~hnarayanan/phd-dissertation/trunk

« back to all changes in this revision

Viewing changes to chapters/numerical-simulations-2.tex

  • Committer: Harish Narayanan
  • Date: 2007-10-26 06:26:24 UTC
  • Revision ID: hnarayan@umich.edu-20071026062624-fxk074gq1dvvezog
Polished the document some more, and better indented the source

Show diffs side-by-side

added added

removed removed

Lines of Context:
54
54
imposed by treating the tissue as a whole and solving a summation of
55
55
Equation~(\ref{localbalanceofmomentum}) over all species. This
56
56
simplification necessitated additional assumptions on the underlying
57
 
micro-mechanics, and these were discussed in
58
 
Section~\ref{constriction-1}. In contrast, the implementation used in
59
 
this chapter solves the {\em detailed} momentum balance equations;
60
 
enforcing the balance of momentum for each species separately. The
61
 
coupling between the mechanics equations of the individual species is
62
 
introduced by specifying momentum transfer terms, $\bq^{\iota}$,
63
 
arising from frictional interaction as discussed in
 
57
micro-mechanics, and these were discussed in Section~\ref{constrict%
 
58
  ion-1}. In contrast, the implementation used in this chapter solves
 
59
the {\em detailed} momentum balance equations; enforcing the balance
 
60
of momentum for each species separately. The coupling between the
 
61
mechanics equations of the individual species is introduced by
 
62
specifying momentum transfer terms, $\bq^{\iota}$, arising from
 
63
frictional interaction as discussed in
64
64
Section~\ref{eu-interaction-forces}.
65
65
 
66
 
The balance of mass~(\ref{localbalanceofmass}) and
67
 
momentum~(\ref{localbalanceofmomentum}) equations for the solid
68
 
collagen are solved in the reference configuration of the tissue,
69
 
$\Omega_{0}$, and the balance of mass~(\ref{eu-localbalanceofmass})
70
 
and momentum~(\ref{eu-localbalanceofmomentum}) equations for the fluid
 
66
The balance of mass~(\ref{localbalanceofmass}) and momentum~(\ref%
 
67
{localbalanceofmomentum}) equations for the solid collagen are solved
 
68
in the reference configuration of the tissue, $\Omega_{0}$, and the
 
69
balance of mass~(\ref{eu-localbalanceofmass}) and
 
70
momentum~(\ref{eu-localbalanceofmomentum}) equations for the fluid
71
71
phase are solved in the current configuration, $\Omega_{t}$. Recall
72
72
that this choice is justified because we know the reference
73
73
configuration of the solid phase of the tissue. These equations, along
74
74
with the saturation constraint discussed below, are solved
75
 
simultaneously for the for the solid
76
 
concentration,~$\rho_{0}^{\mathrm{c}}$, and
77
 
displacement,~$\bu^{\mathrm{c}}$; and the fluid
 
75
simultaneously for the for the solid concentration,~$\rho_{0} ^
 
76
{\mathrm{c}}$, and displacement,~$\bu^{\mathrm{c}}$; and the fluid
78
77
concentration,~$\rho^{\mathrm{f}}$, velocity,~$\bv^{\mathrm{f}}$, and
79
78
pressure,~$p^{\mathrm{f}}$. Variable-order backward difference
80
79
formulae \citep{leveque2007} are used for forwarding the equations
83
82
In the interest of generality, the formulation and corresponding
84
83
implementation presented in Chapters~\ref{lagrangian-perspective} and
85
84
\ref{numerical-simulations-1} allowed for the possibility of
86
 
cavitation in tissues under certain ex~vivo/in~vitro
87
 
conditions. However, since it is well established that under normal
88
 
physiological conditions soft tissues are fully saturated by the
89
 
fluid, this condition will be imposed in the following calculations.
 
85
cavitation in tissues under certain ex~vivo/in~vitro conditions.
 
86
However, since it is well established that under normal physiological
 
87
conditions soft tissues are fully saturated by the fluid, this
 
88
condition will be imposed in the following calculations.
90
89
 
91
90
The concentration of each species~$\iota$ can be expressed as the
92
91
product of two non-negative scalar fields: $\rho^\iota = \phi^\iota
351
350
these cases, it is observed that the dynamic case decays gradually and
352
351
has oscillations (Figure~\ref{velocity-evolution-dynamic}) while the
353
352
quasistatic case reaches a higher magnitude, and decays nearly
354
 
instantaneously without manifesting oscillations
355
 
(Figure~\ref{velocity-evolution-quasistatic}).
 
353
instantaneously without manifesting oscillations (Figure~\ref%
 
354
{velocity-evolution-quasistatic}).
356
355
 
357
356
\begin{figure}[!hptb]
358
357
  \centering
518
517
holding one of the longitudinal edges fixed while subjecting the other
519
518
to the suitable displacement load. The lateral edges of the solid
520
519
remain traction free. For the fluid, there is no flow relative to the
521
 
solid at the longitudinal edges, i.e., $\bv^{\mathrm{f}} =
522
 
\bv^{\mathrm{c}}$. Since we are simulating the tissue being held by
523
 
grips at the longitudinal edges, this boundary condition ensures that
524
 
there is no outflow or inflow along those edges. The lateral edges
525
 
expose the fluid to the bath, and therefore the fluid pressure is
526
 
equated to that of the bath, 0~MPa, along those edges.
 
520
solid at the longitudinal edges, i.e., $\bv^{\mathrm{f}} = \bv ^
 
521
{\mathrm{c}}$. Since we are simulating the tissue being held by grips
 
522
at the longitudinal edges, this boundary condition ensures that there
 
523
is no outflow or inflow along those edges. The lateral edges expose
 
524
the fluid to the bath, and therefore the fluid pressure is equated to
 
525
that of the bath, 0~MPa, along those edges.
527
526
 
528
527
Figure~\ref{poro-stress-relax-0p01} shows the stress relaxation in a
529
528
quasistatic calculation\footnote{Since the displacement condition
545
544
response, the next test doubles the strain rate to $\dot{\epsilon} =
546
545
0.02$ Hz. The tissue is subjected to the same maximum strain of 0.085,
547
546
now in 4.25~s, and is held fixed for the remainder of the test. The
548
 
stress relaxation resulting from this test is shown in
549
 
Figure~\ref{poro-stress-relax-0p02}. The initial peak stress is now
550
 
increased; an observation which is in agreement with classical results
551
 
in viscoelasticity theory. This is because the increased strain rate
 
547
stress relaxation resulting from this test is shown in Figure~\ref{%
 
548
  poro-stress-relax-0p02}. The initial peak stress is now increased;
 
549
an observation which is in agreement with classical results in
 
550
viscoelasticity theory. This is because the increased strain rate
552
551
results in an increased relative velocity between the phases
553
552
initially, which correspondingly increases the frictional interaction
554
553
between the phases.
654
653
When this average strain rate is decreased to $\bar{\dot{\epsilon}} =
655
654
0.001$ Hz, (1/10$^\mathrm{th}$ the rate of the preceding calculation),
656
655
the relative velocity between the phases correspondingly decreases,
657
 
resulting in reduced dissipation and area of the hysteresis loop
658
 
(see Figure~\ref{medium-hysteresis-dynamic-0p001-d1p037}). In other
659
 
words, this slower process proceeds closer to thermodynamic
660
 
equilibrium. In an analogous comparison, when the average strain rate
661
 
is maintained at $\bar{\dot{\epsilon}} = 0.01$ Hz, but the magnitude
662
 
of the frictional coefficient tensor is increased by a factor of 10 to
663
 
$D=10.37$ MPa.s.mm$^{-2}$, it is observed that the dynamic effects of
664
 
the fluid flow are much more prominent (as observed in Figure~\ref%
 
656
resulting in reduced dissipation and area of the hysteresis loop (see
 
657
Figure~\ref{medium-hysteresis-dynamic-0p001-d1p037}). In other words,
 
658
this slower process proceeds closer to thermodynamic equilibrium. In
 
659
an analogous comparison, when the average strain rate is maintained at
 
660
$\bar{\dot{\epsilon}} = 0.01$ Hz, but the magnitude of the frictional
 
661
coefficient tensor is increased by a factor of 10 to $D=10.37$
 
662
MPa.s.mm$^{-2}$, it is observed that the dynamic effects of the fluid
 
663
flow are much more prominent (as observed in Figure~\ref%
665
664
{medium-hysteresis-dynamic-0p01-d10p37}). This is because the
666
665
comparable strain rates ensure similar relative velocities between the
667
666
phases (in the calculations corresponding to Figures~\ref{medium%
685
684
any of the dynamic effects arising from the fluid flow.
686
685
 
687
686
\begin{figure}[!hptb]
688
 
\centering
689
 
\includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
690
 
eulerian/pulling/plots/poro-elastic/medium-hysteresis-static-0p01-d1p037}
691
 
\caption{Quasistatic poroelastic model, $\dot{\epsilon}=0.01$ Hz, $D=1.037$
692
 
  MPa.s.mm$^{-2}$.}
693
 
\label{medium-hysteresis-static-0p01-d1p037}
694
 
\end{figure}
695
 
 
696
 
\begin{figure}[!hptb]
697
 
\centering
698
 
\includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
699
 
eulerian/pulling/plots/poro-elastic/medium-hysteresis-dynamic-0p01-d1p037}
700
 
\caption{Dynamic poroelastic model, $\bar{\dot{\epsilon}}=0.01$ Hz,
701
 
  $D=1.037$ MPa.s.mm$^{-2}$.}
702
 
\label{medium-hysteresis-dynamic-0p01-d1p037}
703
 
\end{figure}
704
 
 
705
 
\begin{figure}[!hptb]
706
 
\centering
707
 
\includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
708
 
eulerian/pulling/plots/poro-elastic/medium-hysteresis-dynamic-0p001-d1p037}
709
 
\caption{Dynamic poroelastic model, $\bar{\dot{\epsilon}}=0.001$ Hz,
710
 
  $D=1.037$ MPa.s.mm$^{-2}$.}
711
 
\label{medium-hysteresis-dynamic-0p001-d1p037}
712
 
\end{figure}
713
 
 
714
 
\begin{figure}[!hptb]
715
 
\centering
716
 
\includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
717
 
eulerian/pulling/plots/poro-elastic/medium-hysteresis-dynamic-0p01-d10p37}
718
 
\caption{Dynamic poroelastic model, $\bar{\dot{\epsilon}}=0.01$ Hz,
719
 
  $D=10.37$ MPa.s.mm$^{-2}$.}
720
 
\label{medium-hysteresis-dynamic-0p01-d10p37}
721
 
\end{figure}
722
 
 
723
 
\begin{figure}[!hptb]
724
 
\centering
725
 
\includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
726
 
eulerian/pulling/plots/visco-elastic/medium-hysteresis-visco-0p01-t0p3}
727
 
\caption{Dynamic viscoelastic model, $\dot{\epsilon}=0.01$ Hz,
728
 
  $\tau=0.3$ s.}
729
 
\label{medium-hysteresis-visco-0p01-t0p3}
 
687
  \centering
 
688
  \includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
 
689
    eulerian/pulling/plots/poro-elastic/medium-hysteresis-static%
 
690
    -0p01-d1p037}
 
691
  \caption{Quasistatic poroelastic model, $\dot{\epsilon}=0.01$ Hz,
 
692
    $D=1.037$ MPa.s.mm$^{-2}$.}
 
693
  \label{medium-hysteresis-static-0p01-d1p037}
 
694
\end{figure}
 
695
 
 
696
\begin{figure}[!hptb]
 
697
  \centering
 
698
  \includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
 
699
    eulerian/pulling/plots/poro-elastic/medium-hysteresis-dynamic%
 
700
    -0p01-d1p037}
 
701
  \caption{Dynamic poroelastic model, $\bar{\dot{\epsilon}}=0.01$ Hz,
 
702
    $D=1.037$ MPa.s.mm$^{-2}$.}
 
703
  \label{medium-hysteresis-dynamic-0p01-d1p037}
 
704
\end{figure}
 
705
 
 
706
\begin{figure}[!hptb]
 
707
  \centering
 
708
  \includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
 
709
    eulerian/pulling/plots/poro-elastic/medium-hysteresis-dynamic%
 
710
    -0p001-d1p037}
 
711
  \caption{Dynamic poroelastic model, $\bar{\dot{\epsilon}}=0.001$ Hz,
 
712
    $D=1.037$ MPa.s.mm$^{-2}$.}
 
713
  \label{medium-hysteresis-dynamic-0p001-d1p037}
 
714
\end{figure}
 
715
 
 
716
\begin{figure}[!hptb]
 
717
  \centering
 
718
  \includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
 
719
    eulerian/pulling/plots/poro-elastic/medium-hysteresis-dynamic%
 
720
    -0p01-d10p37}
 
721
  \caption{Dynamic poroelastic model, $\bar{\dot{\epsilon}}=0.01$ Hz,
 
722
    $D=10.37$ MPa.s.mm$^{-2}$.}
 
723
  \label{medium-hysteresis-dynamic-0p01-d10p37}
 
724
\end{figure}
 
725
 
 
726
\begin{figure}[!hptb]
 
727
  \centering
 
728
  \includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
 
729
    eulerian/pulling/plots/visco-elastic/medium-hysteresis-visco%
 
730
    -0p01-t0p3}
 
731
  \caption{Dynamic viscoelastic model, $\dot{\epsilon}=0.01$ Hz,
 
732
    $\tau=0.3$ s.}
 
733
  \label{medium-hysteresis-visco-0p01-t0p3}
730
734
\end{figure}
731
735
 
732
736
\section{Mechanics and the growing tumour}
745
749
Similar to the approach followed in Section~\ref{simple-physics}, the
746
750
computations presented below serve only to demonstrate aspects of the
747
751
coupled physics underlying the problem, and the actual constitutive
748
 
modelling choices (and corresponding numerical parameters) chosen are
749
 
not intended for direct comparison with experiment. Incorporating more
750
 
realistic modelling choices (such as the use of more sophisticated
751
 
biochemistry involving additional species \citep{tjacks2000}), and the
752
 
ascertainment of corresponding parameters, is a direction for future
753
 
work.
 
752
modelling choices made (and the corresponding numerical parameters
 
753
used) are not intended for direct comparison with experiment.
 
754
Incorporating more realistic modelling choices (such as the use of
 
755
more sophisticated biochemistry involving additional species
 
756
\citep{tjacks2000}), and the ascertainment of corresponding
 
757
parameters, is a direction for future work.
754
758
 
755
759
The computations presented in this section are motivated by and aim to
756
760
replicate a fundamental experimental observation: Compressive solid
821
825
1.1~kg.m$^{-3}$/1~kg.m$^{-3}$, as one would expect.
822
826
 
823
827
\begin{figure}[!hptb]
824
 
\centering
825
 
\includegraphics[width=0.9\textwidth]{images/examples/%
826
 
eulerian/cancer/isotropic-swelling-0}
827
 
\caption{A semicircular tumour at time $t=0$ days.}
828
 
\label{tumour-isotropic-swelling-0}
829
 
\end{figure}
830
 
 
831
 
\begin{figure}[!hptb]
832
 
\centering
833
 
\includegraphics[width=0.9\textwidth]{images/examples/%
834
 
eulerian/cancer/isotropic-swelling-100}
835
 
\caption{A semicircular tumour at time $t=100$ days.}
836
 
\label{tumour-isotropic-swelling-100}
837
 
\end{figure}
838
 
 
839
 
\begin{figure}[!hptb]
840
 
\centering
841
 
\includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
842
 
eulerian/cancer/isotropic-swelling-area-evolution}
843
 
\caption{The area of the tumour evolving over 100 days.}
844
 
\label{tumour-isotropic-area-evolution}
 
828
  \centering
 
829
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
830
    eulerian/cancer/isotropic-swelling-0}
 
831
  \caption{A semicircular tumour at time $t=0$ days.}
 
832
  \label{tumour-isotropic-swelling-0}
 
833
\end{figure}
 
834
 
 
835
\begin{figure}[!hptb]
 
836
  \centering
 
837
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
838
    eulerian/cancer/isotropic-swelling-100}
 
839
  \caption{A semicircular tumour at time $t=100$ days.}
 
840
  \label{tumour-isotropic-swelling-100}
 
841
\end{figure}
 
842
 
 
843
\begin{figure}[!hptb]
 
844
  \centering
 
845
  \includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
 
846
    eulerian/cancer/isotropic-swelling-area-evolution}
 
847
  \caption{The area of the tumour evolving over 100 days.}
 
848
  \label{tumour-isotropic-area-evolution}
845
849
\end{figure}
846
850
 
847
851
\subsection{A constraining wall and soft contact mechanics}
876
880
smooth in time.
877
881
 
878
882
Starting with the same initial conditions as the previous test
879
 
(Figure~\ref{tumour-isotropic-swelling-0}),
880
 
Figure~\ref{tumour-constrained-swelling-120} depicts the compressive
881
 
horizontal stress built-up in the solid after 120~days due to the
882
 
presence of the wall (not visible in the figure). Notice that the
883
 
velocity vectors are much smaller in the constrained
884
 
direction. Figure~\ref{tumour-constrained-stress-evolution} shows the
885
 
time evolution of the compressive horizontal stress at a point near
886
 
the extreme right of the domain. The stress increases sharply as the
887
 
point gets close to the wall, but remains smooth in time.
 
883
(Figure~\ref{tumour-isotropic-swelling-0}), Figure~\ref{tumour%
 
884
  -constrained-swelling-120} depicts the compressive horizontal stress
 
885
built-up in the solid after 120~days due to the presence of the wall
 
886
(not visible in the figure). Notice that the velocity vectors are much
 
887
smaller in the constrained direction. Figure~\ref{tumour-constrain%
 
888
  ed-stress-evolution} shows the time evolution of the compressive
 
889
horizontal stress at a point near the extreme right of the domain. The
 
890
stress increases sharply as the point gets close to the wall, but
 
891
remains smooth in time.
888
892
 
889
893
\begin{figure}[!hptb]
890
 
\centering
891
 
\includegraphics[width=0.9\textwidth]{images/examples/%
892
 
eulerian/cancer/constrained-swelling-120}
893
 
\caption{The growing tumour constrained by a wall at time $t=120$ days.}
894
 
\label{tumour-constrained-swelling-120}
 
894
  \centering
 
895
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
896
    eulerian/cancer/constrained-swelling-120}
 
897
  \caption{The growing tumour constrained by a wall at time $t=120$
 
898
    days.}
 
899
  \label{tumour-constrained-swelling-120}
895
900
\end{figure}
896
901
 
897
902
\begin{figure}[!hptb]
898
 
\centering
899
 
\includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
900
 
eulerian/cancer/constrained-stress-evolution}
901
 
\caption{The horizontal stress in the tumour evolving over 120 days.}
902
 
\label{tumour-constrained-stress-evolution}
 
903
  \centering
 
904
  \includegraphics[width=0.6\textwidth,angle=270]{images/examples/%
 
905
    eulerian/cancer/constrained-stress-evolution}
 
906
  \caption{The horizontal stress in the tumour evolving over 120
 
907
    days.} 
 
908
  \label{tumour-constrained-stress-evolution}
903
909
\end{figure}
904
910
 
905
911
\clearpage
919
925
\begin{equation}
920
926
\Bsigma^{\mathrm{c}} =
921
927
\underbrace{\frac{1}{J}\ \frac{\rho_{0}^{\mathrm{c}}}
922
 
  {\tilde{\rho_{0}^{\mathrm{c}}}}\    
923
 
\frac{\partial \hat{\psi^{\mathrm{c}}}}{\partial
924
 
  \bF}  \bF^{\mathrm{T}} }_{\text{Passive}}
925
 
+ \underbrace{\tau\ \rho^{\mathrm{c}} \rho^{\mathrm{cell}}
926
 
(N - \rho^{\mathrm{cell}})\ \bone.
 
928
  {\tilde{\rho_{0}^{\mathrm{c}}}}\ \frac{\partial
 
929
    \hat{\psi^{\mathrm{c}}}}{\partial \bF} \bF^{\mathrm{T}}
 
930
}_{\text{Passive}} + \underbrace{\tau\ \rho^{\mathrm{c}}
 
931
  \rho^{\mathrm{cell}} (N - \rho^{\mathrm{cell}})\ \bone.
927
932
}_{\text{Active}}
928
933
\label{activepassivesplit}
929
934
\end{equation}
955
960
neighbourhoods in greater.
956
961
 
957
962
\begin{figure}[!hptb]
958
 
\centering
959
 
\includegraphics[width=0.9\textwidth]{images/examples/%
960
 
eulerian/cancer/homogeneous-inward-tug}
961
 
\caption{Homogeneous inward pull due to a uniform distribution of
962
 
  cells.}
963
 
\label{tumour-homogeneous-inward-tug}
 
963
  \centering
 
964
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
965
    eulerian/cancer/homogeneous-inward-tug}
 
966
  \caption{Homogeneous inward pull due to a uniform distribution of
 
967
    cells.}
 
968
  \label{tumour-homogeneous-inward-tug}
964
969
\end{figure}
965
970
 
966
971
\begin{figure}[!hptb]
967
 
\centering
968
 
\includegraphics[width=0.9\textwidth]{images/examples/%
969
 
eulerian/cancer/heterogeneous-inward-tug}
970
 
\caption{Heterogeneous traction due to a non-uniform distribution of
971
 
  cells.}
972
 
\label{tumour-heterogeneous-inward-tug}
 
972
  \centering
 
973
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
974
    eulerian/cancer/heterogeneous-inward-tug}
 
975
  \caption{Heterogeneous traction due to a non-uniform distribution of
 
976
    cells.}
 
977
  \label{tumour-heterogeneous-inward-tug}
973
978
\end{figure}
974
979
 
975
980
\clearpage
982
987
we allow for the cells to proliferate and move via diffusion and
983
988
haptotaxis (again, following the work of \citet{namyetal:04}). We
984
989
solve the mass transport equation (\ref{eu-localbalanceofmass}) for
985
 
the cells to determine their current concentration
986
 
fields. In order to account for the aforementioned modes of mass
987
 
transport, we specify the following constitutive form for the cell
988
 
mass flux:
 
990
the cells to determine their current concentration fields. In order to
 
991
account for the aforementioned modes of mass transport, we specify the
 
992
following constitutive form for the cell mass flux:
989
993
 
990
994
\begin{equation}
991
 
\rho^{\mathrm{cell}}\ \bv^{\mathrm{cell}} = \underbrace{h\ \rho^{\mathrm{cell}}\
992
 
\mathrm{grad}\left(\rho^{\mathrm{c}}\right)}_{\text{Haptotactic flux}}
993
 
-\underbrace{D^{\mathrm{cell}}\ \mathrm{grad}\left(\rho^{\mathrm{cell}}\right)
994
 
}_{\text{Cell diffusion}},
 
995
\rho^{\mathrm{cell}}\ \bv^{\mathrm{cell}} =
 
996
\underbrace{h\ \rho^{\mathrm{cell}}\ \mathrm{grad}
 
997
  \left(\rho^{\mathrm{c}}\right)}_{\text{Haptotactic flux}}
 
998
-\underbrace{D^{\mathrm{cell}}\ \mathrm{grad}
 
999
  \left(\rho^{\mathrm{cell}}\right) }_{\text{Cell diffusion}},
995
1000
\end{equation}
996
1001
 
997
1002
\noindent where $h$ is the haptotactic coefficient and
1018
1023
\clearpage
1019
1024
 
1020
1025
\begin{figure}[!hptb]
1021
 
\centering
1022
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1023
 
eulerian/cancer/diffusing-proliferating-cells-0}
1024
 
\caption{The cells diffusing and proliferating at time $t=0$ days.}
1025
 
\label{tumour-diffusion-proliferation-0}
1026
 
\end{figure}
1027
 
 
1028
 
\begin{figure}[!hptb]
1029
 
\centering
1030
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1031
 
eulerian/cancer/diffusing-proliferating-cells-33}
1032
 
\caption{The cells diffusing and proliferating at time $t=33$ days.}
1033
 
\label{tumour-diffusion-proliferation-33}
1034
 
\end{figure}
1035
 
 
1036
 
\begin{figure}[!hptb]
1037
 
\centering
1038
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1039
 
eulerian/cancer/diffusing-proliferating-cells-67}
1040
 
\caption{The cells diffusing and proliferating at time $t=67$ days.}
1041
 
\label{tumour-diffusion-proliferation-67}
1042
 
\end{figure}
1043
 
 
1044
 
\begin{figure}[!hptb]
1045
 
\centering
1046
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1047
 
eulerian/cancer/diffusing-proliferating-cells-100}
1048
 
\caption{The cells diffusing and proliferating at time $t=100$ days.}
1049
 
\label{tumour-diffusion-proliferation-100}
 
1026
  \centering
 
1027
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1028
    eulerian/cancer/diffusing-proliferating-cells-0}
 
1029
  \caption{The cells diffusing and proliferating at time $t=0$ days.}
 
1030
  \label{tumour-diffusion-proliferation-0}
 
1031
\end{figure}
 
1032
 
 
1033
\begin{figure}[!hptb]
 
1034
  \centering
 
1035
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1036
    eulerian/cancer/diffusing-proliferating-cells-33}
 
1037
  \caption{The cells diffusing and proliferating at time $t=33$ days.}
 
1038
  \label{tumour-diffusion-proliferation-33}
 
1039
\end{figure}
 
1040
 
 
1041
\begin{figure}[!hptb]
 
1042
  \centering
 
1043
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1044
    eulerian/cancer/diffusing-proliferating-cells-67}
 
1045
  \caption{The cells diffusing and proliferating at time $t=67$ days.}
 
1046
  \label{tumour-diffusion-proliferation-67}
 
1047
\end{figure}
 
1048
 
 
1049
\begin{figure}[!hptb]
 
1050
  \centering
 
1051
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1052
    eulerian/cancer/diffusing-proliferating-cells-100}
 
1053
  \caption{The cells diffusing and proliferating at time $t=100$ days.}
 
1054
  \label{tumour-diffusion-proliferation-100}
1050
1055
\end{figure}
1051
1056
 
1052
1057
\clearpage
1057
1062
the same initial conditions for the cells as the previous calculation
1058
1063
(a cell-rich bulb at the centre of the domain), but in order to induce
1059
1064
haptotaxis, we begin with the heterogenous ECM concentration (varying
1060
 
between 0.5~kg.m$^{-3}$ and 1.5~kg.m$^{-3}$), seen in
1061
 
Figure~\ref{heterogeneous-ecm-concentration}. In these tests, the
1062
 
haptotactic coefficient $h$ is 0.1~mm$^2$.day$^{-1}$.mm$^3$.kg$^{-1}$.
1063
 
Figures~\ref{tumour-haptotaxis-proliferation-0}--%
1064
 
\ref{tumour-haptotaxis-proliferation-10} show snapshots of the cells
1065
 
undergoing haptotaxis and proliferating during the course of the
1066
 
test. The colour contours provide the evolving cell concentration
1067
 
fields (in~kg.m$^{-3}$) and the arrows provide the deformation
1068
 
direction of the ECM, induced by the cell traction. We observe that
1069
 
the cells migrate toward areas of higher ECM while proliferating. Note
1070
 
that the directionality of the cell traction field changes
1071
 
correspondingly with the concentration field, as noted by the lengths
1072
 
and directions of the arrows.
1073
 
 
1074
 
\begin{figure}[!hptb]
1075
 
\centering
1076
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1077
 
eulerian/cancer/heterogeneous-ecm-concentration}
1078
 
\caption{Heterogeneous extra-cellular matrix concentration
1079
 
  (kg.m$^{-3}$).}
1080
 
\label{heterogeneous-ecm-concentration}
1081
 
\end{figure}
1082
 
 
1083
 
\begin{figure}[!hptb]
1084
 
\centering
1085
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1086
 
eulerian/cancer/haptotaxis-proliferating-cells-0}
1087
 
\caption{Proliferating cells undergoing haptotaxis at time $t=0$
1088
 
  days.}
1089
 
\label{tumour-haptotaxis-proliferation-0}
1090
 
\end{figure}
1091
 
 
1092
 
\begin{figure}[!hptb]
1093
 
\centering
1094
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1095
 
eulerian/cancer/haptotaxis-proliferating-cells-3p3}
1096
 
\caption{Proliferating cells undergoing haptotaxis at time $t=33$
1097
 
  days.} 
1098
 
\label{tumour-haptotaxis-proliferation-3p3}
1099
 
\end{figure}
1100
 
 
1101
 
\begin{figure}[!hptb]
1102
 
\centering
1103
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1104
 
eulerian/cancer/haptotaxis-proliferating-cells-6p7}
1105
 
\caption{Proliferating cells undergoing haptotaxis at time $t=67$
1106
 
  days.}
1107
 
\label{tumour-haptotaxis-proliferation-6p7}
1108
 
\end{figure}
1109
 
 
1110
 
\begin{figure}[!hptb]
1111
 
\centering
1112
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1113
 
eulerian/cancer/haptotaxis-proliferating-cells-10}
1114
 
\caption{Proliferating cells undergoing haptotaxis at time $t=100$
1115
 
  days.}
1116
 
\label{tumour-haptotaxis-proliferation-10}
 
1065
between 0.5~kg.m$^{-3}$ and 1.5~kg.m$^{-3}$), seen in Figure~\ref{%
 
1066
  heterogeneous-ecm-concentration}. In these tests, the haptotactic
 
1067
coefficient $h$ is 0.1~mm$^2$.day$^{-1}$.mm$^3$.kg$^{-1}$.
 
1068
Figures~\ref{tumour-haptotaxis-proliferation-0}--\ref{tumour-hapto%
 
1069
  taxis-proliferation-10} show snapshots of the cells undergoing
 
1070
haptotaxis and proliferating during the course of the test. The colour
 
1071
contours provide the evolving cell concentration fields
 
1072
(in~kg.m$^{-3}$) and the arrows provide the deformation direction of
 
1073
the ECM, induced by the cell traction. We observe that the cells
 
1074
migrate toward areas of higher ECM while proliferating. Note that the
 
1075
directionality of the cell traction field changes correspondingly with
 
1076
the concentration field, as noted by the lengths and directions of the
 
1077
arrows.
 
1078
 
 
1079
\begin{figure}[!hptb]
 
1080
  \centering
 
1081
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1082
    eulerian/cancer/heterogeneous-ecm-concentration}
 
1083
  \caption{Heterogeneous extra-cellular matrix concentration
 
1084
    (kg.m$^{-3}$).}
 
1085
  \label{heterogeneous-ecm-concentration}
 
1086
\end{figure}
 
1087
 
 
1088
\begin{figure}[!hptb]
 
1089
  \centering
 
1090
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1091
    eulerian/cancer/haptotaxis-proliferating-cells-0}
 
1092
  \caption{Proliferating cells undergoing haptotaxis at time $t=0$
 
1093
    days.}
 
1094
  \label{tumour-haptotaxis-proliferation-0}
 
1095
\end{figure}
 
1096
 
 
1097
\begin{figure}[!hptb]
 
1098
  \centering
 
1099
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1100
    eulerian/cancer/haptotaxis-proliferating-cells-3p3}
 
1101
  \caption{Proliferating cells undergoing haptotaxis at time $t=33$
 
1102
    days.} 
 
1103
  \label{tumour-haptotaxis-proliferation-3p3}
 
1104
\end{figure}
 
1105
 
 
1106
\begin{figure}[!hptb]
 
1107
  \centering
 
1108
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1109
    eulerian/cancer/haptotaxis-proliferating-cells-6p7}
 
1110
  \caption{Proliferating cells undergoing haptotaxis at time $t=67$
 
1111
    days.}
 
1112
  \label{tumour-haptotaxis-proliferation-6p7}
 
1113
\end{figure}
 
1114
 
 
1115
\begin{figure}[!hptb]
 
1116
  \centering
 
1117
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1118
    eulerian/cancer/haptotaxis-proliferating-cells-10}
 
1119
  \caption{Proliferating cells undergoing haptotaxis at time $t=100$
 
1120
    days.}
 
1121
  \label{tumour-haptotaxis-proliferation-10}
1117
1122
\end{figure}
1118
1123
 
1119
1124
While the magnitudes for the cell diffusivity, $D^{\mathrm{cell}}$,
1126
1131
\subsection{Coupling the phenomena}
1127
1132
\label{cacophonous-medley}
1128
1133
 
1129
 
With the individual phenomena explored, we are now ready to solve
1130
 
the coupled problem described initially. The range of physics
1131
 
incorporated into this problem include proliferating cells undergoing
1132
 
both diffusion and haptotaxis, a rate law for the production of
1133
 
additional ECM which scales linearly with the concentration of
1134
 
cells, the stress within the cells induced by their traction, the
1135
 
hyperelastic response of the ECM, isotropic kinematic swelling
1136
 
associated with the increase in tumour mass, and finally, this
1137
 
swelling constrained by the presence of a wall.
 
1134
With the individual phenomena explored, we are now ready to solve the
 
1135
coupled problem described initially. The range of physics incorporated
 
1136
into this problem include proliferating cells undergoing both
 
1137
diffusion and haptotaxis, a rate law for the production of additional
 
1138
ECM which scales linearly with the concentration of cells, the stress
 
1139
within the cells induced by their traction, the hyperelastic response
 
1140
of the ECM, isotropic kinematic swelling associated with the increase
 
1141
in tumour mass, and finally, this swelling constrained by the presence
 
1142
of a wall.
1138
1143
 
1139
1144
Figures~\ref{tumour-growth-constrained-0}--\ref{tumour-growth%
1140
1145
  -constrained-5} show snapshots of the growing tumour constrained by
1170
1175
\vspace{1cm} %Hack
1171
1176
 
1172
1177
\begin{figure}[!hptb]
1173
 
\centering
1174
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1175
 
eulerian/cancer/growing-tumour-0.eps}
1176
 
\caption{A constrained growing tumour at $t=0$ days.}
1177
 
\label{tumour-growth-constrained-0}
1178
 
\end{figure}
1179
 
 
1180
 
\begin{figure}[!hptb]
1181
 
\centering
1182
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1183
 
eulerian/cancer/growing-tumour-1.eps}
1184
 
\caption{A constrained growing tumour at $t=20$ days.}
1185
 
\label{tumour-growth-constrained-1}
1186
 
\end{figure}
1187
 
 
1188
 
\begin{figure}[!hptb]
1189
 
\centering
1190
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1191
 
eulerian/cancer/growing-tumour-2.eps}
1192
 
\caption{A constrained growing tumour at $t=40$ days.}
1193
 
\label{tumour-growth-constrained-2}
1194
 
\end{figure}
1195
 
 
1196
 
\begin{figure}[!hptb]
1197
 
\centering
1198
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1199
 
eulerian/cancer/growing-tumour-3.eps}
1200
 
\caption{A constrained growing tumour at $t=60$ days.}
1201
 
\label{tumour-growth-constrained-3}
1202
 
\end{figure}
1203
 
 
1204
 
\begin{figure}[!hptb]
1205
 
\centering
1206
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1207
 
eulerian/cancer/growing-tumour-4.eps}
1208
 
\caption{A constrained growing tumour at $t=80$ days.}
1209
 
\label{tumour-growth-constrained-4}
1210
 
\end{figure}
1211
 
 
1212
 
\begin{figure}[!hptb]
1213
 
\centering
1214
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1215
 
eulerian/cancer/growing-tumour-5.eps}
1216
 
\caption{A constrained growing tumour at $t=100$ days.}
1217
 
\label{tumour-growth-constrained-5}
1218
 
\end{figure}
1219
 
 
1220
 
\begin{figure}[!hptb]
1221
 
\centering
1222
 
\includegraphics[width=0.9\textwidth]{images/examples/%
1223
 
eulerian/cancer/growing-tumour-no-wall-4}
1224
 
\caption{An unconstrained growing tumour at $t=80$ days.}
1225
 
\label{tumour-growth-no-wall-4}
 
1178
  \centering
 
1179
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1180
    eulerian/cancer/growing-tumour-0.eps}
 
1181
  \caption{A constrained growing tumour at $t=0$ days.}
 
1182
  \label{tumour-growth-constrained-0}
 
1183
\end{figure}
 
1184
 
 
1185
\begin{figure}[!hptb]
 
1186
  \centering
 
1187
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1188
    eulerian/cancer/growing-tumour-1.eps}
 
1189
  \caption{A constrained growing tumour at $t=20$ days.}
 
1190
  \label{tumour-growth-constrained-1}
 
1191
\end{figure}
 
1192
 
 
1193
\begin{figure}[!hptb]
 
1194
  \centering
 
1195
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1196
    eulerian/cancer/growing-tumour-2.eps}
 
1197
  \caption{A constrained growing tumour at $t=40$ days.}
 
1198
  \label{tumour-growth-constrained-2}
 
1199
\end{figure}
 
1200
 
 
1201
\begin{figure}[!hptb]
 
1202
  \centering
 
1203
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1204
    eulerian/cancer/growing-tumour-3.eps}
 
1205
  \caption{A constrained growing tumour at $t=60$ days.}
 
1206
  \label{tumour-growth-constrained-3}
 
1207
\end{figure}
 
1208
 
 
1209
\begin{figure}[!hptb]
 
1210
  \centering
 
1211
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1212
    eulerian/cancer/growing-tumour-4.eps}
 
1213
  \caption{A constrained growing tumour at $t=80$ days.}
 
1214
  \label{tumour-growth-constrained-4}
 
1215
\end{figure}
 
1216
 
 
1217
\begin{figure}[!hptb]
 
1218
  \centering
 
1219
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1220
    eulerian/cancer/growing-tumour-5.eps}
 
1221
  \caption{A constrained growing tumour at $t=100$ days.}
 
1222
  \label{tumour-growth-constrained-5}
 
1223
\end{figure}
 
1224
 
 
1225
\begin{figure}[!hptb]
 
1226
  \centering
 
1227
  \includegraphics[width=0.9\textwidth]{images/examples/%
 
1228
    eulerian/cancer/growing-tumour-no-wall-4}
 
1229
  \caption{An unconstrained growing tumour at $t=80$ days.}
 
1230
  \label{tumour-growth-no-wall-4}
1226
1231
\end{figure}
1227
1232
 
1228
1233
%