~lenzgr/+junk/QuaduIMU

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/* *********************************************************************** */
/*                    QuaduIMU Quadcopter                                  */
/*                                                                         */
/* Code based on ArduIMU DCM code from Diydrones.com  (r20)                */
/* and Jose Julio's JJ ArduIMU Quadcopter (Ver. 1.15)                      */
/* Author:  Lenz Grimmer                                                   */
#define SOFTWARE_VER "0.4"
/* This version supports the HMC5843 Triple Axis Magnetometer (Optional)   */
/* Merged and adapted from Jose's v1.27 (mini) code                        */
/* Merged Motor and RX control from Paul René Jørgensen's Quaduino Code    */
/* Merged ADC improvements and loop control from Loris Rion's EasyIMUPilot */
/* *********************************************************************** */

#include <inttypes.h>
#include <math.h>
#include <Wire.h>   // For magnetometer readings
#include <ServoDecode.h>
#include <ServoTimer2.h> 

/* ***************************************************************************** */
/*  CONFIGURATION PART                                                           */
/* ***************************************************************************** */

#define HAVE_MAGNETOMETER 1  // 0 : No magnetometer    1: Magnetometer

// QuadCopter Attitude control PID GAINS
#define KP_QUAD_ROLL 2.0
#define KD_QUAD_ROLL 0.4
#define KI_QUAD_ROLL 0.5 
#define KP_QUAD_PITCH 2.0 //1.75 //1.6 // 2.2   //1.75
#define KD_QUAD_PITCH 0.4 //0.4 //0.42 // 0.54  //0.45
#define KI_QUAD_PITCH 0.5 //0.42 // 0.4  //0.5
#define KP_QUAD_YAW 3.5 // 4.6  //3.2 //2.6
#define KD_QUAD_YAW 1.0 // 0.7  //0.8 //0.4
#define KI_QUAD_YAW 0.15 // 0.2  //0.15

#define KD_QUAD_COMMAND_PART 13.0   // for special KD implementation (in two parts). Higher values makes the quadcopter more responsive to user inputs

// Maximum Roll and Pitch angles (in °)
#define MAX_ROLL 45
#define MAX_PITCH 45
// Maximum absolute yaw speed (in °/s)
#define MAX_YAW_SPEED 8

// The IMU should be correctly adjusted : Gyro Gains and also initial IMU offsets:
// We have to take this values with the IMU flat (0º roll, 0ºpitch)
#define acc_offset_x 508 
#define acc_offset_y 504
#define acc_offset_z 501       // We need to rotate the IMU exactly 90º to take this value  
#define gyro_offset_roll 365
#define gyro_offset_pitch 370
#define gyro_offset_yaw 380

// RX pulse range (in ms)
#define MIN_CHANN 1160      // RX Throttle pulse width at minimum...
#define MAX_CHANN 1830
#define CHANN_CENTER 1500
#define MINCHECK MIN_CHANN+40
#define MAXCHECK MAX_CHANN-40

//Loop speed - AHRS_LOOP must be a multiple of all other loop rates
#define AHRS_LOOP 100           // IMU main loop (in Hz)
#define MAGNETOMETER_LOOP 10    // IMU magnetometer loop (in Hz)
#define TELEMETRY_LOOP 20       // Telemetry loop (in Hz)
#define RADIO_LOOP 50           // Radio RX loop (in Hz)
#define CONTROL_LOOP 100        // Control (PID + servos update) loop (in Hz)

#define ARM_DELAY 2 // Motor arming delay (in seconds)

/* *************************************************** */
/*           END OF CONFIGURATION PART                 */
/* *************************************************** */

// ADC : Voltage reference 3.3v / 10bits(1024 steps) => 3.22mV/ADC step
// ADXL335 Sensitivity(from datasheet) => 330mV/g, 3.22mV/ADC step => 330/3.22 = 102.48
// Tested value : 101
#define GRAVITY 101 //this equivalent to 1G in the raw data coming from the accelerometer 
#define Accel_Scale(x) x*(GRAVITY/9.81)//Scaling the raw data of the accel to actual acceleration in meters for seconds square

#define ToRad(x) (x*0.01745329252)  // *pi/180
#define ToDeg(x) (x*57.2957795131)  // *180/pi

// LPR530 & LY530 Sensitivity (from datasheet) => 3.33mV/º/s, 3.22mV/ADC step => 1.03
// Tested values : 0.96,0.96,0.94
#define Gyro_Gain_X 0.92 //X axis Gyro gain
#define Gyro_Gain_Y 0.92 //Y axis Gyro gain
#define Gyro_Gain_Z 0.94 //Z axis Gyro gain
#define Gyro_Scaled_X(x) x*ToRad(Gyro_Gain_X) //Return the scaled ADC raw data of the gyro in radians for second
#define Gyro_Scaled_Y(x) x*ToRad(Gyro_Gain_Y) //Return the scaled ADC raw data of the gyro in radians for second
#define Gyro_Scaled_Z(x) x*ToRad(Gyro_Gain_Z) //Return the scaled ADC raw data of the gyro in radians for second

#define Kp_ROLLPITCH 0.0125 //0.008  //0.0125 //0.010 // Pitch&Roll Proportional Gain
#define Ki_ROLLPITCH 0.000010 // Pitch&Roll Integrator Gain
#define Kp_YAW 1.0 // Yaw Porportional Gain  
#define Ki_YAW 0.00005 // Yaw Integrator Gain

//Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
int SENSOR_SIGN[]={ 1, -1, -1, 1, -1, 1, -1, -1, -1};
// Sensor pin order (for ArduIMU v2 flat)
uint8_t sensors[6] = {6, 7, 3, 0, 1, 2};

volatile unsigned int AN_raw[8]; //store the ADC raw data in 12 bits
unsigned int AN_OFFSET[6]; //Array that stores the Offset
float AN[6]; //array that store the 6 ADC filtered data

float Accel_Vector[3]= {0,0,0}; //Store the acceleration in a vector
float Accel_Vector_unfiltered[3]= {0,0,0}; //Store the acceleration in a vector
float Accel_magnitude;
float Accel_weight;
float Gyro_Vector[3]= {0,0,0};//Store the gyros rutn rate in a vector
float Omega_Vector[3]= {0,0,0}; //Corrected Gyro_Vector data
float Omega_P[3]= {0,0,0};//Omega Proportional correction
float Omega_I[3]= {0,0,0};//Omega Integrator
float Omega[3]= {0,0,0};

float errorRollPitch[3]= {0,0,0};
float errorYaw[3]= {0,0,0};

float roll=0;
float pitch=0;
float yaw=0;

//Magnetometer variables
boolean magnetom_enabled=true;
int magnetom_x;
int magnetom_y;
int magnetom_z;
float MAG_Heading;

float DCM_Matrix[3][3]= {
  {
    1,0,0  }
  ,{
    0,1,0  }
  ,{
    0,0,1  }
}; 

//  RX PPM channel order for DX7 and Spektrum2PPM
// ===============================================
//  1: Throttle (left stick down->up)
//  2: Roll (right stick right->left)
//  3: Pitch/Nick (right stick down->up)
//  4: Yaw (left stick right->left)
//  5: Gear (Switch 1->0)
//  6: Flt Mode (Switch 2->1->N)
//  7: Aux2 (Switch 1->0)

#define RX_THROTTLE 1
#define RX_ROLL 2
#define RX_PITCH 3
#define RX_YAW 4
#define RX_GEAR 5
#define RX_FLTMODE 6
#define RX_AUX 7

// Configure stick behaviour
#define REVERSE_ROLL -          // Reverse roll  (+ or -)
#define REVERSE_PITCH -         // Reverse pitch (+ or -)
#define REVERSE_YAW -           // Reverse yaw (+ or -)
#define REVERSE_THROTTLE +      // Reverse throttle (+ or -)

#define THROTTLE RX_THROTTLE-1
#define ROLL RX_ROLL-1
#define PITCH RX_PITCH-1
#define YAW RX_YAW-1
#define GEAR RX_GEAR-1
#define FLTMODE RX_FLTMODE-1
#define AUX RX_AUX-1

// PPM Rx signal read (ICP) constants and variables
// RX command states
#define RX_NOT_SYNCHED 0
#define RX_ACQUIRING 1
#define RX_READY 2
#define RX_IN_FAILSAFE 3

// Define LEDs
// Red indicates motors are armed
#define REDLEDPIN 5
#define REDLEDON digitalWrite(REDLEDPIN, HIGH)
#define REDLEDOFF digitalWrite(REDLEDPIN, LOW)
// Blue indicates RX readiness
#define BLUELEDPIN 6
#define BLUELEDON digitalWrite(BLUELEDPIN, HIGH)
#define BLUELEDOFF digitalWrite(BLUELEDPIN, LOW)
// Yellow indicates IMU activity and commands being sent to the motors
#define YELLOWLEDPIN 7
#define YELLOWLEDON digitalWrite(YELLOWLEDPIN, HIGH)
#define YELLOWLEDOFF digitalWrite(YELLOWLEDPIN, LOW)

#define MOTOR_FRONT 0
#define MOTOR_REAR 1
#define MOTOR_LEFT 2
#define MOTOR_RIGHT 3

struct RX {
  int raw[7];        // Raw 
  int value[7];      // Smoothed
  float command[7];  // Processed
  float diff[7];     // Delta between two samples
  int state;         // RX command state (e.g. RX_NOT_SYNCHED or RX_READY
} rx = {
  { 0, 0, 0, 0, 0, 0, 0 },
  { 0, 0, 0, 0, 0, 0, 0 },
  { 0, 0, 0, 0, 0, 0, 0 },
  { 0, 0, 0, 0, 0, 0, 0 },
  RX_NOT_SYNCHED
};

struct Motor {
  int command[4];
  boolean armed;
} motor = {
  { MIN_CHANN, MIN_CHANN, MIN_CHANN, MIN_CHANN },
  false,
};

// ADC variables
volatile uint8_t MuxSel=0;
volatile uint8_t analog_reference = DEFAULT;
volatile uint16_t analog_buffer[8];
volatile uint8_t analog_count[8];
int an_count;

// Attitude control variables
int control_roll;           // Control results
int control_pitch;
int control_yaw;

// Attitude control
float roll_I=0;
float roll_D;
float err_roll;
float pitch_I=0;
float pitch_D;
float err_pitch;
float yaw_I=0;
float yaw_D;
float err_yaw;

// timer variables
unsigned int counter = 0;
float G_Dt;    // Integration time for the gyros (DCM algorithm)
long timer = 0; //general purpose timer 
long timer_old = 0;
unsigned int arming_counter = 0;

void setup(){
  
  Serial.begin(38400);
  Serial.println();
  Serial.print("QuaduIMU v");
  Serial.println(SOFTWARE_VER);

  pinMode(BLUELEDPIN, OUTPUT); // Blue LED
  pinMode(REDLEDPIN, OUTPUT);  // Red LED
  pinMode(YELLOWLEDPIN, OUTPUT); // Yellow LED
  BLUELEDON;
  REDLEDON;
  YELLOWLEDON;

  // Attach ESCs and set to minimum throttle. Motors are disarmed.
  setupMotors();
 
  Analog_Reference(EXTERNAL);
  Analog_Init();
 
#if (HAVE_MAGNETOMETER==1)
  // Magnetometer initialization
  I2C_Init();
  Compass_Init();
#endif

  Read_adc_raw();
  delay(20);

  // Offset values for accels and gyros...
  AN_OFFSET[0] = gyro_offset_roll;
  AN_OFFSET[1] = gyro_offset_pitch;
  AN_OFFSET[2] = gyro_offset_yaw;
  AN_OFFSET[3] = acc_offset_x;
  AN_OFFSET[4] = acc_offset_y;
  AN_OFFSET[5] = acc_offset_z;
 
  // Take the gyro offset values
  for(int i=0;i<300;i++)
  {
    Read_adc_raw();
    for(int y=0; y<=2; y++)   // Read initial ADC values for offset.
      AN_OFFSET[y]=AN_OFFSET[y]*0.8 + AN[y]*0.2;
    delay(20);
  }
 
  Serial.print("AN:");
  for (int i=0; i<6; i++)
  {
    Serial.print(",");
    Serial.println(AN_OFFSET[i]);
  }
  YELLOWLEDOFF;

  setupRX();

  Read_adc_raw();   // Start ADC readings...
  timer = millis();
  delay(20);
  BLUELEDOFF;
}

/* MAIN LOOP */
void loop() {
  
  if((DIYmillis()-timer) >= (1000/AHRS_LOOP)) //AHRS LOOP
  {
    counter++;
    timer_old = timer;
    timer=millis();
    G_Dt = (timer-timer_old)/1000.0;      // Real time of loop run 
	
#if (HAVE_MAGNETOMETER==1)
    if (counter % (AHRS_LOOP/MAGNETOMETER_LOOP) == 0 && magnetom_enabled) //MAGNETOMETER LOOP
    {
      Read_Compass();    // Read I2C magnetometer
      Compass_Heading(); // Calculate magnetic heading  
    }
#endif
    
    //Read ADC (accelero & gyros)
    Read_adc_raw();

    // IMU DCM Algorithm
    DCM(); 
   
    if (counter % (AHRS_LOOP/RADIO_LOOP) == 0) //CONTROL LOOP
    {
       updateRX();
    }

    if (counter % (AHRS_LOOP/CONTROL_LOOP) == 0) //CONTROL LOOP
    {
      if (rx.state==RX_READY) {
        Attitude_control();
      
        // Quadcopter mix
        if (rx.raw[THROTTLE] > (MINCHECK) && motor.armed)  // Minimum throttle to start control
        {
          YELLOWLEDON; 
          motor.command[MOTOR_RIGHT]=rx.raw[THROTTLE] - control_roll + control_yaw;    // Right motor
          motor.command[MOTOR_LEFT]=rx.raw[THROTTLE] + control_roll + control_yaw;    // Left motor
          motor.command[MOTOR_FRONT]=rx.raw[THROTTLE] + control_pitch - control_yaw;   // Front motor
          motor.command[MOTOR_REAR]=rx.raw[THROTTLE] - control_pitch - control_yaw;   // rear motor
          updateMotors();
        } else {
          YELLOWLEDOFF; 
          rx.command[YAW] = ToDeg(yaw);
          roll_I = 0;  // reset I terms...
          pitch_I = 0;
          yaw_I = 0; 
          // Motors stopped
          setAllMotors(MIN_CHANN);
          updateMotors();
        }
      } else {  // rx.state!=RX_READY => Lost radio signal => Descend slowly...
        // Descend  (Reduce throttle)
        if (rx.raw[THROTTLE]>MIN_CHANN)
          rx.raw[THROTTLE]--;
        rx.command[ROLL] = 0;     // Stabilize to roll=0, pitch=0, yaw not important
        rx.command[PITCH] = 0;
        Attitude_control();
        // Quadcopter mix, no yaw
        motor.command[MOTOR_RIGHT]=rx.raw[THROTTLE] - control_roll;    // Right motor
        motor.command[MOTOR_LEFT]=rx.raw[THROTTLE] + control_roll;    // Left motor
        motor.command[MOTOR_FRONT]=rx.raw[THROTTLE] + control_pitch;   // Front motor
        motor.command[MOTOR_REAR]=rx.raw[THROTTLE] - control_pitch;   // rear motor
        updateMotors();
      }
    }

    if (counter % (AHRS_LOOP/TELEMETRY_LOOP) == 0) //TELEMETRY LOOP
    {
      // Telemetry data...
      printdata();
    }
  }
}