2
* Copyright (c) 2006 Ondrej Palkovsky
5
* Redistribution and use in source and binary forms, with or without
6
* modification, are permitted provided that the following conditions
9
* - Redistributions of source code must retain the above copyright
10
* notice, this list of conditions and the following disclaimer.
11
* - Redistributions in binary form must reproduce the above copyright
12
* notice, this list of conditions and the following disclaimer in the
13
* documentation and/or other materials provided with the distribution.
14
* - The name of the author may not be used to endorse or promote products
15
* derived from this software without specific prior written permission.
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
/** @addtogroup genericmm
35
* @brief Slab allocator.
37
* The slab allocator is closely modelled after OpenSolaris slab allocator.
38
* @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
40
* with the following exceptions:
41
* @li empty slabs are deallocated immediately
42
* (in Linux they are kept in linked list, in Solaris ???)
43
* @li empty magazines are deallocated when not needed
44
* (in Solaris they are held in linked list in slab cache)
46
* Following features are not currently supported but would be easy to do:
48
* @li dynamic magazine growing (different magazine sizes are already
49
* supported, but we would need to adjust allocation strategy)
51
* The slab allocator supports per-CPU caches ('magazines') to facilitate
54
* When a new object is being allocated, it is first checked, if it is
55
* available in a CPU-bound magazine. If it is not found there, it is
56
* allocated from a CPU-shared slab - if a partially full one is found,
57
* it is used, otherwise a new one is allocated.
59
* When an object is being deallocated, it is put to a CPU-bound magazine.
60
* If there is no such magazine, a new one is allocated (if this fails,
61
* the object is deallocated into slab). If the magazine is full, it is
62
* put into cpu-shared list of magazines and a new one is allocated.
64
* The CPU-bound magazine is actually a pair of magazines in order to avoid
65
* thrashing when somebody is allocating/deallocating 1 item at the magazine
66
* size boundary. LIFO order is enforced, which should avoid fragmentation
67
* as much as possible.
69
* Every cache contains list of full slabs and list of partially full slabs.
70
* Empty slabs are immediately freed (thrashing will be avoided because
73
* The slab information structure is kept inside the data area, if possible.
74
* The cache can be marked that it should not use magazines. This is used
75
* only for slab related caches to avoid deadlocks and infinite recursion
76
* (the slab allocator uses itself for allocating all it's control structures).
78
* The slab allocator allocates a lot of space and does not free it. When
79
* the frame allocator fails to allocate a frame, it calls slab_reclaim().
80
* It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81
* releases slabs from cpu-shared magazine-list, until at least 1 slab
82
* is deallocated in each cache (this algorithm should probably change).
83
* The brutal reclaim removes all cached objects, even from CPU-bound
87
* For better CPU-scaling the magazine allocation strategy should
88
* be extended. Currently, if the cache does not have magazine, it asks
89
* for non-cpu cached magazine cache to provide one. It might be feasible
90
* to add cpu-cached magazine cache (which would allocate it's magazines
91
* from non-cpu-cached mag. cache). This would provide a nice per-cpu
92
* buffer. The other possibility is to use the per-cache
93
* 'empty-magazine-list', which decreases competing for 1 per-system
97
* it might be good to add granularity of locks even to slab level,
98
* we could then try_spinlock over all partial slabs and thus improve
99
* scalability even on slab level
102
#include <synch/spinlock.h>
104
#include <adt/list.h>
107
#include <mm/frame.h>
116
SPINLOCK_INITIALIZE(slab_cache_lock);
117
static LIST_INITIALIZE(slab_cache_list);
119
/** Magazine cache */
120
static slab_cache_t mag_cache;
121
/** Cache for cache descriptors */
122
static slab_cache_t slab_cache_cache;
123
/** Cache for external slab descriptors
124
* This time we want per-cpu cache, so do not make it static
125
* - using slab for internal slab structures will not deadlock,
126
* as all slab structures are 'small' - control structures of
127
* their caches do not require further allocation
129
static slab_cache_t *slab_extern_cache;
130
/** Caches for malloc */
131
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
132
static char *malloc_names[] = {
154
/** Slab descriptor */
156
slab_cache_t *cache; /**< Pointer to parent cache. */
157
link_t link; /**< List of full/partial slabs. */
158
void *start; /**< Start address of first available item. */
159
size_t available; /**< Count of available items in this slab. */
160
size_t nextavail; /**< The index of next available item. */
164
static int _slab_initialized = 0;
167
/**************************************/
168
/* Slab allocation functions */
171
* Allocate frames for slab space and initialize
174
static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
182
data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
186
if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
187
slab = slab_alloc(slab_extern_cache, flags);
189
frame_free(KA2PA(data));
193
fsize = (PAGE_SIZE << cache->order);
194
slab = data + fsize - sizeof(*slab);
197
/* Fill in slab structures */
198
for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
199
frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
202
slab->available = cache->objects;
206
for (i = 0; i < cache->objects; i++)
207
*((int *) (slab->start + i*cache->size)) = i + 1;
209
atomic_inc(&cache->allocated_slabs);
214
* Deallocate space associated with slab
216
* @return number of freed frames
218
static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
220
frame_free(KA2PA(slab->start));
221
if (! (cache->flags & SLAB_CACHE_SLINSIDE))
222
slab_free(slab_extern_cache, slab);
224
atomic_dec(&cache->allocated_slabs);
226
return 1 << cache->order;
229
/** Map object to slab structure */
230
static slab_t * obj2slab(void *obj)
232
return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
235
/**************************************/
240
* Return object to slab and call a destructor
242
* @param slab If the caller knows directly slab of the object, otherwise NULL
244
* @return Number of freed pages
246
static size_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
251
slab = obj2slab(obj);
253
ASSERT(slab->cache == cache);
255
if (cache->destructor)
256
freed = cache->destructor(obj);
258
spinlock_lock(&cache->slablock);
259
ASSERT(slab->available < cache->objects);
261
*((int *)obj) = slab->nextavail;
262
slab->nextavail = (obj - slab->start) / cache->size;
265
/* Move it to correct list */
266
if (slab->available == cache->objects) {
267
/* Free associated memory */
268
list_remove(&slab->link);
269
spinlock_unlock(&cache->slablock);
271
return freed + slab_space_free(cache, slab);
273
} else if (slab->available == 1) {
274
/* It was in full, move to partial */
275
list_remove(&slab->link);
276
list_prepend(&slab->link, &cache->partial_slabs);
278
spinlock_unlock(&cache->slablock);
283
* Take new object from slab or create new if needed
285
* @return Object address or null
287
static void *slab_obj_create(slab_cache_t *cache, int flags)
292
spinlock_lock(&cache->slablock);
294
if (list_empty(&cache->partial_slabs)) {
295
/* Allow recursion and reclaiming
296
* - this should work, as the slab control structures
297
* are small and do not need to allocate with anything
298
* other than frame_alloc when they are allocating,
299
* that's why we should get recursion at most 1-level deep
301
spinlock_unlock(&cache->slablock);
302
slab = slab_space_alloc(cache, flags);
305
spinlock_lock(&cache->slablock);
307
slab = list_get_instance(cache->partial_slabs.next, slab_t,
309
list_remove(&slab->link);
311
obj = slab->start + slab->nextavail * cache->size;
312
slab->nextavail = *((int *)obj);
315
if (!slab->available)
316
list_prepend(&slab->link, &cache->full_slabs);
318
list_prepend(&slab->link, &cache->partial_slabs);
320
spinlock_unlock(&cache->slablock);
322
if (cache->constructor && cache->constructor(obj, flags)) {
323
/* Bad, bad, construction failed */
324
slab_obj_destroy(cache, obj, slab);
330
/**************************************/
331
/* CPU-Cache slab functions */
334
* Finds a full magazine in cache, takes it from list
337
* @param first If true, return first, else last mag
339
static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
341
slab_magazine_t *mag = NULL;
344
spinlock_lock(&cache->maglock);
345
if (!list_empty(&cache->magazines)) {
347
cur = cache->magazines.next;
349
cur = cache->magazines.prev;
350
mag = list_get_instance(cur, slab_magazine_t, link);
351
list_remove(&mag->link);
352
atomic_dec(&cache->magazine_counter);
354
spinlock_unlock(&cache->maglock);
358
/** Prepend magazine to magazine list in cache */
359
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
361
spinlock_lock(&cache->maglock);
363
list_prepend(&mag->link, &cache->magazines);
364
atomic_inc(&cache->magazine_counter);
366
spinlock_unlock(&cache->maglock);
370
* Free all objects in magazine and free memory associated with magazine
372
* @return Number of freed pages
374
static size_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
379
for (i = 0; i < mag->busy; i++) {
380
frames += slab_obj_destroy(cache, mag->objs[i], NULL);
381
atomic_dec(&cache->cached_objs);
384
slab_free(&mag_cache, mag);
390
* Find full magazine, set it as current and return it
392
* Assume cpu_magazine lock is held
394
static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
396
slab_magazine_t *cmag, *lastmag, *newmag;
398
cmag = cache->mag_cache[CPU->id].current;
399
lastmag = cache->mag_cache[CPU->id].last;
400
if (cmag) { /* First try local CPU magazines */
404
if (lastmag && lastmag->busy) {
405
cache->mag_cache[CPU->id].current = lastmag;
406
cache->mag_cache[CPU->id].last = cmag;
410
/* Local magazines are empty, import one from magazine list */
411
newmag = get_mag_from_cache(cache, 1);
416
magazine_destroy(cache, lastmag);
418
cache->mag_cache[CPU->id].last = cmag;
419
cache->mag_cache[CPU->id].current = newmag;
424
* Try to find object in CPU-cache magazines
426
* @return Pointer to object or NULL if not available
428
static void *magazine_obj_get(slab_cache_t *cache)
430
slab_magazine_t *mag;
436
spinlock_lock(&cache->mag_cache[CPU->id].lock);
438
mag = get_full_current_mag(cache);
440
spinlock_unlock(&cache->mag_cache[CPU->id].lock);
443
obj = mag->objs[--mag->busy];
444
spinlock_unlock(&cache->mag_cache[CPU->id].lock);
445
atomic_dec(&cache->cached_objs);
451
* Assure that the current magazine is empty, return pointer to it, or NULL if
452
* no empty magazine is available and cannot be allocated
454
* Assume mag_cache[CPU->id].lock is held
456
* We have 2 magazines bound to processor.
457
* First try the current.
458
* If full, try the last.
459
* If full, put to magazines list.
460
* allocate new, exchange last & current
463
static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
465
slab_magazine_t *cmag,*lastmag,*newmag;
467
cmag = cache->mag_cache[CPU->id].current;
468
lastmag = cache->mag_cache[CPU->id].last;
471
if (cmag->busy < cmag->size)
473
if (lastmag && lastmag->busy < lastmag->size) {
474
cache->mag_cache[CPU->id].last = cmag;
475
cache->mag_cache[CPU->id].current = lastmag;
479
/* current | last are full | nonexistent, allocate new */
480
/* We do not want to sleep just because of caching */
481
/* Especially we do not want reclaiming to start, as
482
* this would deadlock */
483
newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
486
newmag->size = SLAB_MAG_SIZE;
489
/* Flush last to magazine list */
491
put_mag_to_cache(cache, lastmag);
493
/* Move current as last, save new as current */
494
cache->mag_cache[CPU->id].last = cmag;
495
cache->mag_cache[CPU->id].current = newmag;
501
* Put object into CPU-cache magazine
503
* @return 0 - success, -1 - could not get memory
505
static int magazine_obj_put(slab_cache_t *cache, void *obj)
507
slab_magazine_t *mag;
512
spinlock_lock(&cache->mag_cache[CPU->id].lock);
514
mag = make_empty_current_mag(cache);
516
spinlock_unlock(&cache->mag_cache[CPU->id].lock);
520
mag->objs[mag->busy++] = obj;
522
spinlock_unlock(&cache->mag_cache[CPU->id].lock);
523
atomic_inc(&cache->cached_objs);
528
/**************************************/
529
/* Slab cache functions */
531
/** Return number of objects that fit in certain cache size */
532
static unsigned int comp_objects(slab_cache_t *cache)
534
if (cache->flags & SLAB_CACHE_SLINSIDE)
535
return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
538
return (PAGE_SIZE << cache->order) / cache->size;
541
/** Return wasted space in slab */
542
static unsigned int badness(slab_cache_t *cache)
544
unsigned int objects;
547
objects = comp_objects(cache);
548
ssize = PAGE_SIZE << cache->order;
549
if (cache->flags & SLAB_CACHE_SLINSIDE)
550
ssize -= sizeof(slab_t);
551
return ssize - objects * cache->size;
555
* Initialize mag_cache structure in slab cache
557
static void make_magcache(slab_cache_t *cache)
561
ASSERT(_slab_initialized >= 2);
563
cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
565
for (i = 0; i < config.cpu_count; i++) {
566
memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
567
spinlock_initialize(&cache->mag_cache[i].lock,
572
/** Initialize allocated memory as a slab cache */
574
_slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align,
575
int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
581
memsetb(cache, sizeof(*cache), 0);
584
if (align < sizeof(unative_t))
585
align = sizeof(unative_t);
586
size = ALIGN_UP(size, align);
590
cache->constructor = constructor;
591
cache->destructor = destructor;
592
cache->flags = flags;
594
list_initialize(&cache->full_slabs);
595
list_initialize(&cache->partial_slabs);
596
list_initialize(&cache->magazines);
597
spinlock_initialize(&cache->slablock, "slab_lock");
598
spinlock_initialize(&cache->maglock, "slab_maglock");
599
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
600
make_magcache(cache);
602
/* Compute slab sizes, object counts in slabs etc. */
603
if (cache->size < SLAB_INSIDE_SIZE)
604
cache->flags |= SLAB_CACHE_SLINSIDE;
606
/* Minimum slab order */
607
pages = SIZE2FRAMES(cache->size);
608
/* We need the 2^order >= pages */
612
cache->order = fnzb(pages - 1) + 1;
614
while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
617
cache->objects = comp_objects(cache);
618
/* If info fits in, put it inside */
619
if (badness(cache) > sizeof(slab_t))
620
cache->flags |= SLAB_CACHE_SLINSIDE;
622
/* Add cache to cache list */
623
ipl = interrupts_disable();
624
spinlock_lock(&slab_cache_lock);
626
list_append(&cache->link, &slab_cache_list);
628
spinlock_unlock(&slab_cache_lock);
629
interrupts_restore(ipl);
632
/** Create slab cache */
634
slab_cache_create(char *name, size_t size, size_t align,
635
int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
640
cache = slab_alloc(&slab_cache_cache, 0);
641
_slab_cache_create(cache, name, size, align, constructor, destructor,
647
* Reclaim space occupied by objects that are already free
649
* @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
650
* @return Number of freed pages
652
static size_t _slab_reclaim(slab_cache_t *cache, int flags)
655
slab_magazine_t *mag;
659
if (cache->flags & SLAB_CACHE_NOMAGAZINE)
660
return 0; /* Nothing to do */
662
/* We count up to original magazine count to avoid
665
magcount = atomic_get(&cache->magazine_counter);
666
while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
667
frames += magazine_destroy(cache,mag);
668
if (!(flags & SLAB_RECLAIM_ALL) && frames)
672
if (flags & SLAB_RECLAIM_ALL) {
673
/* Free cpu-bound magazines */
674
/* Destroy CPU magazines */
675
for (i = 0; i < config.cpu_count; i++) {
676
spinlock_lock(&cache->mag_cache[i].lock);
678
mag = cache->mag_cache[i].current;
680
frames += magazine_destroy(cache, mag);
681
cache->mag_cache[i].current = NULL;
683
mag = cache->mag_cache[i].last;
685
frames += magazine_destroy(cache, mag);
686
cache->mag_cache[i].last = NULL;
688
spinlock_unlock(&cache->mag_cache[i].lock);
695
/** Check that there are no slabs and remove cache from system */
696
void slab_cache_destroy(slab_cache_t *cache)
700
/* First remove cache from link, so that we don't need
701
* to disable interrupts later
704
ipl = interrupts_disable();
705
spinlock_lock(&slab_cache_lock);
707
list_remove(&cache->link);
709
spinlock_unlock(&slab_cache_lock);
710
interrupts_restore(ipl);
712
/* Do not lock anything, we assume the software is correct and
713
* does not touch the cache when it decides to destroy it */
715
/* Destroy all magazines */
716
_slab_reclaim(cache, SLAB_RECLAIM_ALL);
718
/* All slabs must be empty */
719
if (!list_empty(&cache->full_slabs) ||
720
!list_empty(&cache->partial_slabs))
721
panic("Destroying cache that is not empty.");
723
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
724
free(cache->mag_cache);
725
slab_free(&slab_cache_cache, cache);
728
/** Allocate new object from cache - if no flags given, always returns memory */
729
void *slab_alloc(slab_cache_t *cache, int flags)
734
/* Disable interrupts to avoid deadlocks with interrupt handlers */
735
ipl = interrupts_disable();
737
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
738
result = magazine_obj_get(cache);
741
result = slab_obj_create(cache, flags);
743
interrupts_restore(ipl);
746
atomic_inc(&cache->allocated_objs);
751
/** Return object to cache, use slab if known */
752
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
756
ipl = interrupts_disable();
758
if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
759
magazine_obj_put(cache, obj)) {
760
slab_obj_destroy(cache, obj, slab);
763
interrupts_restore(ipl);
764
atomic_dec(&cache->allocated_objs);
767
/** Return slab object to cache */
768
void slab_free(slab_cache_t *cache, void *obj)
770
_slab_free(cache, obj, NULL);
773
/* Go through all caches and reclaim what is possible */
774
size_t slab_reclaim(int flags)
780
spinlock_lock(&slab_cache_lock);
782
/* TODO: Add assert, that interrupts are disabled, otherwise
783
* memory allocation from interrupts can deadlock.
786
for (cur = slab_cache_list.next; cur != &slab_cache_list;
788
cache = list_get_instance(cur, slab_cache_t, link);
789
frames += _slab_reclaim(cache, flags);
792
spinlock_unlock(&slab_cache_lock);
798
/* Print list of slabs */
799
void slab_print_list(void)
803
printf("slab name size pages obj/pg slabs cached allocated"
805
printf("---------------- -------- ------ ------ ------ ------ ---------"
815
* We must not hold the slab_cache_lock spinlock when printing
816
* the statistics. Otherwise we can easily deadlock if the print
817
* needs to allocate memory.
819
* Therefore, we walk through the slab cache list, skipping some
820
* amount of already processed caches during each iteration and
821
* gathering statistics about the first unprocessed cache. For
822
* the sake of printing the statistics, we realese the
823
* slab_cache_lock and reacquire it afterwards. Then the walk
826
* This limits both the efficiency and also accuracy of the
827
* obtained statistics. The efficiency is decreased because the
828
* time complexity of the algorithm is quadratic instead of
829
* linear. The accuracy is impacted because we drop the lock
830
* after processing one cache. If there is someone else
831
* manipulating the cache list, we might omit an arbitrary
832
* number of caches or process one cache multiple times.
833
* However, we don't bleed for this algorithm for it is only
837
ipl = interrupts_disable();
838
spinlock_lock(&slab_cache_lock);
840
for (i = 0, cur = slab_cache_list.next;
841
i < skip && cur != &slab_cache_list;
842
i++, cur = cur->next)
845
if (cur == &slab_cache_list) {
846
spinlock_unlock(&slab_cache_lock);
847
interrupts_restore(ipl);
853
cache = list_get_instance(cur, slab_cache_t, link);
855
char *name = cache->name;
856
uint8_t order = cache->order;
857
size_t size = cache->size;
858
unsigned int objects = cache->objects;
859
long allocated_slabs = atomic_get(&cache->allocated_slabs);
860
long cached_objs = atomic_get(&cache->cached_objs);
861
long allocated_objs = atomic_get(&cache->allocated_objs);
862
int flags = cache->flags;
864
spinlock_unlock(&slab_cache_lock);
865
interrupts_restore(ipl);
867
printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
868
name, size, (1 << order), objects, allocated_slabs,
869
cached_objs, allocated_objs,
870
flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
874
void slab_cache_init(void)
878
/* Initialize magazine cache */
879
_slab_cache_create(&mag_cache, "slab_magazine",
880
sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
881
sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
882
SLAB_CACHE_SLINSIDE);
883
/* Initialize slab_cache cache */
884
_slab_cache_create(&slab_cache_cache, "slab_cache",
885
sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
886
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
887
/* Initialize external slab cache */
888
slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
889
NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
891
/* Initialize structures for malloc */
892
for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
893
i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
895
malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
896
NULL, NULL, SLAB_CACHE_MAGDEFERRED);
899
_slab_initialized = 1;
905
* Kernel calls this function, when it knows the real number of
907
* Allocate slab for cpucache and enable it on all existing
908
* slabs that are SLAB_CACHE_MAGDEFERRED
910
void slab_enable_cpucache(void)
916
_slab_initialized = 2;
919
spinlock_lock(&slab_cache_lock);
921
for (cur = slab_cache_list.next; cur != &slab_cache_list;
923
s = list_get_instance(cur, slab_cache_t, link);
924
if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
925
SLAB_CACHE_MAGDEFERRED)
928
s->flags &= ~SLAB_CACHE_MAGDEFERRED;
931
spinlock_unlock(&slab_cache_lock);
934
/**************************************/
935
/* kalloc/kfree functions */
936
void *malloc(unsigned int size, int flags)
938
ASSERT(_slab_initialized);
939
ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
941
if (size < (1 << SLAB_MIN_MALLOC_W))
942
size = (1 << SLAB_MIN_MALLOC_W);
944
int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
946
return slab_alloc(malloc_caches[idx], flags);
949
void *realloc(void *ptr, unsigned int size, int flags)
951
ASSERT(_slab_initialized);
952
ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
957
if (size < (1 << SLAB_MIN_MALLOC_W))
958
size = (1 << SLAB_MIN_MALLOC_W);
959
int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
961
new_ptr = slab_alloc(malloc_caches[idx], flags);
965
if ((new_ptr != NULL) && (ptr != NULL)) {
966
slab_t *slab = obj2slab(ptr);
967
memcpy(new_ptr, ptr, min(size, slab->cache->size));
981
slab_t *slab = obj2slab(ptr);
982
_slab_free(slab->cache, ptr, slab);