~scrawl-deactivatedaccount/+junk/StuntRally

« back to all changes in this revision

Viewing changes to bullet/BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.cpp

  • Committer: Jannik Heller
  • Date: 2011-01-30 12:41:18 UTC
  • Revision ID: scrawl@scrawl-desktop-20110130124118-v5euo5nkmhjqqd9s
First commit

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/*
 
2
Bullet Continuous Collision Detection and Physics Library
 
3
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 
4
 
 
5
This software is provided 'as-is', without any express or implied warranty.
 
6
In no event will the authors be held liable for any damages arising from the use of this software.
 
7
Permission is granted to anyone to use this software for any purpose, 
 
8
including commercial applications, and to alter it and redistribute it freely, 
 
9
subject to the following restrictions:
 
10
 
 
11
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 
12
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 
13
3. This notice may not be removed or altered from any source distribution.
 
14
*/
 
15
 
 
16
 
 
17
#include "btSubSimplexConvexCast.h"
 
18
#include "BulletCollision/CollisionShapes/btConvexShape.h"
 
19
 
 
20
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
 
21
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
 
22
#include "btPointCollector.h"
 
23
#include "LinearMath/btTransformUtil.h"
 
24
 
 
25
btSubsimplexConvexCast::btSubsimplexConvexCast (const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
 
26
:m_simplexSolver(simplexSolver),
 
27
m_convexA(convexA),m_convexB(convexB)
 
28
{
 
29
}
 
30
 
 
31
///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
 
32
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
 
33
#ifdef BT_USE_DOUBLE_PRECISION
 
34
#define MAX_ITERATIONS 64
 
35
#else
 
36
#define MAX_ITERATIONS 32
 
37
#endif
 
38
bool    btSubsimplexConvexCast::calcTimeOfImpact(
 
39
                const btTransform& fromA,
 
40
                const btTransform& toA,
 
41
                const btTransform& fromB,
 
42
                const btTransform& toB,
 
43
                CastResult& result)
 
44
{
 
45
 
 
46
        m_simplexSolver->reset();
 
47
 
 
48
        btVector3 linVelA,linVelB;
 
49
        linVelA = toA.getOrigin()-fromA.getOrigin();
 
50
        linVelB = toB.getOrigin()-fromB.getOrigin();
 
51
 
 
52
        btScalar lambda = btScalar(0.);
 
53
 
 
54
        btTransform interpolatedTransA = fromA;
 
55
        btTransform interpolatedTransB = fromB;
 
56
 
 
57
        ///take relative motion
 
58
        btVector3 r = (linVelA-linVelB);
 
59
        btVector3 v;
 
60
        
 
61
        btVector3 supVertexA = fromA(m_convexA->localGetSupportingVertex(-r*fromA.getBasis()));
 
62
        btVector3 supVertexB = fromB(m_convexB->localGetSupportingVertex(r*fromB.getBasis()));
 
63
        v = supVertexA-supVertexB;
 
64
        int maxIter = MAX_ITERATIONS;
 
65
 
 
66
        btVector3 n;
 
67
        n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
 
68
        bool hasResult = false;
 
69
        btVector3 c;
 
70
 
 
71
        btScalar lastLambda = lambda;
 
72
 
 
73
 
 
74
        btScalar dist2 = v.length2();
 
75
#ifdef BT_USE_DOUBLE_PRECISION
 
76
        btScalar epsilon = btScalar(0.0001);
 
77
#else
 
78
        btScalar epsilon = btScalar(0.0001);
 
79
#endif //BT_USE_DOUBLE_PRECISION
 
80
        btVector3       w,p;
 
81
        btScalar VdotR;
 
82
        
 
83
        while ( (dist2 > epsilon) && maxIter--)
 
84
        {
 
85
                supVertexA = interpolatedTransA(m_convexA->localGetSupportingVertex(-v*interpolatedTransA.getBasis()));
 
86
                supVertexB = interpolatedTransB(m_convexB->localGetSupportingVertex(v*interpolatedTransB.getBasis()));
 
87
                w = supVertexA-supVertexB;
 
88
 
 
89
                btScalar VdotW = v.dot(w);
 
90
 
 
91
                if (lambda > btScalar(1.0))
 
92
                {
 
93
                        return false;
 
94
                }
 
95
 
 
96
                if ( VdotW > btScalar(0.))
 
97
                {
 
98
                        VdotR = v.dot(r);
 
99
 
 
100
                        if (VdotR >= -(SIMD_EPSILON*SIMD_EPSILON))
 
101
                                return false;
 
102
                        else
 
103
                        {
 
104
                                lambda = lambda - VdotW / VdotR;
 
105
                                //interpolate to next lambda
 
106
                                //      x = s + lambda * r;
 
107
                                interpolatedTransA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
 
108
                                interpolatedTransB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
 
109
                                //m_simplexSolver->reset();
 
110
                                //check next line
 
111
                                 w = supVertexA-supVertexB;
 
112
                                lastLambda = lambda;
 
113
                                n = v;
 
114
                                hasResult = true;
 
115
                        }
 
116
                } 
 
117
                ///Just like regular GJK only add the vertex if it isn't already (close) to current vertex, it would lead to divisions by zero and NaN etc.
 
118
                if (!m_simplexSolver->inSimplex(w))
 
119
                        m_simplexSolver->addVertex( w, supVertexA , supVertexB);
 
120
 
 
121
                if (m_simplexSolver->closest(v))
 
122
                {
 
123
                        dist2 = v.length2();
 
124
                        hasResult = true;
 
125
                        //todo: check this normal for validity
 
126
                        //n=v;
 
127
                        //printf("V=%f , %f, %f\n",v[0],v[1],v[2]);
 
128
                        //printf("DIST2=%f\n",dist2);
 
129
                        //printf("numverts = %i\n",m_simplexSolver->numVertices());
 
130
                } else
 
131
                {
 
132
                        dist2 = btScalar(0.);
 
133
                } 
 
134
        }
 
135
 
 
136
        //int numiter = MAX_ITERATIONS - maxIter;
 
137
//      printf("number of iterations: %d", numiter);
 
138
        
 
139
        //don't report a time of impact when moving 'away' from the hitnormal
 
140
        
 
141
 
 
142
        result.m_fraction = lambda;
 
143
        if (n.length2() >= (SIMD_EPSILON*SIMD_EPSILON))
 
144
                result.m_normal = n.normalized();
 
145
        else
 
146
                result.m_normal = btVector3(btScalar(0.0), btScalar(0.0), btScalar(0.0));
 
147
 
 
148
        //don't report time of impact for motion away from the contact normal (or causes minor penetration)
 
149
        if (result.m_normal.dot(r)>=-result.m_allowedPenetration)
 
150
                return false;
 
151
 
 
152
        btVector3 hitA,hitB;
 
153
        m_simplexSolver->compute_points(hitA,hitB);
 
154
        result.m_hitPoint=hitB;
 
155
        return true;
 
156
}
 
157
 
 
158
 
 
159
 
 
160