_p M$}{equation.A.2.33}{}}
 
1862
\newlabel{eq:vectorOperatorRep@cref}{{[equation][33][2147483647,1]A.33}{139}}
 
1863
\newlabel{eq:pushForwardCoordinates}{{A.35}{140}{The Basis of $T_p M$}{equation.A.2.35}{}}
 
1864
\newlabel{eq:pushForwardCoordinates@cref}{{[equation][35][2147483647,1]A.35}{140}}
 
1865
\newlabel{eq:coordinateTransformTp}{{A.36}{140}{The Basis of $T_p M$}{equation.A.2.36}{}}
 
1866
\newlabel{eq:coordinateTransformTp@cref}{{[equation][36][2147483647,1]A.36}{140}}
 
1867
\@writefile{toc}{\contentsline {section}{\numberline {A.3}Vector Fields}{140}{section.A.3}}
 
1868
\citation{LeeSmoothManifolds}
 
1869
\newlabel{eq:tangentialBundle}{{A.37}{141}{Tangential Bundle}{equation.A.3.37}{}}
 
1870
\newlabel{eq:tangentialBundle@cref}{{[equation][37][2147483647,1]A.37}{141}}
 
1871
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{141}{A.3}{lemma.16}}}
 
1872
\newlabel{lem:smoothVectorFields}{{17}{142}{Smooth Vector Fields}{lemma.17}{}}
 
1873
\newlabel{lem:smoothVectorFields@cref}{{[lemma][17][2147483647]17}{142}}
 
1874
\@writefile{toc}{\contentsline {section}{\numberline {A.4}Push-Forwards on $\mathcal  {T}(M)$}{142}{section.A.4}}
 
1875
\newlabel{eq:FRelated1}{{A.43}{142}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.43}{}}
 
1876
\newlabel{eq:FRelated1@cref}{{[equation][43][2147483647,1]A.43}{142}}
 
1877
\newlabel{eq:FRelated2}{{A.44}{143}{$F$-Related}{equation.A.4.44}{}}
 
1878
\newlabel{eq:FRelated2@cref}{{[equation][44][2147483647,1]A.44}{143}}
 
1879
\newlabel{prop:vectorFieldPushForward}{{8}{143}{Push-Forward on $\mathcal {T}(M)$}{proposition.8}{}}
 
1880
\newlabel{prop:vectorFieldPushForward@cref}{{[proposition][8][2147483647]8}{143}}
 
1881
\newlabel{eq:FRelated3}{{A.45}{143}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.45}{}}
 
1882
\newlabel{eq:FRelated3@cref}{{[equation][45][2147483647,1]A.45}{143}}
 
1883
\newlabel{eq:pushForwardCoordinatesVectorField}{{A.47}{143}{Push-Forwards on $\mathcal {T}(M)$}{equation.A.4.47}{}}
 
1884
\newlabel{eq:pushForwardCoordinatesVectorField@cref}{{[equation][47][2147483647,1]A.47}{143}}
 
1885
\@writefile{toc}{\contentsline {section}{\numberline {A.5}Integral Curves and Flows}{144}{section.A.5}}
 
1886
\newlabel{eq:fundamentalTheoremMotiv}{{A.48}{144}{Integral Curves and Flows}{equation.A.5.48}{}}
 
1887
\newlabel{eq:fundamentalTheoremMotiv@cref}{{[equation][48][2147483647,1]A.48}{144}}
 
1888
\newlabel{def:integralCurve}{{40}{144}{Integral Curve}{definition.40}{}}
 
1889
\newlabel{def:integralCurve@cref}{{[definition][40][2147483647]40}{144}}
 
1890
\newlabel{eq:integralCurveDerivative}{{A.50}{144}{Integral Curve}{equation.A.5.50}{}}
 
1891
\newlabel{eq:integralCurveDerivative@cref}{{[equation][50][2147483647,1]A.50}{144}}
 
1892
\citation{LeeSmoothManifolds}
 
1893
\newlabel{eq:integralCurveDerivative2}{{A.53}{145}{Integral Curves and Flows}{equation.A.5.53}{}}
 
1894
\newlabel{eq:integralCurveDerivative2@cref}{{[equation][53][2147483647,1]A.53}{145}}
 
1895
\newlabel{eq:integralCurveDerivativeDiffEq}{{A.54}{145}{Integral Curves and Flows}{equation.A.5.54}{}}
 
1896
\newlabel{eq:integralCurveDerivativeDiffEq@cref}{{[equation][54][2147483647,1]A.54}{145}}
 
1897
\newlabel{theorem:ODE}{{3}{145}{ODE Existence, Uniqueness and Smoothness}{theorem.3}{}}
 
1898
\newlabel{theorem:ODE@cref}{{[theorem][3][2147483647]3}{145}}
 
1899
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{145}{A.5}{theorem.3}}}
 
1900
\newlabel{eq:curveFlow}{{A.57}{146}{Integral Curves and Flows}{equation.A.5.57}{}}
 
1901
\newlabel{eq:curveFlow@cref}{{[equation][57][2147483647,1]A.57}{146}}
 
1902
\newlabel{eq:diffeoFlow}{{A.58}{146}{Integral Curves and Flows}{equation.A.5.58}{}}
 
1903
\newlabel{eq:diffeoFlow@cref}{{[equation][58][2147483647,1]A.58}{146}}
 
1904
\newlabel{eq:flowDiffEq}{{A.59}{146}{Integral Curves and Flows}{equation.A.5.59}{}}
 
1905
\newlabel{eq:flowDiffEq@cref}{{[equation][59][2147483647,1]A.59}{146}}
 
1906
\newlabel{theorem:FundamentalTheoremOnFlows}{{4}{146}{Fundamental Theorem on Flows}{theorem.4}{}}
 
1907
\newlabel{theorem:FundamentalTheoremOnFlows@cref}{{[theorem][4][2147483647]4}{146}}
 
1908
\citation{LeeSmoothManifolds}
 
1909
\@writefile{brf}{\backcite{LeeSmoothManifolds}{{147}{A.5}{theorem.4}}}
 
1910
\newlabel{eq:invariantVectorField}{{A.60}{147}{Integral Curves and Flows}{equation.A.5.60}{}}
 
1911
\newlabel{eq:invariantVectorField@cref}{{[equation][60][2147483647,1]A.60}{147}}
 
1912
\@writefile{toc}{\contentsline {subsection}{\numberline {A.5.1}The Lie Derivative}{147}{subsection.A.5.1}}
 
1913
\newlabel{eq:naiveLieDerivative}{{A.61}{148}{The Lie Derivative}{equation.A.5.61}{}}
 
1914
\newlabel{eq:naiveLieDerivative@cref}{{[equation][61][2147483647,1]A.61}{148}}
 
1915
\newlabel{eq:lieDerivative}{{A.62}{148}{Lie Derivative}{equation.A.5.62}{}}
 
1916
\newlabel{eq:lieDerivative@cref}{{[equation][62][2147483647,1]A.62}{148}}
 
1917
\newlabel{prop:Commutator}{{9}{148}{Commutator}{proposition.9}{}}
 
1918
\newlabel{prop:Commutator@cref}{{[proposition][9][2147483647]9}{148}}
 
1919
\newlabel{eq:commutatorApp}{{A.63}{148}{Commutator}{equation.A.5.63}{}}
 
1920
\newlabel{eq:commutatorApp@cref}{{[equation][63][2147483647,1]A.63}{148}}
 
1921
\newlabel{eq:lieDerivCommutator}{{A.64}{148}{Commutator}{equation.A.5.64}{}}
 
1922
\newlabel{eq:lieDerivCommutator@cref}{{[equation][64][2147483647,1]A.64}{148}}
 
1923
\newlabel{eq:fundamentalTheoremPartdLieDeriv}{{A.71}{149}{The Lie Derivative}{equation.A.5.71}{}}
 
1924
\newlabel{eq:fundamentalTheoremPartdLieDeriv@cref}{{[equation][71][2147483647,1]A.71}{149}}
1927
1925
\citation{MansfieldInvarCalc,OlverSymmetry}
1928
 
\@writefile{toc}{\contentsline {chapter}{\numberline {B}Lie Groups}{151}{appendix.B}}
1929
 
\@writefile{lof}{\addvspace {10\p@ }}
1930
 
\@writefile{lot}{\addvspace {10\p@ }}
1931
 
\@writefile{lol}{\addvspace {10\p@ }}
1932
 
\@writefile{loa}{\addvspace {10\p@ }}
1933
 
\newlabel{sec:AppLieGroups}{{B}{151}{Lie Groups}{appendix.B}{}}
1934
 
\newlabel{sec:AppLieGroups@cref}{{[appendix][2][2147483647]B}{151}}
1935
 
\@writefile{toc}{\contentsline {section}{\numberline {B.1}The Prolonged Action}{151}{section.B.1}}
1936
 
\newlabel{sec:AppProlongedAction}{{B.1}{151}{The Prolonged Action}{section.B.1}{}}
1937
 
\newlabel{sec:AppProlongedAction@cref}{{[subappendix][1][2147483647,2]B.1}{151}}
1938
 
\newlabel{eq:AppProlongedAction}{{B.1}{151}{The Prolonged Action}{equation.B.1.1}{}}
1939
 
\newlabel{eq:AppProlongedAction@cref}{{[equation][1][2147483647,2]B.1}{151}}
1940
 
\@writefile{brf}{\backcite{MansfieldInvarCalc}{{151}{B.1}{equation.B.1.1}}}
1941
 
\@writefile{brf}{\backcite{OlverSymmetry}{{151}{B.1}{equation.B.1.1}}}
1942
 
\newlabel{eq:AppProlActionDeriv}{{B.5}{151}{The Prolonged Action}{equation.B.1.5}{}}
1943
 
\newlabel{eq:AppProlActionDeriv@cref}{{[equation][5][2147483647,2]B.5}{151}}
1944
 
\@writefile{toc}{\contentsline {section}{\numberline {B.2}Geometrical Meaning of the Commutator $\ensuremath  {\left [{\cdot ,\cdot }\right ]}$}{152}{section.B.2}}
1945
 
\newlabel{sec:AppCommutator}{{B.2}{152}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{section.B.2}{}}
1946
 
\newlabel{sec:AppCommutator@cref}{{[subappendix][2][2147483647,2]B.2}{152}}
1947
 
\newlabel{eq:AppCommutator}{{B.13}{152}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.13}{}}
1948
 
\newlabel{eq:AppCommutator@cref}{{[equation][13][2147483647,2]B.13}{152}}
1949
 
\newlabel{eq:AppComm1}{{B.17}{153}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.17}{}}
1950
 
\newlabel{eq:AppComm1@cref}{{[equation][17][2147483647,2]B.17}{153}}
1951
 
\newlabel{eq:AppComm2}{{B.18}{153}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.18}{}}
1952
 
\newlabel{eq:AppComm2@cref}{{[equation][18][2147483647,2]B.18}{153}}
1953
 
\@writefile{toc}{\contentsline {section}{\numberline {B.3}Derivation Of Noethers Theorem}{153}{section.B.3}}
1954
 
\newlabel{sec:AppNoether}{{B.3}{153}{Derivation Of Noethers Theorem}{section.B.3}{}}
1955
 
\newlabel{sec:AppNoether@cref}{{[subappendix][3][2147483647,2]B.3}{153}}
1956
 
\newlabel{eq:AppNoetherTotEnergy}{{B.19}{153}{Derivation Of Noethers Theorem}{equation.B.3.19}{}}
1957
 
\newlabel{eq:AppNoetherTotEnergy@cref}{{[equation][19][2147483647,2]B.19}{153}}
1958
 
\newlabel{eq:AppNoetherLieAlg}{{B.20}{153}{Derivation Of Noethers Theorem}{equation.B.3.20}{}}
1959
 
\newlabel{eq:AppNoetherLieAlg@cref}{{[equation][20][2147483647,2]B.20}{153}}
1960
 
\newlabel{eq:AppNoetherStatement1}{{B.21}{154}{Derivation Of Noethers Theorem}{equation.B.3.21}{}}
1961
 
\newlabel{eq:AppNoetherStatement1@cref}{{[equation][21][2147483647,2]B.21}{154}}
1962
 
\newlabel{eq:AppNoetherStatement2}{{B.22}{154}{Derivation Of Noethers Theorem}{equation.B.3.22}{}}
1963
 
\newlabel{eq:AppNoetherStatement2@cref}{{[equation][22][2147483647,2]B.22}{154}}
1964
 
\newlabel{eq:AppNoetherProof0}{{B.24}{154}{Derivation Of Noethers Theorem}{equation.B.3.24}{}}
1965
 
\newlabel{eq:AppNoetherProof0@cref}{{[equation][24][2147483647,2]B.24}{154}}
1966
 
\newlabel{eq:AppNoetherProof1}{{B.25}{154}{Derivation Of Noethers Theorem}{equation.B.3.25}{}}
1967
 
\newlabel{eq:AppNoetherProof1@cref}{{[equation][25][2147483647,2]B.25}{154}}
1968
 
\newlabel{eq:AppNoetherProof2}{{B.29}{155}{Derivation Of Noethers Theorem}{equation.B.3.29}{}}
1969
 
\newlabel{eq:AppNoetherProof2@cref}{{[equation][29][2147483647,2]B.29}{155}}
1970
 
\newlabel{eq:AppNoetherProof3}{{B.30}{155}{Derivation Of Noethers Theorem}{equation.B.3.30}{}}
1971
 
\newlabel{eq:AppNoetherProof3@cref}{{[equation][30][2147483647,2]B.30}{155}}
1972
 
\newlabel{eq:AppNoetherProof4}{{B.31}{155}{Derivation Of Noethers Theorem}{equation.B.3.31}{}}
1973
 
\newlabel{eq:AppNoetherProof4@cref}{{[equation][31][2147483647,2]B.31}{155}}
1974
 
\newlabel{eq:AppNoetherProof5}{{B.32}{155}{Derivation Of Noethers Theorem}{equation.B.3.32}{}}
1975
 
\newlabel{eq:AppNoetherProof5@cref}{{[equation][32][2147483647,2]B.32}{155}}
1976
 
\newlabel{eq:AppNoetherProof7}{{B.33}{155}{Derivation Of Noethers Theorem}{equation.B.3.33}{}}
1977
 
\newlabel{eq:AppNoetherProof7@cref}{{[equation][33][2147483647,2]B.33}{155}}
1978
 
\newlabel{eq:AppNoetherProof6}{{B.34}{155}{Derivation Of Noethers Theorem}{equation.B.3.34}{}}
1979
 
\newlabel{eq:AppNoetherProof6@cref}{{[equation][34][2147483647,2]B.34}{155}}
1980
 
\newlabel{eq:AppNoetherProof8}{{B.35}{155}{Derivation Of Noethers Theorem}{equation.B.3.35}{}}
1981
 
\newlabel{eq:AppNoetherProof8@cref}{{[equation][35][2147483647,2]B.35}{155}}
1982
 
\newlabel{eq:AppNoetherProof10}{{B.36}{156}{Derivation Of Noethers Theorem}{equation.B.3.36}{}}
1983
 
\newlabel{eq:AppNoetherProof10@cref}{{[equation][36][2147483647,2]B.36}{156}}
1984
 
\newlabel{eq:AppNoetherProof11}{{B.38}{156}{Derivation Of Noethers Theorem}{equation.B.3.38}{}}
1985
 
\newlabel{eq:AppNoetherProof11@cref}{{[equation][38][2147483647,2]B.38}{156}}
1986
 
\newlabel{eq:AppNoetherLieAlgExp}{{B.39}{156}{Derivation Of Noethers Theorem}{equation.B.3.39}{}}
1987
 
\newlabel{eq:AppNoetherLieAlgExp@cref}{{[equation][39][2147483647,2]B.39}{156}}
1988
 
\newlabel{eq:AppNoetherProof12}{{B.40}{156}{Derivation Of Noethers Theorem}{equation.B.3.40}{}}
1989
 
\newlabel{eq:AppNoetherProof12@cref}{{[equation][40][2147483647,2]B.40}{156}}
1990
 
\@writefile{toc}{\contentsline {subsection}{\numberline {B.3.1}Connection between $\ensuremath  {{\mathbf  {B}}}_m$, $\ensuremath  {{\mathbf  {W}}}_m$ and $\ensuremath  {\left [{\mathcal  {E}}\right ]}$}{156}{subsection.B.3.1}}
1991
 
\newlabel{eq:AppBendingNoetherCurrent1}{{B.42}{157}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.42}{}}
1992
 
\newlabel{eq:AppBendingNoetherCurrent1@cref}{{[equation][42][2147483647,2]B.42}{157}}
1993
 
\newlabel{eq:AppBendingNoetherCurrent2}{{B.43}{157}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.43}{}}
1994
 
\newlabel{eq:AppBendingNoetherCurrent2@cref}{{[equation][43][2147483647,2]B.43}{157}}
1995
 
\newlabel{eq:AppBendingNoetherCurrent3}{{B.44}{157}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.44}{}}
1996
 
\newlabel{eq:AppBendingNoetherCurrent3@cref}{{[equation][44][2147483647,2]B.44}{157}}
1997
 
\newlabel{eq:AppBendingNoetherCurrent4}{{B.45}{157}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.45}{}}
1998
 
\newlabel{eq:AppBendingNoetherCurrent4@cref}{{[equation][45][2147483647,2]B.45}{157}}
1999
 
\newlabel{eq:AppBendingNoetherCurrent5}{{B.46}{157}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.46}{}}
2000
 
\newlabel{eq:AppBendingNoetherCurrent5@cref}{{[equation][46][2147483647,2]B.46}{157}}
2001
 
\newlabel{eq:AppBendingNoetherCurrent6}{{B.47}{157}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.47}{}}
2002
 
\newlabel{eq:AppBendingNoetherCurrent6@cref}{{[equation][47][2147483647,2]B.47}{157}}
2003
 
\newlabel{eq:AppBendingNoetherCurrent7}{{B.48}{157}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.48}{}}
2004
 
\newlabel{eq:AppBendingNoetherCurrent7@cref}{{[equation][48][2147483647,2]B.48}{157}}
2005
 
\newlabel{eq:AppBendingLevelSet}{{B.49}{157}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.49}{}}
2006
 
\newlabel{eq:AppBendingLevelSet@cref}{{[equation][49][2147483647,2]B.49}{157}}
2007
 
\@writefile{toc}{\contentsline {chapter}{\numberline {C}The Bending Algebra}{158}{appendix.C}}
2008
 
\@writefile{lof}{\addvspace {10\p@ }}
2009
 
\@writefile{lot}{\addvspace {10\p@ }}
2010
 
\@writefile{lol}{\addvspace {10\p@ }}
2011
 
\@writefile{loa}{\addvspace {10\p@ }}
2012
 
\@writefile{toc}{\contentsline {section}{\numberline {C.1}The curvature operator}{158}{section.C.1}}
2013
 
\newlabel{sec:AppCurv}{{C.1}{158}{The curvature operator}{section.C.1}{}}
2014
 
\newlabel{sec:AppCurv@cref}{{[subappendix][1][2147483647,3]C.1}{158}}
2015
 
\newlabel{eq:AppDiffusionProcess}{{C.1}{158}{The curvature operator}{equation.C.1.1}{}}
2016
 
\newlabel{eq:AppDiffusionProcess@cref}{{[equation][1][2147483647,3]C.1}{158}}
2017
 
\newlabel{eq:AppEulerLagrangeGRF2}{{C.3}{158}{The curvature operator}{equation.C.1.3}{}}
2018
 
\newlabel{eq:AppEulerLagrangeGRF2@cref}{{[equation][3][2147483647,3]C.3}{158}}
2019
 
\newlabel{eq:DivPChange}{{C.6}{158}{The curvature operator}{equation.C.1.6}{}}
2020
 
\newlabel{eq:DivPChange@cref}{{[equation][6][2147483647,3]C.6}{158}}
 
1926
\@writefile{toc}{\contentsline {chapter}{\numberline {B}Lie Groups}{150}{appendix.B}}
 
1927
\@writefile{lof}{\addvspace {10\p@ }}
 
1928
\@writefile{lot}{\addvspace {10\p@ }}
 
1929
\@writefile{lol}{\addvspace {10\p@ }}
 
1930
\@writefile{loa}{\addvspace {10\p@ }}
 
1931
\newlabel{sec:AppLieGroups}{{B}{150}{Lie Groups}{appendix.B}{}}
 
1932
\newlabel{sec:AppLieGroups@cref}{{[appendix][2][2147483647]B}{150}}
 
1933
\@writefile{toc}{\contentsline {section}{\numberline {B.1}The Prolonged Action}{150}{section.B.1}}
 
1934
\newlabel{sec:AppProlongedAction}{{B.1}{150}{The Prolonged Action}{section.B.1}{}}
 
1935
\newlabel{sec:AppProlongedAction@cref}{{[subappendix][1][2147483647,2]B.1}{150}}
 
1936
\newlabel{eq:AppProlongedAction}{{B.1}{150}{The Prolonged Action}{equation.B.1.1}{}}
 
1937
\newlabel{eq:AppProlongedAction@cref}{{[equation][1][2147483647,2]B.1}{150}}
 
1938
\@writefile{brf}{\backcite{MansfieldInvarCalc}{{150}{B.1}{equation.B.1.1}}}
 
1939
\@writefile{brf}{\backcite{OlverSymmetry}{{150}{B.1}{equation.B.1.1}}}
 
1940
\newlabel{eq:AppProlActionDeriv}{{B.5}{150}{The Prolonged Action}{equation.B.1.5}{}}
 
1941
\newlabel{eq:AppProlActionDeriv@cref}{{[equation][5][2147483647,2]B.5}{150}}
 
1942
\@writefile{toc}{\contentsline {section}{\numberline {B.2}Geometrical Meaning of the Commutator $\ensuremath  {\left [{\cdot ,\cdot }\right ]}$}{151}{section.B.2}}
 
1943
\newlabel{sec:AppCommutator}{{B.2}{151}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{section.B.2}{}}
 
1944
\newlabel{sec:AppCommutator@cref}{{[subappendix][2][2147483647,2]B.2}{151}}
 
1945
\newlabel{eq:AppCommutator}{{B.13}{151}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.13}{}}
 
1946
\newlabel{eq:AppCommutator@cref}{{[equation][13][2147483647,2]B.13}{151}}
 
1947
\newlabel{eq:AppComm1}{{B.17}{152}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.17}{}}
 
1948
\newlabel{eq:AppComm1@cref}{{[equation][17][2147483647,2]B.17}{152}}
 
1949
\newlabel{eq:AppComm2}{{B.18}{152}{Geometrical Meaning of the Commutator $\squarebrackets {\cdot ,\cdot }$}{equation.B.2.18}{}}
 
1950
\newlabel{eq:AppComm2@cref}{{[equation][18][2147483647,2]B.18}{152}}
 
1951
\@writefile{toc}{\contentsline {section}{\numberline {B.3}Derivation Of Noethers Theorem}{152}{section.B.3}}
 
1952
\newlabel{sec:AppNoether}{{B.3}{152}{Derivation Of Noethers Theorem}{section.B.3}{}}
 
1953
\newlabel{sec:AppNoether@cref}{{[subappendix][3][2147483647,2]B.3}{152}}
 
1954
\newlabel{eq:AppNoetherTotEnergy}{{B.19}{152}{Derivation Of Noethers Theorem}{equation.B.3.19}{}}
 
1955
\newlabel{eq:AppNoetherTotEnergy@cref}{{[equation][19][2147483647,2]B.19}{152}}
 
1956
\newlabel{eq:AppNoetherLieAlg}{{B.20}{152}{Derivation Of Noethers Theorem}{equation.B.3.20}{}}
 
1957
\newlabel{eq:AppNoetherLieAlg@cref}{{[equation][20][2147483647,2]B.20}{152}}
 
1958
\newlabel{eq:AppNoetherStatement1}{{B.21}{153}{Derivation Of Noethers Theorem}{equation.B.3.21}{}}
 
1959
\newlabel{eq:AppNoetherStatement1@cref}{{[equation][21][2147483647,2]B.21}{153}}
 
1960
\newlabel{eq:AppNoetherStatement2}{{B.22}{153}{Derivation Of Noethers Theorem}{equation.B.3.22}{}}
 
1961
\newlabel{eq:AppNoetherStatement2@cref}{{[equation][22][2147483647,2]B.22}{153}}
 
1962
\newlabel{eq:AppNoetherProof0}{{B.24}{153}{Derivation Of Noethers Theorem}{equation.B.3.24}{}}
 
1963
\newlabel{eq:AppNoetherProof0@cref}{{[equation][24][2147483647,2]B.24}{153}}
 
1964
\newlabel{eq:AppNoetherProof1}{{B.25}{153}{Derivation Of Noethers Theorem}{equation.B.3.25}{}}
 
1965
\newlabel{eq:AppNoetherProof1@cref}{{[equation][25][2147483647,2]B.25}{153}}
 
1966
\newlabel{eq:AppNoetherProof2}{{B.29}{154}{Derivation Of Noethers Theorem}{equation.B.3.29}{}}
 
1967
\newlabel{eq:AppNoetherProof2@cref}{{[equation][29][2147483647,2]B.29}{154}}
 
1968
\newlabel{eq:AppNoetherProof3}{{B.30}{154}{Derivation Of Noethers Theorem}{equation.B.3.30}{}}
 
1969
\newlabel{eq:AppNoetherProof3@cref}{{[equation][30][2147483647,2]B.30}{154}}
 
1970
\newlabel{eq:AppNoetherProof4}{{B.31}{154}{Derivation Of Noethers Theorem}{equation.B.3.31}{}}
 
1971
\newlabel{eq:AppNoetherProof4@cref}{{[equation][31][2147483647,2]B.31}{154}}
 
1972
\newlabel{eq:AppNoetherProof5}{{B.32}{154}{Derivation Of Noethers Theorem}{equation.B.3.32}{}}
 
1973
\newlabel{eq:AppNoetherProof5@cref}{{[equation][32][2147483647,2]B.32}{154}}
 
1974
\newlabel{eq:AppNoetherProof7}{{B.33}{154}{Derivation Of Noethers Theorem}{equation.B.3.33}{}}
 
1975
\newlabel{eq:AppNoetherProof7@cref}{{[equation][33][2147483647,2]B.33}{154}}
 
1976
\newlabel{eq:AppNoetherProof6}{{B.34}{154}{Derivation Of Noethers Theorem}{equation.B.3.34}{}}
 
1977
\newlabel{eq:AppNoetherProof6@cref}{{[equation][34][2147483647,2]B.34}{154}}
 
1978
\newlabel{eq:AppNoetherProof8}{{B.35}{154}{Derivation Of Noethers Theorem}{equation.B.3.35}{}}
 
1979
\newlabel{eq:AppNoetherProof8@cref}{{[equation][35][2147483647,2]B.35}{154}}
 
1980
\newlabel{eq:AppNoetherProof10}{{B.36}{155}{Derivation Of Noethers Theorem}{equation.B.3.36}{}}
 
1981
\newlabel{eq:AppNoetherProof10@cref}{{[equation][36][2147483647,2]B.36}{155}}
 
1982
\newlabel{eq:AppNoetherProof11}{{B.38}{155}{Derivation Of Noethers Theorem}{equation.B.3.38}{}}
 
1983
\newlabel{eq:AppNoetherProof11@cref}{{[equation][38][2147483647,2]B.38}{155}}
 
1984
\newlabel{eq:AppNoetherLieAlgExp}{{B.39}{155}{Derivation Of Noethers Theorem}{equation.B.3.39}{}}
 
1985
\newlabel{eq:AppNoetherLieAlgExp@cref}{{[equation][39][2147483647,2]B.39}{155}}
 
1986
\newlabel{eq:AppNoetherProof12}{{B.40}{155}{Derivation Of Noethers Theorem}{equation.B.3.40}{}}
 
1987
\newlabel{eq:AppNoetherProof12@cref}{{[equation][40][2147483647,2]B.40}{155}}
 
1988
\@writefile{toc}{\contentsline {subsection}{\numberline {B.3.1}Connection between $\ensuremath  {{\mathbf  {B}}}_m$, $\ensuremath  {{\mathbf  {W}}}_m$ and $\ensuremath  {\left [{\mathcal  {E}}\right ]}$}{155}{subsection.B.3.1}}
 
1989
\newlabel{eq:AppBendingNoetherCurrent1}{{B.42}{156}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.42}{}}
 
1990
\newlabel{eq:AppBendingNoetherCurrent1@cref}{{[equation][42][2147483647,2]B.42}{156}}
 
1991
\newlabel{eq:AppBendingNoetherCurrent2}{{B.43}{156}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.43}{}}
 
1992
\newlabel{eq:AppBendingNoetherCurrent2@cref}{{[equation][43][2147483647,2]B.43}{156}}
 
1993
\newlabel{eq:AppBendingNoetherCurrent3}{{B.44}{156}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.44}{}}
 
1994
\newlabel{eq:AppBendingNoetherCurrent3@cref}{{[equation][44][2147483647,2]B.44}{156}}
 
1995
\newlabel{eq:AppBendingNoetherCurrent4}{{B.45}{156}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.45}{}}
 
1996
\newlabel{eq:AppBendingNoetherCurrent4@cref}{{[equation][45][2147483647,2]B.45}{156}}
 
1997
\newlabel{eq:AppBendingNoetherCurrent5}{{B.46}{156}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.46}{}}
 
1998
\newlabel{eq:AppBendingNoetherCurrent5@cref}{{[equation][46][2147483647,2]B.46}{156}}
 
1999
\newlabel{eq:AppBendingNoetherCurrent6}{{B.47}{156}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.47}{}}
 
2000
\newlabel{eq:AppBendingNoetherCurrent6@cref}{{[equation][47][2147483647,2]B.47}{156}}
 
2001
\newlabel{eq:AppBendingNoetherCurrent7}{{B.48}{156}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.48}{}}
 
2002
\newlabel{eq:AppBendingNoetherCurrent7@cref}{{[equation][48][2147483647,2]B.48}{156}}
 
2003
\newlabel{eq:AppBendingLevelSet}{{B.49}{156}{Connection between $\vectorheader {B}_m$, $\vectorheader {W}_m$ and $\squarebrackets {\mathcal {E}}$}{equation.B.3.49}{}}
 
2004
\newlabel{eq:AppBendingLevelSet@cref}{{[equation][49][2147483647,2]B.49}{156}}
 
2005
\@writefile{toc}{\contentsline {chapter}{\numberline {C}The Bending Algebra}{157}{appendix.C}}
 
2006
\@writefile{lof}{\addvspace {10\p@ }}
 
2007
\@writefile{lot}{\addvspace {10\p@ }}
 
2008
\@writefile{lol}{\addvspace {10\p@ }}
 
2009
\@writefile{loa}{\addvspace {10\p@ }}
 
2010
\@writefile{toc}{\contentsline {section}{\numberline {C.1}The curvature operator}{157}{section.C.1}}
 
2011
\newlabel{sec:AppCurv}{{C.1}{157}{The curvature operator}{section.C.1}{}}
 
2012
\newlabel{sec:AppCurv@cref}{{[subappendix][1][2147483647,3]C.1}{157}}
 
2013
\newlabel{eq:AppDiffusionProcess}{{C.1}{157}{The curvature operator}{equation.C.1.1}{}}
 
2014
\newlabel{eq:AppDiffusionProcess@cref}{{[equation][1][2147483647,3]C.1}{157}}
 
2015
\newlabel{eq:AppEulerLagrangeGRF2}{{C.3}{157}{The curvature operator}{equation.C.1.3}{}}
 
2016
\newlabel{eq:AppEulerLagrangeGRF2@cref}{{[equation][3][2147483647,3]C.3}{157}}
 
2017
\newlabel{eq:DivPChange}{{C.6}{157}{The curvature operator}{equation.C.1.6}{}}
 
2018
\newlabel{eq:DivPChange@cref}{{[equation][6][2147483647,3]C.6}{157}}
2021
2019
\citation{BrediesMathemBildverarbeitung}
2022
 
\newlabel{eq:DivPIntegral}{{C.7}{159}{The curvature operator}{equation.C.1.7}{}}
2023
 
\newlabel{eq:DivPIntegral@cref}{{[equation][7][2147483647,3]C.7}{159}}
2024
 
\newlabel{eq:DivPChange2}{{C.9}{159}{The curvature operator}{equation.C.1.9}{}}
2025
 
\newlabel{eq:DivPChange2@cref}{{[equation][9][2147483647,3]C.9}{159}}
2026
 
\@writefile{brf}{\backcite{BrediesMathemBildverarbeitung}{{159}{C.1}{equation.C.1.9}}}
2027
 
\newlabel{eq:DivPIntegral2}{{C.10}{159}{The curvature operator}{equation.C.1.10}{}}
2028
 
\newlabel{eq:DivPIntegral2@cref}{{[equation][10][2147483647,3]C.10}{159}}
2029
 
\newlabel{eq:DivPIntegral3}{{C.12}{159}{The curvature operator}{equation.C.1.12}{}}
2030
 
\newlabel{eq:DivPIntegral3@cref}{{[equation][12][2147483647,3]C.12}{159}}
2031
 
\newlabel{eq:DivPChange3}{{C.14}{159}{The curvature operator}{equation.C.1.14}{}}
2032
 
\newlabel{eq:DivPChange3@cref}{{[equation][14][2147483647,3]C.14}{159}}
2033
 
\newlabel{eq:CurvOperator}{{C.15}{160}{The curvature operator}{equation.C.1.15}{}}
2034
 
\newlabel{eq:CurvOperator@cref}{{[equation][15][2147483647,3]C.15}{160}}
2035
 
\newlabel{eq:AppCurveCoeff}{{C.17}{160}{The curvature operator}{equation.C.1.17}{}}
2036
 
\newlabel{eq:AppCurveCoeff@cref}{{[equation][17][2147483647,3]C.17}{160}}
2037
 
\@writefile{toc}{\contentsline {section}{\numberline {C.2}TV Image Denoising, supplementary results}{161}{section.C.2}}
2038
 
\newlabel{sec:AppTVSupplementary}{{C.2}{161}{TV Image Denoising, supplementary results}{section.C.2}{}}
2039
 
\newlabel{sec:AppTVSupplementary@cref}{{[subappendix][2][2147483647,3]C.2}{161}}
2040
 
\newlabel{fig:Grove}{{C.1a}{161}{Subfigure C C.1a}{subfigure.C.1.1}{}}
 
2020
\newlabel{eq:DivPIntegral}{{C.7}{158}{The curvature operator}{equation.C.1.7}{}}
 
2021
\newlabel{eq:DivPIntegral@cref}{{[equation][7][2147483647,3]C.7}{158}}
 
2022
\newlabel{eq:DivPChange2}{{C.9}{158}{The curvature operator}{equation.C.1.9}{}}
 
2023
\newlabel{eq:DivPChange2@cref}{{[equation][9][2147483647,3]C.9}{158}}
 
2024
\@writefile{brf}{\backcite{BrediesMathemBildverarbeitung}{{158}{C.1}{equation.C.1.9}}}
 
2025
\newlabel{eq:DivPIntegral2}{{C.10}{158}{The curvature operator}{equation.C.1.10}{}}
 
2026
\newlabel{eq:DivPIntegral2@cref}{{[equation][10][2147483647,3]C.10}{158}}
 
2027
\newlabel{eq:DivPIntegral3}{{C.12}{158}{The curvature operator}{equation.C.1.12}{}}
 
2028
\newlabel{eq:DivPIntegral3@cref}{{[equation][12][2147483647,3]C.12}{158}}
 
2029
\newlabel{eq:DivPChange3}{{C.14}{158}{The curvature operator}{equation.C.1.14}{}}
 
2030
\newlabel{eq:DivPChange3@cref}{{[equation][14][2147483647,3]C.14}{158}}
 
2031
\newlabel{eq:CurvOperator}{{C.15}{159}{The curvature operator}{equation.C.1.15}{}}
 
2032
\newlabel{eq:CurvOperator@cref}{{[equation][15][2147483647,3]C.15}{159}}
 
2033
\newlabel{eq:AppCurveCoeff}{{C.17}{159}{The curvature operator}{equation.C.1.17}{}}
 
2034
\newlabel{eq:AppCurveCoeff@cref}{{[equation][17][2147483647,3]C.17}{159}}
 
2035
\@writefile{toc}{\contentsline {section}{\numberline {C.2}TV Image Denoising, supplementary results}{160}{section.C.2}}
 
2036
\newlabel{sec:AppTVSupplementary}{{C.2}{160}{TV Image Denoising, supplementary results}{section.C.2}{}}
 
2037
\newlabel{sec:AppTVSupplementary@cref}{{[subappendix][2][2147483647,3]C.2}{160}}
 
2038
\newlabel{fig:Grove}{{C.1a}{160}{Subfigure C C.1a}{subfigure.C.1.1}{}}
2041
2039
\newlabel{sub@fig:Grove}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
2042
 
\newlabel{fig:Grove@cref}{{[subfigure][1][2147483647,3,1]C.1a}{161}}
2043
 
\newlabel{fig:Grove-Noise}{{C.1b}{161}{Subfigure C C.1b}{subfigure.C.1.2}{}}
 
2040
\newlabel{fig:Grove@cref}{{[subfigure][1][2147483647,3,1]C.1a}{160}}
 
2041
\newlabel{fig:Grove-Noise}{{C.1b}{160}{Subfigure C C.1b}{subfigure.C.1.2}{}}
2044
2042
\newlabel{sub@fig:Grove-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
2045
 
\newlabel{fig:Grove-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{161}}
2046
 
\newlabel{fig:Grove-GNA}{{C.1c}{161}{Subfigure C C.1c}{subfigure.C.1.3}{}}
 
2043
\newlabel{fig:Grove-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{160}}
 
2044
\newlabel{fig:Grove-GNA}{{C.1c}{160}{Subfigure C C.1c}{subfigure.C.1.3}{}}
2047
2045
\newlabel{sub@fig:Grove-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
2048
 
\newlabel{fig:Grove-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{161}}
2049
 
\newlabel{fig:Grove-BNA}{{C.1d}{161}{Subfigure C C.1d}{subfigure.C.1.4}{}}
 
2046
\newlabel{fig:Grove-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{160}}
 
2047
\newlabel{fig:Grove-BNA}{{C.1d}{160}{Subfigure C C.1d}{subfigure.C.1.4}{}}
2050
2048
\newlabel{sub@fig:Grove-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
2051
 
\newlabel{fig:Grove-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{161}}
2052
 
\newlabel{fig:Grove-MeanEnergy}{{C.1e}{161}{Subfigure C C.1e}{subfigure.C.1.5}{}}
 
2049
\newlabel{fig:Grove-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{160}}
 
2050
\newlabel{fig:Grove-MeanEnergy}{{C.1e}{160}{Subfigure C C.1e}{subfigure.C.1.5}{}}
2053
2051
\newlabel{sub@fig:Grove-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
2054
 
\newlabel{fig:Grove-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{161}}
2055
 
\newlabel{fig:Grove-StdDevEnergy}{{C.1f}{161}{Subfigure C C.1f}{subfigure.C.1.6}{}}
 
2052
\newlabel{fig:Grove-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{160}}
 
2053
\newlabel{fig:Grove-StdDevEnergy}{{C.1f}{160}{Subfigure C C.1f}{subfigure.C.1.6}{}}
2056
2054
\newlabel{sub@fig:Grove-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
2057
 
\newlabel{fig:Grove-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{161}}
2058
 
\newlabel{fig:Grove-MeanCurvature}{{C.1g}{161}{Subfigure C C.1g}{subfigure.C.1.7}{}}
 
2055
\newlabel{fig:Grove-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{160}}
 
2056
\newlabel{fig:Grove-MeanCurvature}{{C.1g}{160}{Subfigure C C.1g}{subfigure.C.1.7}{}}
2059
2057
\newlabel{sub@fig:Grove-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
2060
 
\newlabel{fig:Grove-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{161}}
2061
 
\newlabel{fig:GroveCurvatureFit}{{C.1h}{161}{Subfigure C C.1h}{subfigure.C.1.8}{}}
 
2058
\newlabel{fig:Grove-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{160}}
 
2059
\newlabel{fig:GroveCurvatureFit}{{C.1h}{160}{Subfigure C C.1h}{subfigure.C.1.8}{}}
2062
2060
\newlabel{sub@fig:GroveCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
2063
 
\newlabel{fig:GroveCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{161}}
2064
 
\newlabel{fig:Evergreen}{{C.1i}{161}{Subfigure C C.1i}{subfigure.C.1.9}{}}
 
2061
\newlabel{fig:GroveCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{160}}
 
2062
\newlabel{fig:Evergreen}{{C.1i}{160}{Subfigure C C.1i}{subfigure.C.1.9}{}}
2065
2063
\newlabel{sub@fig:Evergreen}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
2066
 
\newlabel{fig:Evergreen@cref}{{[subfigure][9][2147483647,3,1]C.1i}{161}}
2067
 
\newlabel{fig:Evergreen-Noise}{{C.1j}{161}{Subfigure C C.1j}{subfigure.C.1.10}{}}
 
2064
\newlabel{fig:Evergreen@cref}{{[subfigure][9][2147483647,3,1]C.1i}{160}}
 
2065
\newlabel{fig:Evergreen-Noise}{{C.1j}{160}{Subfigure C C.1j}{subfigure.C.1.10}{}}
2068
2066
\newlabel{sub@fig:Evergreen-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
2069
 
\newlabel{fig:Evergreen-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{161}}
2070
 
\newlabel{fig:Evergreen-GNA}{{C.1k}{161}{Subfigure C C.1k}{subfigure.C.1.11}{}}
 
2067
\newlabel{fig:Evergreen-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{160}}
 
2068
\newlabel{fig:Evergreen-GNA}{{C.1k}{160}{Subfigure C C.1k}{subfigure.C.1.11}{}}
2071
2069
\newlabel{sub@fig:Evergreen-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
2072
 
\newlabel{fig:Evergreen-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{161}}
2073
 
\newlabel{fig:Evergreen-BNA}{{C.1l}{161}{Subfigure C C.1l}{subfigure.C.1.12}{}}
 
2070
\newlabel{fig:Evergreen-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{160}}
 
2071
\newlabel{fig:Evergreen-BNA}{{C.1l}{160}{Subfigure C C.1l}{subfigure.C.1.12}{}}
2074
2072
\newlabel{sub@fig:Evergreen-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
2075
 
\newlabel{fig:Evergreen-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{161}}
2076
 
\newlabel{fig:Evergreen-MeanEnergy}{{C.1m}{161}{Subfigure C C.1m}{subfigure.C.1.13}{}}
 
2073
\newlabel{fig:Evergreen-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{160}}
 
2074
\newlabel{fig:Evergreen-MeanEnergy}{{C.1m}{160}{Subfigure C C.1m}{subfigure.C.1.13}{}}
2077
2075
\newlabel{sub@fig:Evergreen-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
2078
 
\newlabel{fig:Evergreen-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{161}}
2079
 
\newlabel{fig:Evergreen-StdDevEnergy}{{C.1n}{161}{Subfigure C C.1n}{subfigure.C.1.14}{}}
 
2076
\newlabel{fig:Evergreen-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{160}}
 
2077
\newlabel{fig:Evergreen-StdDevEnergy}{{C.1n}{160}{Subfigure C C.1n}{subfigure.C.1.14}{}}
2080
2078
\newlabel{sub@fig:Evergreen-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
2081
 
\newlabel{fig:Evergreen-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{161}}
2082
 
\newlabel{fig:Evergreen-MeanCurvature}{{C.1o}{161}{Subfigure C C.1o}{subfigure.C.1.15}{}}
 
2079
\newlabel{fig:Evergreen-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{160}}
 
2080
\newlabel{fig:Evergreen-MeanCurvature}{{C.1o}{160}{Subfigure C C.1o}{subfigure.C.1.15}{}}
2083
2081
\newlabel{sub@fig:Evergreen-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
2084
 
\newlabel{fig:Evergreen-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{161}}
2085
 
\newlabel{fig:EvergreenCurvatureFit}{{C.1p}{161}{Subfigure C C.1p}{subfigure.C.1.16}{}}
 
2082
\newlabel{fig:Evergreen-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{160}}
 
2083
\newlabel{fig:EvergreenCurvatureFit}{{C.1p}{160}{Subfigure C C.1p}{subfigure.C.1.16}{}}
2086
2084
\newlabel{sub@fig:EvergreenCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
2087
 
\newlabel{fig:EvergreenCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{161}}
 
2085
\newlabel{fig:EvergreenCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{160}}
 
2086
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{160}{subfigure.1.1}}
 
2087
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{160}{subfigure.1.2}}
 
2088
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{160}{subfigure.1.3}}
 
2089
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{160}{subfigure.1.4}}
 
2090
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{160}{subfigure.1.5}}
 
2091
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{160}{subfigure.1.6}}
 
2092
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{160}{subfigure.1.7}}
 
2093
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{160}{subfigure.1.8}}
 
2094
\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {input image}}}{160}{subfigure.1.9}}
 
2095
\@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {$\phi _0$}}}{160}{subfigure.1.10}}
 
2096
\@writefile{lof}{\contentsline {subfigure}{\numberline{(k)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{160}{subfigure.1.11}}
 
2097
\@writefile{lof}{\contentsline {subfigure}{\numberline{(l)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{160}{subfigure.1.12}}
 
2098
\@writefile{lof}{\contentsline {subfigure}{\numberline{(m)}{\ignorespaces {}}}{160}{subfigure.1.13}}
 
2099
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{160}{subfigure.1.14}}
 
2100
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{160}{subfigure.1.15}}
 
2101
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{160}{subfigure.1.16}}
 
2102
\newlabel{fig:Dumptruck}{{C.1a}{161}{Subfigure C C.1a}{subfigure.C.1.1}{}}
 
2103
\newlabel{sub@fig:Dumptruck}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
 
2104
\newlabel{fig:Dumptruck@cref}{{[subfigure][1][2147483647,3,1]C.1a}{161}}
 
2105
\newlabel{fig:Dumptruck-Noise}{{C.1b}{161}{Subfigure C C.1b}{subfigure.C.1.2}{}}
 
2106
\newlabel{sub@fig:Dumptruck-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
 
2107
\newlabel{fig:Dumptruck-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{161}}
 
2108
\newlabel{fig:Dumptruck-GNA}{{C.1c}{161}{Subfigure C C.1c}{subfigure.C.1.3}{}}
 
2109
\newlabel{sub@fig:Dumptruck-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
 
2110
\newlabel{fig:Dumptruck-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{161}}
 
2111
\newlabel{fig:Dumptruck-BNA}{{C.1d}{161}{Subfigure C C.1d}{subfigure.C.1.4}{}}
 
2112
\newlabel{sub@fig:Dumptruck-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
 
2113
\newlabel{fig:Dumptruck-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{161}}
 
2114
\newlabel{fig:Dumptruck-MeanEnergy}{{C.1e}{161}{Subfigure C C.1e}{subfigure.C.1.5}{}}
 
2115
\newlabel{sub@fig:Dumptruck-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
 
2116
\newlabel{fig:Dumptruck-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{161}}
 
2117
\newlabel{fig:Dumptruck-StdDevEnergy}{{C.1f}{161}{Subfigure C C.1f}{subfigure.C.1.6}{}}
 
2118
\newlabel{sub@fig:Dumptruck-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
 
2119
\newlabel{fig:Dumptruck-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{161}}
 
2120
\newlabel{fig:Dumptruck-MeanCurvature}{{C.1g}{161}{Subfigure C C.1g}{subfigure.C.1.7}{}}
 
2121
\newlabel{sub@fig:Dumptruck-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
 
2122
\newlabel{fig:Dumptruck-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{161}}
 
2123
\newlabel{fig:DumptruckCurvatureFit}{{C.1h}{161}{Subfigure C C.1h}{subfigure.C.1.8}{}}
 
2124
\newlabel{sub@fig:DumptruckCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
 
2125
\newlabel{fig:DumptruckCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{161}}
 
2126
\newlabel{fig:Basketball}{{C.1i}{161}{Subfigure C C.1i}{subfigure.C.1.9}{}}
 
2127
\newlabel{sub@fig:Basketball}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
 
2128
\newlabel{fig:Basketball@cref}{{[subfigure][9][2147483647,3,1]C.1i}{161}}
 
2129
\newlabel{fig:Basketball-Noise}{{C.1j}{161}{Subfigure C C.1j}{subfigure.C.1.10}{}}
 
2130
\newlabel{sub@fig:Basketball-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
 
2131
\newlabel{fig:Basketball-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{161}}
 
2132
\newlabel{fig:Basketball-GNA}{{C.1k}{161}{Subfigure C C.1k}{subfigure.C.1.11}{}}
 
2133
\newlabel{sub@fig:Basketball-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
 
2134
\newlabel{fig:Basketball-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{161}}
 
2135
\newlabel{fig:Basketball-BNA}{{C.1l}{161}{Subfigure C C.1l}{subfigure.C.1.12}{}}
 
2136
\newlabel{sub@fig:Basketball-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
 
2137
\newlabel{fig:Basketball-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{161}}
 
2138
\newlabel{fig:Basketball-MeanEnergy}{{C.1m}{161}{Subfigure C C.1m}{subfigure.C.1.13}{}}
 
2139
\newlabel{sub@fig:Basketball-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
 
2140
\newlabel{fig:Basketball-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{161}}
 
2141
\newlabel{fig:Basketball-StdDevEnergy}{{C.1n}{161}{Subfigure C C.1n}{subfigure.C.1.14}{}}
 
2142
\newlabel{sub@fig:Basketball-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
 
2143
\newlabel{fig:Basketball-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{161}}
 
2144
\newlabel{fig:Basketball-MeanCurvature}{{C.1o}{161}{Subfigure C C.1o}{subfigure.C.1.15}{}}
 
2145
\newlabel{sub@fig:Basketball-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
 
2146
\newlabel{fig:Basketball-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{161}}
 
2147
\newlabel{fig:BasketballCurvatureFit}{{C.1p}{161}{Subfigure C C.1p}{subfigure.C.1.16}{}}
 
2148
\newlabel{sub@fig:BasketballCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
 
2149
\newlabel{fig:BasketballCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{161}}
2088
2150
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{161}{subfigure.1.1}}
2089
2151
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{161}{subfigure.1.2}}
2090
2152
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{161}{subfigure.1.3}}
2101
2163
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{161}{subfigure.1.14}}
2102
2164
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{161}{subfigure.1.15}}
2103
2165
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{161}{subfigure.1.16}}
2104
 
\newlabel{fig:Dumptruck}{{C.1a}{162}{Subfigure C C.1a}{subfigure.C.1.1}{}}
2105
 
\newlabel{sub@fig:Dumptruck}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
2106
 
\newlabel{fig:Dumptruck@cref}{{[subfigure][1][2147483647,3,1]C.1a}{162}}
2107
 
\newlabel{fig:Dumptruck-Noise}{{C.1b}{162}{Subfigure C C.1b}{subfigure.C.1.2}{}}
2108
 
\newlabel{sub@fig:Dumptruck-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
2109
 
\newlabel{fig:Dumptruck-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{162}}
2110
 
\newlabel{fig:Dumptruck-GNA}{{C.1c}{162}{Subfigure C C.1c}{subfigure.C.1.3}{}}
2111
 
\newlabel{sub@fig:Dumptruck-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
2112
 
\newlabel{fig:Dumptruck-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{162}}
2113
 
\newlabel{fig:Dumptruck-BNA}{{C.1d}{162}{Subfigure C C.1d}{subfigure.C.1.4}{}}
2114
 
\newlabel{sub@fig:Dumptruck-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
2115
 
\newlabel{fig:Dumptruck-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{162}}
2116
 
\newlabel{fig:Dumptruck-MeanEnergy}{{C.1e}{162}{Subfigure C C.1e}{subfigure.C.1.5}{}}
2117
 
\newlabel{sub@fig:Dumptruck-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
2118
 
\newlabel{fig:Dumptruck-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{162}}
2119
 
\newlabel{fig:Dumptruck-StdDevEnergy}{{C.1f}{162}{Subfigure C C.1f}{subfigure.C.1.6}{}}
2120
 
\newlabel{sub@fig:Dumptruck-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
2121
 
\newlabel{fig:Dumptruck-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{162}}
2122
 
\newlabel{fig:Dumptruck-MeanCurvature}{{C.1g}{162}{Subfigure C C.1g}{subfigure.C.1.7}{}}
2123
 
\newlabel{sub@fig:Dumptruck-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
2124
 
\newlabel{fig:Dumptruck-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{162}}
2125
 
\newlabel{fig:DumptruckCurvatureFit}{{C.1h}{162}{Subfigure C C.1h}{subfigure.C.1.8}{}}
2126
 
\newlabel{sub@fig:DumptruckCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
2127
 
\newlabel{fig:DumptruckCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{162}}
2128
 
\newlabel{fig:Basketball}{{C.1i}{162}{Subfigure C C.1i}{subfigure.C.1.9}{}}
2129
 
\newlabel{sub@fig:Basketball}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
2130
 
\newlabel{fig:Basketball@cref}{{[subfigure][9][2147483647,3,1]C.1i}{162}}
2131
 
\newlabel{fig:Basketball-Noise}{{C.1j}{162}{Subfigure C C.1j}{subfigure.C.1.10}{}}
2132
 
\newlabel{sub@fig:Basketball-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
2133
 
\newlabel{fig:Basketball-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{162}}
2134
 
\newlabel{fig:Basketball-GNA}{{C.1k}{162}{Subfigure C C.1k}{subfigure.C.1.11}{}}
2135
 
\newlabel{sub@fig:Basketball-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
2136
 
\newlabel{fig:Basketball-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{162}}
2137
 
\newlabel{fig:Basketball-BNA}{{C.1l}{162}{Subfigure C C.1l}{subfigure.C.1.12}{}}
2138
 
\newlabel{sub@fig:Basketball-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
2139
 
\newlabel{fig:Basketball-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{162}}
2140
 
\newlabel{fig:Basketball-MeanEnergy}{{C.1m}{162}{Subfigure C C.1m}{subfigure.C.1.13}{}}
2141
 
\newlabel{sub@fig:Basketball-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
2142
 
\newlabel{fig:Basketball-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{162}}
2143
 
\newlabel{fig:Basketball-StdDevEnergy}{{C.1n}{162}{Subfigure C C.1n}{subfigure.C.1.14}{}}
2144
 
\newlabel{sub@fig:Basketball-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
2145
 
\newlabel{fig:Basketball-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{162}}
2146
 
\newlabel{fig:Basketball-MeanCurvature}{{C.1o}{162}{Subfigure C C.1o}{subfigure.C.1.15}{}}
2147
 
\newlabel{sub@fig:Basketball-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
2148
 
\newlabel{fig:Basketball-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{162}}
2149
 
\newlabel{fig:BasketballCurvatureFit}{{C.1p}{162}{Subfigure C C.1p}{subfigure.C.1.16}{}}
2150
 
\newlabel{sub@fig:BasketballCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
2151
 
\newlabel{fig:BasketballCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{162}}
 
2166
\newlabel{fig:MiniCooper}{{C.1a}{162}{Subfigure C C.1a}{subfigure.C.1.1}{}}
 
2167
\newlabel{sub@fig:MiniCooper}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
 
2168
\newlabel{fig:MiniCooper@cref}{{[subfigure][1][2147483647,3,1]C.1a}{162}}
 
2169
\newlabel{fig:MiniCooper-Noise}{{C.1b}{162}{Subfigure C C.1b}{subfigure.C.1.2}{}}
 
2170
\newlabel{sub@fig:MiniCooper-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
 
2171
\newlabel{fig:MiniCooper-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{162}}
 
2172
\newlabel{fig:MiniCooper-GNA}{{C.1c}{162}{Subfigure C C.1c}{subfigure.C.1.3}{}}
 
2173
\newlabel{sub@fig:MiniCooper-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
 
2174
\newlabel{fig:MiniCooper-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{162}}
 
2175
\newlabel{fig:MiniCooper-BNA}{{C.1d}{162}{Subfigure C C.1d}{subfigure.C.1.4}{}}
 
2176
\newlabel{sub@fig:MiniCooper-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
 
2177
\newlabel{fig:MiniCooper-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{162}}
 
2178
\newlabel{fig:MiniCooper-MeanEnergy}{{C.1e}{162}{Subfigure C C.1e}{subfigure.C.1.5}{}}
 
2179
\newlabel{sub@fig:MiniCooper-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
 
2180
\newlabel{fig:MiniCooper-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{162}}
 
2181
\newlabel{fig:MiniCooper-StdDevEnergy}{{C.1f}{162}{Subfigure C C.1f}{subfigure.C.1.6}{}}
 
2182
\newlabel{sub@fig:MiniCooper-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
 
2183
\newlabel{fig:MiniCooper-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{162}}
 
2184
\newlabel{fig:MiniCooper-MeanCurvature}{{C.1g}{162}{Subfigure C C.1g}{subfigure.C.1.7}{}}
 
2185
\newlabel{sub@fig:MiniCooper-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
 
2186
\newlabel{fig:MiniCooper-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{162}}
 
2187
\newlabel{fig:MiniCooperCurvatureFit}{{C.1h}{162}{Subfigure C C.1h}{subfigure.C.1.8}{}}
 
2188
\newlabel{sub@fig:MiniCooperCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
 
2189
\newlabel{fig:MiniCooperCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{162}}
 
2190
\newlabel{fig:Beanbags}{{C.1i}{162}{Subfigure C C.1i}{subfigure.C.1.9}{}}
 
2191
\newlabel{sub@fig:Beanbags}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
 
2192
\newlabel{fig:Beanbags@cref}{{[subfigure][9][2147483647,3,1]C.1i}{162}}
 
2193
\newlabel{fig:Beanbags-Noise}{{C.1j}{162}{Subfigure C C.1j}{subfigure.C.1.10}{}}
 
2194
\newlabel{sub@fig:Beanbags-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
 
2195
\newlabel{fig:Beanbags-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{162}}
 
2196
\newlabel{fig:Beanbags-GNA}{{C.1k}{162}{Subfigure C C.1k}{subfigure.C.1.11}{}}
 
2197
\newlabel{sub@fig:Beanbags-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
 
2198
\newlabel{fig:Beanbags-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{162}}
 
2199
\newlabel{fig:Beanbags-BNA}{{C.1l}{162}{Subfigure C C.1l}{subfigure.C.1.12}{}}
 
2200
\newlabel{sub@fig:Beanbags-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
 
2201
\newlabel{fig:Beanbags-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{162}}
 
2202
\newlabel{fig:Beanbags-MeanEnergy}{{C.1m}{162}{Subfigure C C.1m}{subfigure.C.1.13}{}}
 
2203
\newlabel{sub@fig:Beanbags-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
 
2204
\newlabel{fig:Beanbags-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{162}}
 
2205
\newlabel{fig:Beanbags-StdDevEnergy}{{C.1n}{162}{Subfigure C C.1n}{subfigure.C.1.14}{}}
 
2206
\newlabel{sub@fig:Beanbags-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
 
2207
\newlabel{fig:Beanbags-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{162}}
 
2208
\newlabel{fig:Beanbags-MeanCurvature}{{C.1o}{162}{Subfigure C C.1o}{subfigure.C.1.15}{}}
 
2209
\newlabel{sub@fig:Beanbags-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
 
2210
\newlabel{fig:Beanbags-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{162}}
 
2211
\newlabel{fig:BeanbagsCurvatureFit}{{C.1p}{162}{Subfigure C C.1p}{subfigure.C.1.16}{}}
 
2212
\newlabel{sub@fig:BeanbagsCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
 
2213
\newlabel{fig:BeanbagsCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{162}}
2152
2214
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{162}{subfigure.1.1}}
2153
2215
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{162}{subfigure.1.2}}
2154
2216
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{162}{subfigure.1.3}}
2165
2227
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{162}{subfigure.1.14}}
2166
2228
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{162}{subfigure.1.15}}
2167
2229
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{162}{subfigure.1.16}}
2168
 
\newlabel{fig:MiniCooper}{{C.1a}{163}{Subfigure C C.1a}{subfigure.C.1.1}{}}
2169
 
\newlabel{sub@fig:MiniCooper}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
2170
 
\newlabel{fig:MiniCooper@cref}{{[subfigure][1][2147483647,3,1]C.1a}{163}}
2171
 
\newlabel{fig:MiniCooper-Noise}{{C.1b}{163}{Subfigure C C.1b}{subfigure.C.1.2}{}}
2172
 
\newlabel{sub@fig:MiniCooper-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
2173
 
\newlabel{fig:MiniCooper-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{163}}
2174
 
\newlabel{fig:MiniCooper-GNA}{{C.1c}{163}{Subfigure C C.1c}{subfigure.C.1.3}{}}
2175
 
\newlabel{sub@fig:MiniCooper-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
2176
 
\newlabel{fig:MiniCooper-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{163}}
2177
 
\newlabel{fig:MiniCooper-BNA}{{C.1d}{163}{Subfigure C C.1d}{subfigure.C.1.4}{}}
2178
 
\newlabel{sub@fig:MiniCooper-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
2179
 
\newlabel{fig:MiniCooper-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{163}}
2180
 
\newlabel{fig:MiniCooper-MeanEnergy}{{C.1e}{163}{Subfigure C C.1e}{subfigure.C.1.5}{}}
2181
 
\newlabel{sub@fig:MiniCooper-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
2182
 
\newlabel{fig:MiniCooper-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{163}}
2183
 
\newlabel{fig:MiniCooper-StdDevEnergy}{{C.1f}{163}{Subfigure C C.1f}{subfigure.C.1.6}{}}
2184
 
\newlabel{sub@fig:MiniCooper-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
2185
 
\newlabel{fig:MiniCooper-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{163}}
2186
 
\newlabel{fig:MiniCooper-MeanCurvature}{{C.1g}{163}{Subfigure C C.1g}{subfigure.C.1.7}{}}
2187
 
\newlabel{sub@fig:MiniCooper-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
2188
 
\newlabel{fig:MiniCooper-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{163}}
2189
 
\newlabel{fig:MiniCooperCurvatureFit}{{C.1h}{163}{Subfigure C C.1h}{subfigure.C.1.8}{}}
2190
 
\newlabel{sub@fig:MiniCooperCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
2191
 
\newlabel{fig:MiniCooperCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{163}}
2192
 
\newlabel{fig:Beanbags}{{C.1i}{163}{Subfigure C C.1i}{subfigure.C.1.9}{}}
2193
 
\newlabel{sub@fig:Beanbags}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
2194
 
\newlabel{fig:Beanbags@cref}{{[subfigure][9][2147483647,3,1]C.1i}{163}}
2195
 
\newlabel{fig:Beanbags-Noise}{{C.1j}{163}{Subfigure C C.1j}{subfigure.C.1.10}{}}
2196
 
\newlabel{sub@fig:Beanbags-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
2197
 
\newlabel{fig:Beanbags-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{163}}
2198
 
\newlabel{fig:Beanbags-GNA}{{C.1k}{163}{Subfigure C C.1k}{subfigure.C.1.11}{}}
2199
 
\newlabel{sub@fig:Beanbags-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
2200
 
\newlabel{fig:Beanbags-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{163}}
2201
 
\newlabel{fig:Beanbags-BNA}{{C.1l}{163}{Subfigure C C.1l}{subfigure.C.1.12}{}}
2202
 
\newlabel{sub@fig:Beanbags-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
2203
 
\newlabel{fig:Beanbags-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{163}}
2204
 
\newlabel{fig:Beanbags-MeanEnergy}{{C.1m}{163}{Subfigure C C.1m}{subfigure.C.1.13}{}}
2205
 
\newlabel{sub@fig:Beanbags-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
2206
 
\newlabel{fig:Beanbags-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{163}}
2207
 
\newlabel{fig:Beanbags-StdDevEnergy}{{C.1n}{163}{Subfigure C C.1n}{subfigure.C.1.14}{}}
2208
 
\newlabel{sub@fig:Beanbags-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
2209
 
\newlabel{fig:Beanbags-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{163}}
2210
 
\newlabel{fig:Beanbags-MeanCurvature}{{C.1o}{163}{Subfigure C C.1o}{subfigure.C.1.15}{}}
2211
 
\newlabel{sub@fig:Beanbags-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
2212
 
\newlabel{fig:Beanbags-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{163}}
2213
 
\newlabel{fig:BeanbagsCurvatureFit}{{C.1p}{163}{Subfigure C C.1p}{subfigure.C.1.16}{}}
2214
 
\newlabel{sub@fig:BeanbagsCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
2215
 
\newlabel{fig:BeanbagsCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{163}}
 
2230
\newlabel{fig:Urban}{{C.1a}{163}{Subfigure C C.1a}{subfigure.C.1.1}{}}
 
2231
\newlabel{sub@fig:Urban}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
 
2232
\newlabel{fig:Urban@cref}{{[subfigure][1][2147483647,3,1]C.1a}{163}}
 
2233
\newlabel{fig:Urban-Noise}{{C.1b}{163}{Subfigure C C.1b}{subfigure.C.1.2}{}}
 
2234
\newlabel{sub@fig:Urban-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
 
2235
\newlabel{fig:Urban-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{163}}
 
2236
\newlabel{fig:Urban-GNA}{{C.1c}{163}{Subfigure C C.1c}{subfigure.C.1.3}{}}
 
2237
\newlabel{sub@fig:Urban-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
 
2238
\newlabel{fig:Urban-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{163}}
 
2239
\newlabel{fig:Urban-BNA}{{C.1d}{163}{Subfigure C C.1d}{subfigure.C.1.4}{}}
 
2240
\newlabel{sub@fig:Urban-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
 
2241
\newlabel{fig:Urban-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{163}}
 
2242
\newlabel{fig:Urban-MeanEnergy}{{C.1e}{163}{Subfigure C C.1e}{subfigure.C.1.5}{}}
 
2243
\newlabel{sub@fig:Urban-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
 
2244
\newlabel{fig:Urban-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{163}}
 
2245
\newlabel{fig:Urban-StdDevEnergy}{{C.1f}{163}{Subfigure C C.1f}{subfigure.C.1.6}{}}
 
2246
\newlabel{sub@fig:Urban-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
 
2247
\newlabel{fig:Urban-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{163}}
 
2248
\newlabel{fig:Urban-MeanCurvature}{{C.1g}{163}{Subfigure C C.1g}{subfigure.C.1.7}{}}
 
2249
\newlabel{sub@fig:Urban-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
 
2250
\newlabel{fig:Urban-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{163}}
 
2251
\newlabel{fig:UrbanCurvatureFit}{{C.1h}{163}{Subfigure C C.1h}{subfigure.C.1.8}{}}
 
2252
\newlabel{sub@fig:UrbanCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
 
2253
\newlabel{fig:UrbanCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{163}}
 
2254
\newlabel{fig:Schefflera}{{C.1i}{163}{Subfigure C C.1i}{subfigure.C.1.9}{}}
 
2255
\newlabel{sub@fig:Schefflera}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
 
2256
\newlabel{fig:Schefflera@cref}{{[subfigure][9][2147483647,3,1]C.1i}{163}}
 
2257
\newlabel{fig:Schefflera-Noise}{{C.1j}{163}{Subfigure C C.1j}{subfigure.C.1.10}{}}
 
2258
\newlabel{sub@fig:Schefflera-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
 
2259
\newlabel{fig:Schefflera-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{163}}
 
2260
\newlabel{fig:Schefflera-GNA}{{C.1k}{163}{Subfigure C C.1k}{subfigure.C.1.11}{}}
 
2261
\newlabel{sub@fig:Schefflera-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
 
2262
\newlabel{fig:Schefflera-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{163}}
 
2263
\newlabel{fig:Schefflera-BNA}{{C.1l}{163}{Subfigure C C.1l}{subfigure.C.1.12}{}}
 
2264
\newlabel{sub@fig:Schefflera-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
 
2265
\newlabel{fig:Schefflera-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{163}}
 
2266
\newlabel{fig:Schefflera-MeanEnergy}{{C.1m}{163}{Subfigure C C.1m}{subfigure.C.1.13}{}}
 
2267
\newlabel{sub@fig:Schefflera-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
 
2268
\newlabel{fig:Schefflera-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{163}}
 
2269
\newlabel{fig:Schefflera-StdDevEnergy}{{C.1n}{163}{Subfigure C C.1n}{subfigure.C.1.14}{}}
 
2270
\newlabel{sub@fig:Schefflera-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
 
2271
\newlabel{fig:Schefflera-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{163}}
 
2272
\newlabel{fig:Schefflera-MeanCurvature}{{C.1o}{163}{Subfigure C C.1o}{subfigure.C.1.15}{}}
 
2273
\newlabel{sub@fig:Schefflera-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
 
2274
\newlabel{fig:Schefflera-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{163}}
 
2275
\newlabel{fig:ScheffleraCurvatureFit}{{C.1p}{163}{Subfigure C C.1p}{subfigure.C.1.16}{}}
 
2276
\newlabel{sub@fig:ScheffleraCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
 
2277
\newlabel{fig:ScheffleraCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{163}}
2216
2278
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{163}{subfigure.1.1}}
2217
2279
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{163}{subfigure.1.2}}
2218
2280
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{163}{subfigure.1.3}}
2229
2291
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{163}{subfigure.1.14}}
2230
2292
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{163}{subfigure.1.15}}
2231
2293
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{163}{subfigure.1.16}}
2232
 
\newlabel{fig:Urban}{{C.1a}{164}{Subfigure C C.1a}{subfigure.C.1.1}{}}
2233
 
\newlabel{sub@fig:Urban}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
2234
 
\newlabel{fig:Urban@cref}{{[subfigure][1][2147483647,3,1]C.1a}{164}}
2235
 
\newlabel{fig:Urban-Noise}{{C.1b}{164}{Subfigure C C.1b}{subfigure.C.1.2}{}}
2236
 
\newlabel{sub@fig:Urban-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
2237
 
\newlabel{fig:Urban-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{164}}
2238
 
\newlabel{fig:Urban-GNA}{{C.1c}{164}{Subfigure C C.1c}{subfigure.C.1.3}{}}
2239
 
\newlabel{sub@fig:Urban-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
2240
 
\newlabel{fig:Urban-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{164}}
2241
 
\newlabel{fig:Urban-BNA}{{C.1d}{164}{Subfigure C C.1d}{subfigure.C.1.4}{}}
2242
 
\newlabel{sub@fig:Urban-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
2243
 
\newlabel{fig:Urban-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{164}}
2244
 
\newlabel{fig:Urban-MeanEnergy}{{C.1e}{164}{Subfigure C C.1e}{subfigure.C.1.5}{}}
2245
 
\newlabel{sub@fig:Urban-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
2246
 
\newlabel{fig:Urban-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{164}}
2247
 
\newlabel{fig:Urban-StdDevEnergy}{{C.1f}{164}{Subfigure C C.1f}{subfigure.C.1.6}{}}
2248
 
\newlabel{sub@fig:Urban-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
2249
 
\newlabel{fig:Urban-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{164}}
2250
 
\newlabel{fig:Urban-MeanCurvature}{{C.1g}{164}{Subfigure C C.1g}{subfigure.C.1.7}{}}
2251
 
\newlabel{sub@fig:Urban-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
2252
 
\newlabel{fig:Urban-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{164}}
2253
 
\newlabel{fig:UrbanCurvatureFit}{{C.1h}{164}{Subfigure C C.1h}{subfigure.C.1.8}{}}
2254
 
\newlabel{sub@fig:UrbanCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
2255
 
\newlabel{fig:UrbanCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{164}}
2256
 
\newlabel{fig:Schefflera}{{C.1i}{164}{Subfigure C C.1i}{subfigure.C.1.9}{}}
2257
 
\newlabel{sub@fig:Schefflera}{{(i)}{i}{Subfigure C C.1i\relax }{subfigure.C.1.9}{}}
2258
 
\newlabel{fig:Schefflera@cref}{{[subfigure][9][2147483647,3,1]C.1i}{164}}
2259
 
\newlabel{fig:Schefflera-Noise}{{C.1j}{164}{Subfigure C C.1j}{subfigure.C.1.10}{}}
2260
 
\newlabel{sub@fig:Schefflera-Noise}{{(j)}{j}{Subfigure C C.1j\relax }{subfigure.C.1.10}{}}
2261
 
\newlabel{fig:Schefflera-Noise@cref}{{[subfigure][10][2147483647,3,1]C.1j}{164}}
2262
 
\newlabel{fig:Schefflera-GNA}{{C.1k}{164}{Subfigure C C.1k}{subfigure.C.1.11}{}}
2263
 
\newlabel{sub@fig:Schefflera-GNA}{{(k)}{k}{Subfigure C C.1k\relax }{subfigure.C.1.11}{}}
2264
 
\newlabel{fig:Schefflera-GNA@cref}{{[subfigure][11][2147483647,3,1]C.1k}{164}}
2265
 
\newlabel{fig:Schefflera-BNA}{{C.1l}{164}{Subfigure C C.1l}{subfigure.C.1.12}{}}
2266
 
\newlabel{sub@fig:Schefflera-BNA}{{(l)}{l}{Subfigure C C.1l\relax }{subfigure.C.1.12}{}}
2267
 
\newlabel{fig:Schefflera-BNA@cref}{{[subfigure][12][2147483647,3,1]C.1l}{164}}
2268
 
\newlabel{fig:Schefflera-MeanEnergy}{{C.1m}{164}{Subfigure C C.1m}{subfigure.C.1.13}{}}
2269
 
\newlabel{sub@fig:Schefflera-MeanEnergy}{{(m)}{m}{Subfigure C C.1m\relax }{subfigure.C.1.13}{}}
2270
 
\newlabel{fig:Schefflera-MeanEnergy@cref}{{[subfigure][13][2147483647,3,1]C.1m}{164}}
2271
 
\newlabel{fig:Schefflera-StdDevEnergy}{{C.1n}{164}{Subfigure C C.1n}{subfigure.C.1.14}{}}
2272
 
\newlabel{sub@fig:Schefflera-StdDevEnergy}{{(n)}{n}{Subfigure C C.1n\relax }{subfigure.C.1.14}{}}
2273
 
\newlabel{fig:Schefflera-StdDevEnergy@cref}{{[subfigure][14][2147483647,3,1]C.1n}{164}}
2274
 
\newlabel{fig:Schefflera-MeanCurvature}{{C.1o}{164}{Subfigure C C.1o}{subfigure.C.1.15}{}}
2275
 
\newlabel{sub@fig:Schefflera-MeanCurvature}{{(o)}{o}{Subfigure C C.1o\relax }{subfigure.C.1.15}{}}
2276
 
\newlabel{fig:Schefflera-MeanCurvature@cref}{{[subfigure][15][2147483647,3,1]C.1o}{164}}
2277
 
\newlabel{fig:ScheffleraCurvatureFit}{{C.1p}{164}{Subfigure C C.1p}{subfigure.C.1.16}{}}
2278
 
\newlabel{sub@fig:ScheffleraCurvatureFit}{{(p)}{p}{Subfigure C C.1p\relax }{subfigure.C.1.16}{}}
2279
 
\newlabel{fig:ScheffleraCurvatureFit@cref}{{[subfigure][16][2147483647,3,1]C.1p}{164}}
 
2294
\newlabel{fig:Mequon}{{C.1a}{164}{Subfigure C C.1a}{subfigure.C.1.1}{}}
 
2295
\newlabel{sub@fig:Mequon}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
 
2296
\newlabel{fig:Mequon@cref}{{[subfigure][1][2147483647,3,1]C.1a}{164}}
 
2297
\newlabel{fig:Mequon-Noise}{{C.1b}{164}{Subfigure C C.1b}{subfigure.C.1.2}{}}
 
2298
\newlabel{sub@fig:Mequon-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
 
2299
\newlabel{fig:Mequon-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{164}}
 
2300
\newlabel{fig:Mequon-GNA}{{C.1c}{164}{Subfigure C C.1c}{subfigure.C.1.3}{}}
 
2301
\newlabel{sub@fig:Mequon-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
 
2302
\newlabel{fig:Mequon-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{164}}
 
2303
\newlabel{fig:Mequon-BNA}{{C.1d}{164}{Subfigure C C.1d}{subfigure.C.1.4}{}}
 
2304
\newlabel{sub@fig:Mequon-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
 
2305
\newlabel{fig:Mequon-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{164}}
 
2306
\newlabel{fig:Mequon-MeanEnergy}{{C.1e}{164}{Subfigure C C.1e}{subfigure.C.1.5}{}}
 
2307
\newlabel{sub@fig:Mequon-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
 
2308
\newlabel{fig:Mequon-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{164}}
 
2309
\newlabel{fig:Mequon-StdDevEnergy}{{C.1f}{164}{Subfigure C C.1f}{subfigure.C.1.6}{}}
 
2310
\newlabel{sub@fig:Mequon-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
 
2311
\newlabel{fig:Mequon-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{164}}
 
2312
\newlabel{fig:Mequon-MeanCurvature}{{C.1g}{164}{Subfigure C C.1g}{subfigure.C.1.7}{}}
 
2313
\newlabel{sub@fig:Mequon-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
 
2314
\newlabel{fig:Mequon-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{164}}
 
2315
\newlabel{fig:MequonCurvatureFit}{{C.1h}{164}{Subfigure C C.1h}{subfigure.C.1.8}{}}
 
2316
\newlabel{sub@fig:MequonCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
 
2317
\newlabel{fig:MequonCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{164}}
2280
2318
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{164}{subfigure.1.1}}
2281
2319
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{164}{subfigure.1.2}}
2282
2320
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{164}{subfigure.1.3}}
2285
2323
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{164}{subfigure.1.6}}
2286
2324
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{164}{subfigure.1.7}}
2287
2325
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{164}{subfigure.1.8}}
2288
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {input image}}}{164}{subfigure.1.9}}
2289
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(j)}{\ignorespaces {$\phi _0$}}}{164}{subfigure.1.10}}
2290
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(k)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{164}{subfigure.1.11}}
2291
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(l)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{164}{subfigure.1.12}}
2292
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(m)}{\ignorespaces {}}}{164}{subfigure.1.13}}
2293
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(n)}{\ignorespaces {}}}{164}{subfigure.1.14}}
2294
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(o)}{\ignorespaces {}}}{164}{subfigure.1.15}}
2295
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(p)}{\ignorespaces {}}}{164}{subfigure.1.16}}
2296
 
\newlabel{fig:Mequon}{{C.1a}{165}{Subfigure C C.1a}{subfigure.C.1.1}{}}
2297
 
\newlabel{sub@fig:Mequon}{{(a)}{a}{Subfigure C C.1a\relax }{subfigure.C.1.1}{}}
2298
 
\newlabel{fig:Mequon@cref}{{[subfigure][1][2147483647,3,1]C.1a}{165}}
2299
 
\newlabel{fig:Mequon-Noise}{{C.1b}{165}{Subfigure C C.1b}{subfigure.C.1.2}{}}
2300
 
\newlabel{sub@fig:Mequon-Noise}{{(b)}{b}{Subfigure C C.1b\relax }{subfigure.C.1.2}{}}
2301
 
\newlabel{fig:Mequon-Noise@cref}{{[subfigure][2][2147483647,3,1]C.1b}{165}}
2302
 
\newlabel{fig:Mequon-GNA}{{C.1c}{165}{Subfigure C C.1c}{subfigure.C.1.3}{}}
2303
 
\newlabel{sub@fig:Mequon-GNA}{{(c)}{c}{Subfigure C C.1c\relax }{subfigure.C.1.3}{}}
2304
 
\newlabel{fig:Mequon-GNA@cref}{{[subfigure][3][2147483647,3,1]C.1c}{165}}
2305
 
\newlabel{fig:Mequon-BNA}{{C.1d}{165}{Subfigure C C.1d}{subfigure.C.1.4}{}}
2306
 
\newlabel{sub@fig:Mequon-BNA}{{(d)}{d}{Subfigure C C.1d\relax }{subfigure.C.1.4}{}}
2307
 
\newlabel{fig:Mequon-BNA@cref}{{[subfigure][4][2147483647,3,1]C.1d}{165}}
2308
 
\newlabel{fig:Mequon-MeanEnergy}{{C.1e}{165}{Subfigure C C.1e}{subfigure.C.1.5}{}}
2309
 
\newlabel{sub@fig:Mequon-MeanEnergy}{{(e)}{e}{Subfigure C C.1e\relax }{subfigure.C.1.5}{}}
2310
 
\newlabel{fig:Mequon-MeanEnergy@cref}{{[subfigure][5][2147483647,3,1]C.1e}{165}}
2311
 
\newlabel{fig:Mequon-StdDevEnergy}{{C.1f}{165}{Subfigure C C.1f}{subfigure.C.1.6}{}}
2312
 
\newlabel{sub@fig:Mequon-StdDevEnergy}{{(f)}{f}{Subfigure C C.1f\relax }{subfigure.C.1.6}{}}
2313
 
\newlabel{fig:Mequon-StdDevEnergy@cref}{{[subfigure][6][2147483647,3,1]C.1f}{165}}
2314
 
\newlabel{fig:Mequon-MeanCurvature}{{C.1g}{165}{Subfigure C C.1g}{subfigure.C.1.7}{}}
2315
 
\newlabel{sub@fig:Mequon-MeanCurvature}{{(g)}{g}{Subfigure C C.1g\relax }{subfigure.C.1.7}{}}
2316
 
\newlabel{fig:Mequon-MeanCurvature@cref}{{[subfigure][7][2147483647,3,1]C.1g}{165}}
2317
 
\newlabel{fig:MequonCurvatureFit}{{C.1h}{165}{Subfigure C C.1h}{subfigure.C.1.8}{}}
2318
 
\newlabel{sub@fig:MequonCurvatureFit}{{(h)}{h}{Subfigure C C.1h\relax }{subfigure.C.1.8}{}}
2319
 
\newlabel{fig:MequonCurvatureFit@cref}{{[subfigure][8][2147483647,3,1]C.1h}{165}}
2320
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {input image}}}{165}{subfigure.1.1}}
2321
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\phi _0$}}}{165}{subfigure.1.2}}
2322
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\phi ^\star _{ELAA}$}}}{165}{subfigure.1.3}}
2323
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\phi ^\star _{BNA}$}}}{165}{subfigure.1.4}}
2324
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{165}{subfigure.1.5}}
2325
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{165}{subfigure.1.6}}
2326
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{165}{subfigure.1.7}}
2327
 
\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{165}{subfigure.1.8}}
2328
 
\@writefile{toc}{\contentsline {chapter}{\numberline {D}Multimodal Optical Flow}{166}{appendix.D}}
 
2326
\@writefile{toc}{\contentsline {chapter}{\numberline {D}Multimodal Optical Flow}{165}{appendix.D}}
2329
2327
\@writefile{lof}{\addvspace {10\p@ }}
2330
2328
\@writefile{lot}{\addvspace {10\p@ }}
2331
2329
\@writefile{lol}{\addvspace {10\p@ }}
2332
2330
\@writefile{loa}{\addvspace {10\p@ }}
2333
 
\newlabel{sec:AppOptflow}{{D}{166}{Multimodal Optical Flow}{appendix.D}{}}
2334
 
\newlabel{sec:AppOptflow@cref}{{[appendix][4][2147483647]D}{166}}
2335
 
\newlabel{eq:AppNoiseModel}{{D.3}{166}{Multimodal Optical Flow}{equation.D.0.3}{}}
2336
 
\newlabel{eq:AppNoiseModel@cref}{{[equation][3][2147483647,4]D.3}{166}}
2337
 
\newlabel{eq:AppLogLikelihood}{{D.4}{166}{Multimodal Optical Flow}{equation.D.0.4}{}}
2338
 
\newlabel{eq:AppLogLikelihood@cref}{{[equation][4][2147483647,4]D.4}{166}}
2339
 
\newlabel{eq:AppJointGaussian}{{D.5}{167}{Multimodal Optical Flow}{equation.D.0.5}{}}
2340
 
\newlabel{eq:AppJointGaussian@cref}{{[equation][5][2147483647,4]D.5}{167}}
2341
 
\newlabel{eq:AppConditional}{{D.8}{167}{Multimodal Optical Flow}{equation.D.0.8}{}}
2342
 
\newlabel{eq:AppConditional@cref}{{[equation][8][2147483647,4]D.8}{167}}
2343
 
\newlabel{eq:AppPostEnergy}{{D.10}{167}{Multimodal Optical Flow}{equation.D.0.10}{}}
2344
 
\newlabel{eq:AppPostEnergy@cref}{{[equation][10][2147483647,4]D.10}{167}}
2345
 
\newlabel{eq:AppOptimalHighRes}{{D.11}{167}{Multimodal Optical Flow}{equation.D.0.11}{}}
2346
 
\newlabel{eq:AppOptimalHighRes@cref}{{[equation][11][2147483647,4]D.11}{167}}
 
2331
\newlabel{sec:AppOptflow}{{D}{165}{Multimodal Optical Flow}{appendix.D}{}}
 
2332
\newlabel{sec:AppOptflow@cref}{{[appendix][4][2147483647]D}{165}}
 
2333
\newlabel{eq:AppNoiseModel}{{D.3}{165}{Multimodal Optical Flow}{equation.D.0.3}{}}
 
2334
\newlabel{eq:AppNoiseModel@cref}{{[equation][3][2147483647,4]D.3}{165}}
 
2335
\newlabel{eq:AppLogLikelihood}{{D.4}{165}{Multimodal Optical Flow}{equation.D.0.4}{}}
 
2336
\newlabel{eq:AppLogLikelihood@cref}{{[equation][4][2147483647,4]D.4}{165}}
 
2337
\newlabel{eq:AppJointGaussian}{{D.5}{166}{Multimodal Optical Flow}{equation.D.0.5}{}}
 
2338
\newlabel{eq:AppJointGaussian@cref}{{[equation][5][2147483647,4]D.5}{166}}
 
2339
\newlabel{eq:AppConditional}{{D.8}{166}{Multimodal Optical Flow}{equation.D.0.8}{}}
 
2340
\newlabel{eq:AppConditional@cref}{{[equation][8][2147483647,4]D.8}{166}}
 
2341
\newlabel{eq:AppPostEnergy}{{D.10}{166}{Multimodal Optical Flow}{equation.D.0.10}{}}
 
2342
\newlabel{eq:AppPostEnergy@cref}{{[equation][10][2147483647,4]D.10}{166}}
 
2343
\newlabel{eq:AppOptimalHighRes}{{D.11}{166}{Multimodal Optical Flow}{equation.D.0.11}{}}
 
2344
\newlabel{eq:AppOptimalHighRes@cref}{{[equation][11][2147483647,4]D.11}{166}}
2347
2345
\citation{ZhangSpatialResEnhWavelet}
2348
2346
\bibdata{OpticalFlowPapers}
2349
 
\newlabel{eq:AppSimMeasure}{{D.14}{168}{Multimodal Optical Flow}{equation.D.0.14}{}}
2350
 
\newlabel{eq:AppSimMeasure@cref}{{[equation][14][2147483647,4]D.14}{168}}
2351
 
\@writefile{brf}{\backcite{ZhangSpatialResEnhWavelet}{{168}{D}{equation.D.0.14}}}
2352
 
\newlabel{eq:AppSimMeasure2}{{D.17}{168}{Multimodal Optical Flow}{equation.D.0.17}{}}
2353
 
\newlabel{eq:AppSimMeasure2@cref}{{[equation][17][2147483647,4]D.17}{168}}
2354
 
\newlabel{eq:AppflowDataTerm2}{{D.18}{168}{Multimodal Optical Flow}{equation.D.0.18}{}}
2355
 
\newlabel{eq:AppflowDataTerm2@cref}{{[equation][18][2147483647,4]D.18}{168}}
2356
 
\newlabel{eq:AppflowDataTermLocal}{{D.20}{168}{Multimodal Optical Flow}{equation.D.0.20}{}}
2357
 
\newlabel{eq:AppflowDataTermLocal@cref}{{[equation][20][2147483647,4]D.20}{168}}
 
2347
\newlabel{eq:AppSimMeasure}{{D.14}{167}{Multimodal Optical Flow}{equation.D.0.14}{}}
 
2348
\newlabel{eq:AppSimMeasure@cref}{{[equation][14][2147483647,4]D.14}{167}}
 
2349
\@writefile{brf}{\backcite{ZhangSpatialResEnhWavelet}{{167}{D}{equation.D.0.14}}}
 
2350
\newlabel{eq:AppSimMeasure2}{{D.17}{167}{Multimodal Optical Flow}{equation.D.0.17}{}}
 
2351
\newlabel{eq:AppSimMeasure2@cref}{{[equation][17][2147483647,4]D.17}{167}}
 
2352
\newlabel{eq:AppflowDataTerm2}{{D.18}{167}{Multimodal Optical Flow}{equation.D.0.18}{}}
 
2353
\newlabel{eq:AppflowDataTerm2@cref}{{[equation][18][2147483647,4]D.18}{167}}
 
2354
\newlabel{eq:AppflowDataTermLocal}{{D.20}{167}{Multimodal Optical Flow}{equation.D.0.20}{}}
 
2355
\newlabel{eq:AppflowDataTermLocal@cref}{{[equation][20][2147483647,4]D.20}{167}}
2358
2356
\bibcite{AmbrosioApproxFunctionalTConverg}{{1}{1990}{{Ambrosio and Tortorelli}}{{}}}
2359
2357
\bibcite{arrow1958studies}{{2}{1958}{{Arrow et~al.}}{{Arrow, Hurwicz, Uzawa, and Chenery}}}
2360
2358
\bibcite{Middleburry}{{3}{2011}{{Baker et~al.}}{{Baker, Scharstein, Lewis, Roth, Black, and Szeliski}}}
2366
2364
\bibcite{BishopNeuralNetworkPatRec}{{9}{1995}{{Bishop}}{{}}}
2367
2365
\bibcite{BlackAnandanRobustOpticalFlow}{{10}{1996}{{Black and Anandan}}{{}}}
2368
2366
\bibcite{bredies2008forward}{{11}{2008}{{Bredies}}{{}}}
2369
 
\@writefile{toc}{\contentsline {chapter}{\nonumberline Bibliography}{169}{appendix*.61}}
 
2367
\@writefile{toc}{\contentsline {chapter}{\nonumberline Bibliography}{168}{appendix*.61}}
2370
2368
\@writefile{lof}{\addvspace {10\p@ }}
2371
2369
\@writefile{lot}{\addvspace {10\p@ }}
2372
2370
\@writefile{lol}{\addvspace {10\p@ }}