~ubuntu-branches/ubuntu/hardy/avidemux/hardy

« back to all changes in this revision

Viewing changes to avidemux/ADM_libswscale/swscale.c

  • Committer: Bazaar Package Importer
  • Author(s): Daniel T Chen
  • Date: 2006-12-15 17:13:20 UTC
  • mfrom: (1.1.6 upstream)
  • Revision ID: james.westby@ubuntu.com-20061215171320-w79pvpehxx2fr217
Tags: 1:2.3.0-0.0ubuntu1
* Merge from debian-multimedia.org, remaining Ubuntu change:
  - desktop file,
  - no support for ccache and make -j.
* Closes Ubuntu: #69614.

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/*
 
2
    Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
 
3
 
 
4
    This program is free software; you can redistribute it and/or modify
 
5
    it under the terms of the GNU General Public License as published by
 
6
    the Free Software Foundation; either version 2 of the License, or
 
7
    (at your option) any later version.
 
8
 
 
9
    This program is distributed in the hope that it will be useful,
 
10
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 
11
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
12
    GNU General Public License for more details.
 
13
 
 
14
    You should have received a copy of the GNU General Public License
 
15
    along with this program; if not, write to the Free Software
 
16
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 
17
 
 
18
    the C code (not assembly, mmx, ...) of the swscaler which has been written
 
19
    by Michael Niedermayer can be used under the LGPL license too
 
20
*/
 
21
 
 
22
/*
 
23
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
 
24
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
 
25
  {BGR,RGB}{1,4,8,15,16} support dithering
 
26
  
 
27
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
 
28
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
 
29
  x -> x
 
30
  YUV9 -> YV12
 
31
  YUV9/YV12 -> Y800
 
32
  Y800 -> YUV9/YV12
 
33
  BGR24 -> BGR32 & RGB24 -> RGB32
 
34
  BGR32 -> BGR24 & RGB32 -> RGB24
 
35
  BGR15 -> BGR16
 
36
*/
 
37
 
 
38
/* 
 
39
tested special converters (most are tested actually but i didnt write it down ...)
 
40
 YV12 -> BGR16
 
41
 YV12 -> YV12
 
42
 BGR15 -> BGR16
 
43
 BGR16 -> BGR16
 
44
 YVU9 -> YV12
 
45
 
 
46
untested special converters
 
47
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
 
48
  YV12/I420 -> YV12/I420
 
49
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
 
50
  BGR24 -> BGR32 & RGB24 -> RGB32
 
51
  BGR32 -> BGR24 & RGB32 -> RGB24
 
52
  BGR24 -> YV12
 
53
*/
 
54
// MEANX
 
55
#include "config.h"
 
56
// /MEANX
 
57
#include <inttypes.h>
 
58
#include <string.h>
 
59
#include <math.h>
 
60
#include <stdio.h>
 
61
#include <unistd.h>
 
62
#include "config.h"
 
63
#include <assert.h>
 
64
#ifdef HAVE_MALLOC_H
 
65
#include <malloc.h>
 
66
#else
 
67
#include <stdlib.h>
 
68
#endif
 
69
#ifdef HAVE_SYS_MMAN_H
 
70
#include <sys/mman.h>
 
71
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
 
72
#define MAP_ANONYMOUS MAP_ANON
 
73
#endif
 
74
#endif
 
75
#include "swscale.h"
 
76
#include "swscale_internal.h"
 
77
#include "x86_cpu.h"
 
78
#include "bswap.h"
 
79
#include "rgb2rgb.h"
 
80
// MEANX
 
81
#include "wrapper.h"
 
82
#include "../admmangle.h"
 
83
// /MEANX
 
84
#ifdef USE_FASTMEMCPY
 
85
#include "libvo/fastmemcpy.h"
 
86
#endif
 
87
 
 
88
#undef MOVNTQ
 
89
#undef PAVGB
 
90
 
 
91
//#undef HAVE_MMX2
 
92
//#define HAVE_3DNOW
 
93
//#undef HAVE_MMX
 
94
//#undef ARCH_X86
 
95
//#define WORDS_BIGENDIAN
 
96
#define DITHER1XBPP
 
97
 
 
98
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
 
99
 
 
100
#define RET 0xC3 //near return opcode for X86
 
101
 
 
102
#ifdef MP_DEBUG
 
103
#define ASSERT(x) assert(x);
 
104
#else
 
105
#define ASSERT(x) ;
 
106
#endif
 
107
 
 
108
#ifdef M_PI
 
109
#define PI M_PI
 
110
#else
 
111
#define PI 3.14159265358979323846
 
112
#endif
 
113
 
 
114
#define isSupportedIn(x)  ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
 
115
                        || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
 
116
                        || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24\
 
117
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
 
118
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P)
 
119
#define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
 
120
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
 
121
                        || isRGB(x) || isBGR(x)\
 
122
                        || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
 
123
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
 
124
#define isPacked(x)    ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x))
 
125
 
 
126
#define RGB2YUV_SHIFT 16
 
127
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
 
128
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
 
129
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
 
130
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
 
131
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
 
132
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
 
133
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
 
134
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
 
135
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
 
136
 
 
137
extern const int32_t Inverse_Table_6_9[8][4];
 
138
 
 
139
/*
 
140
NOTES
 
141
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
 
142
 
 
143
TODO
 
144
more intelligent missalignment avoidance for the horizontal scaler
 
145
write special vertical cubic upscale version
 
146
Optimize C code (yv12 / minmax)
 
147
add support for packed pixel yuv input & output
 
148
add support for Y8 output
 
149
optimize bgr24 & bgr32
 
150
add BGR4 output support
 
151
write special BGR->BGR scaler
 
152
*/
 
153
 
 
154
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
155
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
 
156
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
 
157
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
 
158
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
 
159
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
 
160
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
 
161
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
 
162
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
 
163
 
 
164
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
 
165
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
 
166
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
 
167
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
 
168
 
 
169
static uint64_t __attribute__((aligned(8))) dither4[2]={
 
170
        0x0103010301030103LL,
 
171
        0x0200020002000200LL,};
 
172
 
 
173
static uint64_t __attribute__((aligned(8))) dither8[2]={
 
174
        0x0602060206020602LL,
 
175
        0x0004000400040004LL,};
 
176
 
 
177
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
 
178
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
 
179
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
 
180
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
 
181
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
 
182
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
 
183
 
 
184
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
 
185
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
 
186
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
 
187
 
 
188
#ifdef FAST_BGR2YV12
 
189
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
 
190
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
 
191
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
 
192
#else
 
193
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
 
194
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
 
195
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
 
196
#endif /* FAST_BGR2YV12 */
 
197
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
 
198
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
 
199
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
 
200
#endif /* defined(ARCH_X86) || defined(ARCH_X86_64) */
 
201
 
 
202
// clipping helper table for C implementations:
 
203
static unsigned char clip_table[768];
 
204
 
 
205
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
 
206
                  
 
207
extern const uint8_t dither_2x2_4[2][8];
 
208
extern const uint8_t dither_2x2_8[2][8];
 
209
extern const uint8_t dither_8x8_32[8][8];
 
210
extern const uint8_t dither_8x8_73[8][8];
 
211
extern const uint8_t dither_8x8_220[8][8];
 
212
 
 
213
char *sws_format_name(enum PixelFormat format)
 
214
{
 
215
    switch (format) {
 
216
        case PIX_FMT_YUV420P:
 
217
            return "yuv420p";
 
218
        case PIX_FMT_YUYV422:
 
219
            return "yuyv422";
 
220
        case PIX_FMT_RGB24:
 
221
            return "rgb24";
 
222
        case PIX_FMT_BGR24:
 
223
            return "bgr24";
 
224
        case PIX_FMT_YUV422P:
 
225
            return "yuv422p";
 
226
        case PIX_FMT_YUV444P:
 
227
            return "yuv444p";
 
228
        case PIX_FMT_RGB32:
 
229
            return "rgb32";
 
230
        case PIX_FMT_YUV410P:
 
231
            return "yuv410p";
 
232
        case PIX_FMT_YUV411P:
 
233
            return "yuv411p";
 
234
        case PIX_FMT_RGB565:
 
235
            return "rgb565";
 
236
        case PIX_FMT_RGB555:
 
237
            return "rgb555";
 
238
        case PIX_FMT_GRAY8:
 
239
            return "gray8";
 
240
        case PIX_FMT_MONOWHITE:
 
241
            return "mono white";
 
242
        case PIX_FMT_MONOBLACK:
 
243
            return "mono black";
 
244
        case PIX_FMT_PAL8:
 
245
            return "Palette";
 
246
        case PIX_FMT_YUVJ420P:
 
247
            return "yuvj420p";
 
248
        case PIX_FMT_YUVJ422P:
 
249
            return "yuvj422p";
 
250
        case PIX_FMT_YUVJ444P:
 
251
            return "yuvj444p";
 
252
        case PIX_FMT_XVMC_MPEG2_MC:
 
253
            return "xvmc_mpeg2_mc";
 
254
        case PIX_FMT_XVMC_MPEG2_IDCT:
 
255
            return "xvmc_mpeg2_idct";
 
256
        case PIX_FMT_UYVY422:
 
257
            return "uyvy422";
 
258
        case PIX_FMT_UYYVYY411:
 
259
            return "uyyvyy411";
 
260
        case PIX_FMT_RGB32_1:
 
261
            return "rgb32x";
 
262
        case PIX_FMT_BGR32_1:
 
263
            return "bgr32x";
 
264
        case PIX_FMT_BGR32:
 
265
            return "bgr32";
 
266
        case PIX_FMT_BGR565:
 
267
            return "bgr565";
 
268
        case PIX_FMT_BGR555:
 
269
            return "bgr555";
 
270
        case PIX_FMT_BGR8:
 
271
            return "bgr8";
 
272
        case PIX_FMT_BGR4:
 
273
            return "bgr4";
 
274
        case PIX_FMT_BGR4_BYTE:
 
275
            return "bgr4 byte";
 
276
        case PIX_FMT_RGB8:
 
277
            return "rgb8";
 
278
        case PIX_FMT_RGB4:
 
279
            return "rgb4";
 
280
        case PIX_FMT_RGB4_BYTE:
 
281
            return "rgb4 byte";
 
282
        case PIX_FMT_NV12:
 
283
            return "nv12";
 
284
        case PIX_FMT_NV21:
 
285
            return "nv21";
 
286
        default:
 
287
            return "Unknown format";
 
288
    }
 
289
}
 
290
 
 
291
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
292
void in_asm_used_var_warning_killer()
 
293
{
 
294
 volatile int i= bF8+bFC+w10+
 
295
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
 
296
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
 
297
 if(i) i=0;
 
298
}
 
299
#endif
 
300
 
 
301
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
 
302
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
 
303
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
 
304
{
 
305
        //FIXME Optimize (just quickly writen not opti..)
 
306
        int i;
 
307
        for(i=0; i<dstW; i++)
 
308
        {
 
309
                int val=1<<18;
 
310
                int j;
 
311
                for(j=0; j<lumFilterSize; j++)
 
312
                        val += lumSrc[j][i] * lumFilter[j];
 
313
 
 
314
                dest[i]= FFMIN(FFMAX(val>>19, 0), 255);
 
315
        }
 
316
 
 
317
        if(uDest != NULL)
 
318
                for(i=0; i<chrDstW; i++)
 
319
                {
 
320
                        int u=1<<18;
 
321
                        int v=1<<18;
 
322
                        int j;
 
323
                        for(j=0; j<chrFilterSize; j++)
 
324
                        {
 
325
                                u += chrSrc[j][i] * chrFilter[j];
 
326
                                v += chrSrc[j][i + 2048] * chrFilter[j];
 
327
                        }
 
328
 
 
329
                        uDest[i]= FFMIN(FFMAX(u>>19, 0), 255);
 
330
                        vDest[i]= FFMIN(FFMAX(v>>19, 0), 255);
 
331
                }
 
332
}
 
333
 
 
334
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
 
335
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
 
336
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
 
337
{
 
338
        //FIXME Optimize (just quickly writen not opti..)
 
339
        int i;
 
340
        for(i=0; i<dstW; i++)
 
341
        {
 
342
                int val=1<<18;
 
343
                int j;
 
344
                for(j=0; j<lumFilterSize; j++)
 
345
                        val += lumSrc[j][i] * lumFilter[j];
 
346
 
 
347
                dest[i]= FFMIN(FFMAX(val>>19, 0), 255);
 
348
        }
 
349
 
 
350
        if(uDest == NULL)
 
351
                return;
 
352
 
 
353
        if(dstFormat == PIX_FMT_NV12)
 
354
                for(i=0; i<chrDstW; i++)
 
355
                {
 
356
                        int u=1<<18;
 
357
                        int v=1<<18;
 
358
                        int j;
 
359
                        for(j=0; j<chrFilterSize; j++)
 
360
                        {
 
361
                                u += chrSrc[j][i] * chrFilter[j];
 
362
                                v += chrSrc[j][i + 2048] * chrFilter[j];
 
363
                        }
 
364
 
 
365
                        uDest[2*i]= FFMIN(FFMAX(u>>19, 0), 255);
 
366
                        uDest[2*i+1]= FFMIN(FFMAX(v>>19, 0), 255);
 
367
                }
 
368
        else
 
369
                for(i=0; i<chrDstW; i++)
 
370
                {
 
371
                        int u=1<<18;
 
372
                        int v=1<<18;
 
373
                        int j;
 
374
                        for(j=0; j<chrFilterSize; j++)
 
375
                        {
 
376
                                u += chrSrc[j][i] * chrFilter[j];
 
377
                                v += chrSrc[j][i + 2048] * chrFilter[j];
 
378
                        }
 
379
 
 
380
                        uDest[2*i]= FFMIN(FFMAX(v>>19, 0), 255);
 
381
                        uDest[2*i+1]= FFMIN(FFMAX(u>>19, 0), 255);
 
382
                }
 
383
}
 
384
 
 
385
#define YSCALE_YUV_2_PACKEDX_C(type) \
 
386
                for(i=0; i<(dstW>>1); i++){\
 
387
                        int j;\
 
388
                        int Y1=1<<18;\
 
389
                        int Y2=1<<18;\
 
390
                        int U=1<<18;\
 
391
                        int V=1<<18;\
 
392
                        type *r, *b, *g;\
 
393
                        const int i2= 2*i;\
 
394
                        \
 
395
                        for(j=0; j<lumFilterSize; j++)\
 
396
                        {\
 
397
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
 
398
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
 
399
                        }\
 
400
                        for(j=0; j<chrFilterSize; j++)\
 
401
                        {\
 
402
                                U += chrSrc[j][i] * chrFilter[j];\
 
403
                                V += chrSrc[j][i+2048] * chrFilter[j];\
 
404
                        }\
 
405
                        Y1>>=19;\
 
406
                        Y2>>=19;\
 
407
                        U >>=19;\
 
408
                        V >>=19;\
 
409
                        if((Y1|Y2|U|V)&256)\
 
410
                        {\
 
411
                                if(Y1>255)   Y1=255;\
 
412
                                else if(Y1<0)Y1=0;\
 
413
                                if(Y2>255)   Y2=255;\
 
414
                                else if(Y2<0)Y2=0;\
 
415
                                if(U>255)    U=255;\
 
416
                                else if(U<0) U=0;\
 
417
                                if(V>255)    V=255;\
 
418
                                else if(V<0) V=0;\
 
419
                        }
 
420
                        
 
421
#define YSCALE_YUV_2_RGBX_C(type) \
 
422
                        YSCALE_YUV_2_PACKEDX_C(type)\
 
423
                        r = c->table_rV[V];\
 
424
                        g = c->table_gU[U] + c->table_gV[V];\
 
425
                        b = c->table_bU[U];\
 
426
 
 
427
#define YSCALE_YUV_2_PACKED2_C \
 
428
                for(i=0; i<(dstW>>1); i++){\
 
429
                        const int i2= 2*i;\
 
430
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
 
431
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
 
432
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
 
433
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
 
434
 
 
435
#define YSCALE_YUV_2_RGB2_C(type) \
 
436
                        YSCALE_YUV_2_PACKED2_C\
 
437
                        type *r, *b, *g;\
 
438
                        r = c->table_rV[V];\
 
439
                        g = c->table_gU[U] + c->table_gV[V];\
 
440
                        b = c->table_bU[U];\
 
441
 
 
442
#define YSCALE_YUV_2_PACKED1_C \
 
443
                for(i=0; i<(dstW>>1); i++){\
 
444
                        const int i2= 2*i;\
 
445
                        int Y1= buf0[i2  ]>>7;\
 
446
                        int Y2= buf0[i2+1]>>7;\
 
447
                        int U= (uvbuf1[i     ])>>7;\
 
448
                        int V= (uvbuf1[i+2048])>>7;\
 
449
 
 
450
#define YSCALE_YUV_2_RGB1_C(type) \
 
451
                        YSCALE_YUV_2_PACKED1_C\
 
452
                        type *r, *b, *g;\
 
453
                        r = c->table_rV[V];\
 
454
                        g = c->table_gU[U] + c->table_gV[V];\
 
455
                        b = c->table_bU[U];\
 
456
 
 
457
#define YSCALE_YUV_2_PACKED1B_C \
 
458
                for(i=0; i<(dstW>>1); i++){\
 
459
                        const int i2= 2*i;\
 
460
                        int Y1= buf0[i2  ]>>7;\
 
461
                        int Y2= buf0[i2+1]>>7;\
 
462
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
 
463
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
 
464
 
 
465
#define YSCALE_YUV_2_RGB1B_C(type) \
 
466
                        YSCALE_YUV_2_PACKED1B_C\
 
467
                        type *r, *b, *g;\
 
468
                        r = c->table_rV[V];\
 
469
                        g = c->table_gU[U] + c->table_gV[V];\
 
470
                        b = c->table_bU[U];\
 
471
 
 
472
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
 
473
        switch(c->dstFormat)\
 
474
        {\
 
475
        case PIX_FMT_RGB32:\
 
476
        case PIX_FMT_BGR32:\
 
477
                func(uint32_t)\
 
478
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
 
479
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
 
480
                }               \
 
481
                break;\
 
482
        case PIX_FMT_RGB24:\
 
483
                func(uint8_t)\
 
484
                        ((uint8_t*)dest)[0]= r[Y1];\
 
485
                        ((uint8_t*)dest)[1]= g[Y1];\
 
486
                        ((uint8_t*)dest)[2]= b[Y1];\
 
487
                        ((uint8_t*)dest)[3]= r[Y2];\
 
488
                        ((uint8_t*)dest)[4]= g[Y2];\
 
489
                        ((uint8_t*)dest)[5]= b[Y2];\
 
490
                        dest+=6;\
 
491
                }\
 
492
                break;\
 
493
        case PIX_FMT_BGR24:\
 
494
                func(uint8_t)\
 
495
                        ((uint8_t*)dest)[0]= b[Y1];\
 
496
                        ((uint8_t*)dest)[1]= g[Y1];\
 
497
                        ((uint8_t*)dest)[2]= r[Y1];\
 
498
                        ((uint8_t*)dest)[3]= b[Y2];\
 
499
                        ((uint8_t*)dest)[4]= g[Y2];\
 
500
                        ((uint8_t*)dest)[5]= r[Y2];\
 
501
                        dest+=6;\
 
502
                }\
 
503
                break;\
 
504
        case PIX_FMT_RGB565:\
 
505
        case PIX_FMT_BGR565:\
 
506
                {\
 
507
                        const int dr1= dither_2x2_8[y&1    ][0];\
 
508
                        const int dg1= dither_2x2_4[y&1    ][0];\
 
509
                        const int db1= dither_2x2_8[(y&1)^1][0];\
 
510
                        const int dr2= dither_2x2_8[y&1    ][1];\
 
511
                        const int dg2= dither_2x2_4[y&1    ][1];\
 
512
                        const int db2= dither_2x2_8[(y&1)^1][1];\
 
513
                        func(uint16_t)\
 
514
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
 
515
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
 
516
                        }\
 
517
                }\
 
518
                break;\
 
519
        case PIX_FMT_RGB555:\
 
520
        case PIX_FMT_BGR555:\
 
521
                {\
 
522
                        const int dr1= dither_2x2_8[y&1    ][0];\
 
523
                        const int dg1= dither_2x2_8[y&1    ][1];\
 
524
                        const int db1= dither_2x2_8[(y&1)^1][0];\
 
525
                        const int dr2= dither_2x2_8[y&1    ][1];\
 
526
                        const int dg2= dither_2x2_8[y&1    ][0];\
 
527
                        const int db2= dither_2x2_8[(y&1)^1][1];\
 
528
                        func(uint16_t)\
 
529
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
 
530
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
 
531
                        }\
 
532
                }\
 
533
                break;\
 
534
        case PIX_FMT_RGB8:\
 
535
        case PIX_FMT_BGR8:\
 
536
                {\
 
537
                        const uint8_t * const d64= dither_8x8_73[y&7];\
 
538
                        const uint8_t * const d32= dither_8x8_32[y&7];\
 
539
                        func(uint8_t)\
 
540
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
 
541
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
 
542
                        }\
 
543
                }\
 
544
                break;\
 
545
        case PIX_FMT_RGB4:\
 
546
        case PIX_FMT_BGR4:\
 
547
                {\
 
548
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
 
549
                        const uint8_t * const d128=dither_8x8_220[y&7];\
 
550
                        func(uint8_t)\
 
551
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
 
552
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
 
553
                        }\
 
554
                }\
 
555
                break;\
 
556
        case PIX_FMT_RGB4_BYTE:\
 
557
        case PIX_FMT_BGR4_BYTE:\
 
558
                {\
 
559
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
 
560
                        const uint8_t * const d128=dither_8x8_220[y&7];\
 
561
                        func(uint8_t)\
 
562
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
 
563
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
 
564
                        }\
 
565
                }\
 
566
                break;\
 
567
        case PIX_FMT_MONOBLACK:\
 
568
                {\
 
569
                        const uint8_t * const d128=dither_8x8_220[y&7];\
 
570
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
 
571
                        for(i=0; i<dstW-7; i+=8){\
 
572
                                int acc;\
 
573
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
 
574
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
 
575
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
 
576
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
 
577
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
 
578
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
 
579
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
 
580
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
 
581
                                ((uint8_t*)dest)[0]= acc;\
 
582
                                dest++;\
 
583
                        }\
 
584
\
 
585
/*\
 
586
((uint8_t*)dest)-= dstW>>4;\
 
587
{\
 
588
                        int acc=0;\
 
589
                        int left=0;\
 
590
                        static int top[1024];\
 
591
                        static int last_new[1024][1024];\
 
592
                        static int last_in3[1024][1024];\
 
593
                        static int drift[1024][1024];\
 
594
                        int topLeft=0;\
 
595
                        int shift=0;\
 
596
                        int count=0;\
 
597
                        const uint8_t * const d128=dither_8x8_220[y&7];\
 
598
                        int error_new=0;\
 
599
                        int error_in3=0;\
 
600
                        int f=0;\
 
601
                        \
 
602
                        for(i=dstW>>1; i<dstW; i++){\
 
603
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
 
604
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
 
605
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
 
606
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
 
607
                                        + (last_new[y][i] - in3)*f/256;\
 
608
                                int new= old> 128 ? 255 : 0;\
 
609
\
 
610
                                error_new+= ABS(last_new[y][i] - new);\
 
611
                                error_in3+= ABS(last_in3[y][i] - in3);\
 
612
                                f= error_new - error_in3*4;\
 
613
                                if(f<0) f=0;\
 
614
                                if(f>256) f=256;\
 
615
\
 
616
                                topLeft= top[i];\
 
617
                                left= top[i]= old - new;\
 
618
                                last_new[y][i]= new;\
 
619
                                last_in3[y][i]= in3;\
 
620
\
 
621
                                acc+= acc + (new&1);\
 
622
                                if((i&7)==6){\
 
623
                                        ((uint8_t*)dest)[0]= acc;\
 
624
                                        ((uint8_t*)dest)++;\
 
625
                                }\
 
626
                        }\
 
627
}\
 
628
*/\
 
629
                }\
 
630
                break;\
 
631
        case PIX_FMT_YUYV422:\
 
632
                func2\
 
633
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
 
634
                        ((uint8_t*)dest)[2*i2+1]= U;\
 
635
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
 
636
                        ((uint8_t*)dest)[2*i2+3]= V;\
 
637
                }               \
 
638
                break;\
 
639
        case PIX_FMT_UYVY422:\
 
640
                func2\
 
641
                        ((uint8_t*)dest)[2*i2+0]= U;\
 
642
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
 
643
                        ((uint8_t*)dest)[2*i2+2]= V;\
 
644
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
 
645
                }               \
 
646
                break;\
 
647
        }\
 
648
 
 
649
 
 
650
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
 
651
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
 
652
                                    uint8_t *dest, int dstW, int y)
 
653
{
 
654
        int i;
 
655
        switch(c->dstFormat)
 
656
        {
 
657
        case PIX_FMT_BGR32:
 
658
        case PIX_FMT_RGB32:
 
659
                YSCALE_YUV_2_RGBX_C(uint32_t)
 
660
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
 
661
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
 
662
                }
 
663
                break;
 
664
        case PIX_FMT_RGB24:
 
665
                YSCALE_YUV_2_RGBX_C(uint8_t)
 
666
                        ((uint8_t*)dest)[0]= r[Y1];
 
667
                        ((uint8_t*)dest)[1]= g[Y1];
 
668
                        ((uint8_t*)dest)[2]= b[Y1];
 
669
                        ((uint8_t*)dest)[3]= r[Y2];
 
670
                        ((uint8_t*)dest)[4]= g[Y2];
 
671
                        ((uint8_t*)dest)[5]= b[Y2];
 
672
                        dest+=6;
 
673
                }
 
674
                break;
 
675
        case PIX_FMT_BGR24:
 
676
                YSCALE_YUV_2_RGBX_C(uint8_t)
 
677
                        ((uint8_t*)dest)[0]= b[Y1];
 
678
                        ((uint8_t*)dest)[1]= g[Y1];
 
679
                        ((uint8_t*)dest)[2]= r[Y1];
 
680
                        ((uint8_t*)dest)[3]= b[Y2];
 
681
                        ((uint8_t*)dest)[4]= g[Y2];
 
682
                        ((uint8_t*)dest)[5]= r[Y2];
 
683
                        dest+=6;
 
684
                }
 
685
                break;
 
686
        case PIX_FMT_RGB565:
 
687
        case PIX_FMT_BGR565:
 
688
                {
 
689
                        const int dr1= dither_2x2_8[y&1    ][0];
 
690
                        const int dg1= dither_2x2_4[y&1    ][0];
 
691
                        const int db1= dither_2x2_8[(y&1)^1][0];
 
692
                        const int dr2= dither_2x2_8[y&1    ][1];
 
693
                        const int dg2= dither_2x2_4[y&1    ][1];
 
694
                        const int db2= dither_2x2_8[(y&1)^1][1];
 
695
                        YSCALE_YUV_2_RGBX_C(uint16_t)
 
696
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
 
697
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
 
698
                        }
 
699
                }
 
700
                break;
 
701
        case PIX_FMT_RGB555:
 
702
        case PIX_FMT_BGR555:
 
703
                {
 
704
                        const int dr1= dither_2x2_8[y&1    ][0];
 
705
                        const int dg1= dither_2x2_8[y&1    ][1];
 
706
                        const int db1= dither_2x2_8[(y&1)^1][0];
 
707
                        const int dr2= dither_2x2_8[y&1    ][1];
 
708
                        const int dg2= dither_2x2_8[y&1    ][0];
 
709
                        const int db2= dither_2x2_8[(y&1)^1][1];
 
710
                        YSCALE_YUV_2_RGBX_C(uint16_t)
 
711
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
 
712
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
 
713
                        }
 
714
                }
 
715
                break;
 
716
        case PIX_FMT_RGB8:
 
717
        case PIX_FMT_BGR8:
 
718
                {
 
719
                        const uint8_t * const d64= dither_8x8_73[y&7];
 
720
                        const uint8_t * const d32= dither_8x8_32[y&7];
 
721
                        YSCALE_YUV_2_RGBX_C(uint8_t)
 
722
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
 
723
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
 
724
                        }
 
725
                }
 
726
                break;
 
727
        case PIX_FMT_RGB4:
 
728
        case PIX_FMT_BGR4:
 
729
                {
 
730
                        const uint8_t * const d64= dither_8x8_73 [y&7];
 
731
                        const uint8_t * const d128=dither_8x8_220[y&7];
 
732
                        YSCALE_YUV_2_RGBX_C(uint8_t)
 
733
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
 
734
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
 
735
                        }
 
736
                }
 
737
                break;
 
738
        case PIX_FMT_RGB4_BYTE:
 
739
        case PIX_FMT_BGR4_BYTE:
 
740
                {
 
741
                        const uint8_t * const d64= dither_8x8_73 [y&7];
 
742
                        const uint8_t * const d128=dither_8x8_220[y&7];
 
743
                        YSCALE_YUV_2_RGBX_C(uint8_t)
 
744
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
 
745
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
 
746
                        }
 
747
                }
 
748
                break;
 
749
        case PIX_FMT_MONOBLACK:
 
750
                {
 
751
                        const uint8_t * const d128=dither_8x8_220[y&7];
 
752
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
 
753
                        int acc=0;
 
754
                        for(i=0; i<dstW-1; i+=2){
 
755
                                int j;
 
756
                                int Y1=1<<18;
 
757
                                int Y2=1<<18;
 
758
 
 
759
                                for(j=0; j<lumFilterSize; j++)
 
760
                                {
 
761
                                        Y1 += lumSrc[j][i] * lumFilter[j];
 
762
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
 
763
                                }
 
764
                                Y1>>=19;
 
765
                                Y2>>=19;
 
766
                                if((Y1|Y2)&256)
 
767
                                {
 
768
                                        if(Y1>255)   Y1=255;
 
769
                                        else if(Y1<0)Y1=0;
 
770
                                        if(Y2>255)   Y2=255;
 
771
                                        else if(Y2<0)Y2=0;
 
772
                                }
 
773
                                acc+= acc + g[Y1+d128[(i+0)&7]];
 
774
                                acc+= acc + g[Y2+d128[(i+1)&7]];
 
775
                                if((i&7)==6){
 
776
                                        ((uint8_t*)dest)[0]= acc;
 
777
                                        dest++;
 
778
                                }
 
779
                        }
 
780
                }
 
781
                break;
 
782
        case PIX_FMT_YUYV422:
 
783
                YSCALE_YUV_2_PACKEDX_C(void)
 
784
                        ((uint8_t*)dest)[2*i2+0]= Y1;
 
785
                        ((uint8_t*)dest)[2*i2+1]= U;
 
786
                        ((uint8_t*)dest)[2*i2+2]= Y2;
 
787
                        ((uint8_t*)dest)[2*i2+3]= V;
 
788
                }
 
789
                break;
 
790
        case PIX_FMT_UYVY422:
 
791
                YSCALE_YUV_2_PACKEDX_C(void)
 
792
                        ((uint8_t*)dest)[2*i2+0]= U;
 
793
                        ((uint8_t*)dest)[2*i2+1]= Y1;
 
794
                        ((uint8_t*)dest)[2*i2+2]= V;
 
795
                        ((uint8_t*)dest)[2*i2+3]= Y2;
 
796
                }
 
797
                break;
 
798
        }
 
799
}
 
800
 
 
801
 
 
802
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
 
803
//Plain C versions
 
804
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
 
805
#define COMPILE_C
 
806
#endif
 
807
 
 
808
#ifdef ARCH_POWERPC
 
809
#if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
 
810
#define COMPILE_ALTIVEC
 
811
#endif //HAVE_ALTIVEC
 
812
#endif //ARCH_POWERPC
 
813
 
 
814
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
815
 
 
816
#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
 
817
#define COMPILE_MMX
 
818
#endif
 
819
 
 
820
#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
 
821
#define COMPILE_MMX2
 
822
#endif
 
823
 
 
824
#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
 
825
#define COMPILE_3DNOW
 
826
#endif
 
827
#endif //ARCH_X86 || ARCH_X86_64
 
828
 
 
829
#undef HAVE_MMX
 
830
#undef HAVE_MMX2
 
831
#undef HAVE_3DNOW
 
832
 
 
833
#ifdef COMPILE_C
 
834
#undef HAVE_MMX
 
835
#undef HAVE_MMX2
 
836
#undef HAVE_3DNOW
 
837
#undef HAVE_ALTIVEC
 
838
#define RENAME(a) a ## _C
 
839
#include "swscale_template.c"
 
840
#endif
 
841
 
 
842
#ifdef ARCH_POWERPC
 
843
#ifdef COMPILE_ALTIVEC
 
844
#undef RENAME
 
845
#define HAVE_ALTIVEC
 
846
#define RENAME(a) a ## _altivec
 
847
#include "swscale_template.c"
 
848
#endif
 
849
#endif //ARCH_POWERPC
 
850
 
 
851
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
852
 
 
853
//X86 versions
 
854
/*
 
855
#undef RENAME
 
856
#undef HAVE_MMX
 
857
#undef HAVE_MMX2
 
858
#undef HAVE_3DNOW
 
859
#define ARCH_X86
 
860
#define RENAME(a) a ## _X86
 
861
#include "swscale_template.c"
 
862
*/
 
863
//MMX versions
 
864
#ifdef COMPILE_MMX
 
865
#undef RENAME
 
866
#define HAVE_MMX
 
867
#undef HAVE_MMX2
 
868
#undef HAVE_3DNOW
 
869
#define RENAME(a) a ## _MMX
 
870
#include "swscale_template.c"
 
871
#endif
 
872
 
 
873
//MMX2 versions
 
874
#ifdef COMPILE_MMX2
 
875
#undef RENAME
 
876
#define HAVE_MMX
 
877
#define HAVE_MMX2
 
878
#undef HAVE_3DNOW
 
879
#define RENAME(a) a ## _MMX2
 
880
#include "swscale_template.c"
 
881
#endif
 
882
 
 
883
//3DNOW versions
 
884
#ifdef COMPILE_3DNOW
 
885
#undef RENAME
 
886
#define HAVE_MMX
 
887
#undef HAVE_MMX2
 
888
#define HAVE_3DNOW
 
889
#define RENAME(a) a ## _3DNow
 
890
#include "swscale_template.c"
 
891
#endif
 
892
 
 
893
#endif //ARCH_X86 || ARCH_X86_64
 
894
 
 
895
// minor note: the HAVE_xyz is messed up after that line so don't use it
 
896
 
 
897
static double getSplineCoeff(double a, double b, double c, double d, double dist)
 
898
{
 
899
//      printf("%f %f %f %f %f\n", a,b,c,d,dist);
 
900
        if(dist<=1.0)   return ((d*dist + c)*dist + b)*dist +a;
 
901
        else            return getSplineCoeff(  0.0, 
 
902
                                                 b+ 2.0*c + 3.0*d,
 
903
                                                        c + 3.0*d,
 
904
                                                -b- 3.0*c - 6.0*d,
 
905
                                                dist-1.0);
 
906
}
 
907
 
 
908
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
 
909
                              int srcW, int dstW, int filterAlign, int one, int flags,
 
910
                              SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
 
911
{
 
912
        int i;
 
913
        int filterSize;
 
914
        int filter2Size;
 
915
        int minFilterSize;
 
916
        double *filter=NULL;
 
917
        double *filter2=NULL;
 
918
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
919
        if(flags & SWS_CPU_CAPS_MMX)
 
920
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
 
921
#endif
 
922
 
 
923
        // Note the +1 is for the MMXscaler which reads over the end
 
924
        *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
 
925
 
 
926
        if(ABS(xInc - 0x10000) <10) // unscaled
 
927
        {
 
928
                int i;
 
929
                filterSize= 1;
 
930
                filter= av_malloc(dstW*sizeof(double)*filterSize);
 
931
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
 
932
 
 
933
                for(i=0; i<dstW; i++)
 
934
                {
 
935
                        filter[i*filterSize]=1;
 
936
                        (*filterPos)[i]=i;
 
937
                }
 
938
 
 
939
        }
 
940
        else if(flags&SWS_POINT) // lame looking point sampling mode
 
941
        {
 
942
                int i;
 
943
                int xDstInSrc;
 
944
                filterSize= 1;
 
945
                filter= av_malloc(dstW*sizeof(double)*filterSize);
 
946
                
 
947
                xDstInSrc= xInc/2 - 0x8000;
 
948
                for(i=0; i<dstW; i++)
 
949
                {
 
950
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
 
951
 
 
952
                        (*filterPos)[i]= xx;
 
953
                        filter[i]= 1.0;
 
954
                        xDstInSrc+= xInc;
 
955
                }
 
956
        }
 
957
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
 
958
        {
 
959
                int i;
 
960
                int xDstInSrc;
 
961
                if     (flags&SWS_BICUBIC) filterSize= 4;
 
962
                else if(flags&SWS_X      ) filterSize= 4;
 
963
                else                       filterSize= 2; // SWS_BILINEAR / SWS_AREA 
 
964
                filter= av_malloc(dstW*sizeof(double)*filterSize);
 
965
 
 
966
                xDstInSrc= xInc/2 - 0x8000;
 
967
                for(i=0; i<dstW; i++)
 
968
                {
 
969
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
 
970
                        int j;
 
971
 
 
972
                        (*filterPos)[i]= xx;
 
973
                                //Bilinear upscale / linear interpolate / Area averaging
 
974
                                for(j=0; j<filterSize; j++)
 
975
                                {
 
976
                                        double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
 
977
                                        double coeff= 1.0 - d;
 
978
                                        if(coeff<0) coeff=0;
 
979
                                        filter[i*filterSize + j]= coeff;
 
980
                                        xx++;
 
981
                                }
 
982
                        xDstInSrc+= xInc;
 
983
                }
 
984
        }
 
985
        else
 
986
        {
 
987
                double xDstInSrc;
 
988
                double sizeFactor, filterSizeInSrc;
 
989
                const double xInc1= (double)xInc / (double)(1<<16);
 
990
 
 
991
                if     (flags&SWS_BICUBIC)      sizeFactor= 4.0;
 
992
                else if(flags&SWS_X)            sizeFactor= 8.0;
 
993
                else if(flags&SWS_AREA)         sizeFactor= 1.0; //downscale only, for upscale it is bilinear
 
994
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
 
995
                else if(flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
 
996
                else if(flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
 
997
                else if(flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
 
998
                else if(flags&SWS_BILINEAR)     sizeFactor= 2.0;
 
999
                else {
 
1000
                        sizeFactor= 0.0; //GCC warning killer
 
1001
                        ASSERT(0)
 
1002
                }
 
1003
                
 
1004
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
 
1005
                else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;
 
1006
 
 
1007
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
 
1008
                if(filterSize > srcW-2) filterSize=srcW-2;
 
1009
 
 
1010
                filter= av_malloc(dstW*sizeof(double)*filterSize);
 
1011
 
 
1012
                xDstInSrc= xInc1 / 2.0 - 0.5;
 
1013
                for(i=0; i<dstW; i++)
 
1014
                {
 
1015
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
 
1016
                        int j;
 
1017
                        (*filterPos)[i]= xx;
 
1018
                        for(j=0; j<filterSize; j++)
 
1019
                        {
 
1020
                                double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
 
1021
                                double coeff;
 
1022
                                if(flags & SWS_BICUBIC)
 
1023
                                {
 
1024
                                        double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
 
1025
                                        double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
 
1026
 
 
1027
                                        if(d<1.0) 
 
1028
                                                coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
 
1029
                                        else if(d<2.0)
 
1030
                                                coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
 
1031
                                        else
 
1032
                                                coeff=0.0;
 
1033
                                }
 
1034
/*                              else if(flags & SWS_X)
 
1035
                                {
 
1036
                                        double p= param ? param*0.01 : 0.3;
 
1037
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
 
1038
                                        coeff*= pow(2.0, - p*d*d);
 
1039
                                }*/
 
1040
                                else if(flags & SWS_X)
 
1041
                                {
 
1042
                                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
 
1043
                                        
 
1044
                                        if(d<1.0)
 
1045
                                                coeff = cos(d*PI);
 
1046
                                        else
 
1047
                                                coeff=-1.0;
 
1048
                                        if(coeff<0.0)   coeff= -pow(-coeff, A);
 
1049
                                        else            coeff=  pow( coeff, A);
 
1050
                                        coeff= coeff*0.5 + 0.5;
 
1051
                                }
 
1052
                                else if(flags & SWS_AREA)
 
1053
                                {
 
1054
                                        double srcPixelSize= 1.0/xInc1;
 
1055
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
 
1056
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
 
1057
                                        else coeff=0.0;
 
1058
                                }
 
1059
                                else if(flags & SWS_GAUSS)
 
1060
                                {
 
1061
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
 
1062
                                        coeff = pow(2.0, - p*d*d);
 
1063
                                }
 
1064
                                else if(flags & SWS_SINC)
 
1065
                                {
 
1066
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
 
1067
                                }
 
1068
                                else if(flags & SWS_LANCZOS)
 
1069
                                {
 
1070
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
 
1071
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
 
1072
                                        if(d>p) coeff=0;
 
1073
                                }
 
1074
                                else if(flags & SWS_BILINEAR)
 
1075
                                {
 
1076
                                        coeff= 1.0 - d;
 
1077
                                        if(coeff<0) coeff=0;
 
1078
                                }
 
1079
                                else if(flags & SWS_SPLINE)
 
1080
                                {
 
1081
                                        double p=-2.196152422706632;
 
1082
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
 
1083
                                }
 
1084
                                else {
 
1085
                                        coeff= 0.0; //GCC warning killer
 
1086
                                        ASSERT(0)
 
1087
                                }
 
1088
 
 
1089
                                filter[i*filterSize + j]= coeff;
 
1090
                                xx++;
 
1091
                        }
 
1092
                        xDstInSrc+= xInc1;
 
1093
                }
 
1094
        }
 
1095
 
 
1096
        /* apply src & dst Filter to filter -> filter2
 
1097
           av_free(filter);
 
1098
        */
 
1099
        ASSERT(filterSize>0)
 
1100
        filter2Size= filterSize;
 
1101
        if(srcFilter) filter2Size+= srcFilter->length - 1;
 
1102
        if(dstFilter) filter2Size+= dstFilter->length - 1;
 
1103
        ASSERT(filter2Size>0)
 
1104
        filter2= av_malloc(filter2Size*dstW*sizeof(double));
 
1105
 
 
1106
        for(i=0; i<dstW; i++)
 
1107
        {
 
1108
                int j;
 
1109
                SwsVector scaleFilter;
 
1110
                SwsVector *outVec;
 
1111
 
 
1112
                scaleFilter.coeff= filter + i*filterSize;
 
1113
                scaleFilter.length= filterSize;
 
1114
 
 
1115
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
 
1116
                else          outVec= &scaleFilter;
 
1117
 
 
1118
                ASSERT(outVec->length == filter2Size)
 
1119
                //FIXME dstFilter
 
1120
 
 
1121
                for(j=0; j<outVec->length; j++)
 
1122
                {
 
1123
                        filter2[i*filter2Size + j]= outVec->coeff[j];
 
1124
                }
 
1125
 
 
1126
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
 
1127
 
 
1128
                if(outVec != &scaleFilter) sws_freeVec(outVec);
 
1129
        }
 
1130
        av_free(filter); filter=NULL;
 
1131
 
 
1132
        /* try to reduce the filter-size (step1 find size and shift left) */
 
1133
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
 
1134
        minFilterSize= 0;
 
1135
        for(i=dstW-1; i>=0; i--)
 
1136
        {
 
1137
                int min= filter2Size;
 
1138
                int j;
 
1139
                double cutOff=0.0;
 
1140
 
 
1141
                /* get rid off near zero elements on the left by shifting left */
 
1142
                for(j=0; j<filter2Size; j++)
 
1143
                {
 
1144
                        int k;
 
1145
                        cutOff += ABS(filter2[i*filter2Size]);
 
1146
 
 
1147
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
 
1148
 
 
1149
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
 
1150
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
 
1151
 
 
1152
                        // Move filter coeffs left
 
1153
                        for(k=1; k<filter2Size; k++)
 
1154
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
 
1155
                        filter2[i*filter2Size + k - 1]= 0.0;
 
1156
                        (*filterPos)[i]++;
 
1157
                }
 
1158
 
 
1159
                cutOff=0.0;
 
1160
                /* count near zeros on the right */
 
1161
                for(j=filter2Size-1; j>0; j--)
 
1162
                {
 
1163
                        cutOff += ABS(filter2[i*filter2Size + j]);
 
1164
 
 
1165
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
 
1166
                        min--;
 
1167
                }
 
1168
 
 
1169
                if(min>minFilterSize) minFilterSize= min;
 
1170
        }
 
1171
 
 
1172
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
 
1173
          // we can handle the special case 4,
 
1174
          // so we don't want to go to the full 8
 
1175
          if (minFilterSize < 5)
 
1176
            filterAlign = 4;
 
1177
 
 
1178
          // we really don't want to waste our time
 
1179
          // doing useless computation, so fall-back on
 
1180
          // the scalar C code for very small filter.
 
1181
          // vectorizing is worth it only if you have
 
1182
          // decent-sized vector.
 
1183
          if (minFilterSize < 3)
 
1184
            filterAlign = 1;
 
1185
        }
 
1186
 
 
1187
        if (flags & SWS_CPU_CAPS_MMX) {
 
1188
                // special case for unscaled vertical filtering
 
1189
                if(minFilterSize == 1 && filterAlign == 2)
 
1190
                        filterAlign= 1;
 
1191
        }
 
1192
 
 
1193
        ASSERT(minFilterSize > 0)
 
1194
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
 
1195
        ASSERT(filterSize > 0)
 
1196
        filter= av_malloc(filterSize*dstW*sizeof(double));
 
1197
        if(filterSize >= MAX_FILTER_SIZE)
 
1198
                return -1;
 
1199
        *outFilterSize= filterSize;
 
1200
 
 
1201
        if(flags&SWS_PRINT_INFO)
 
1202
                MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
 
1203
        /* try to reduce the filter-size (step2 reduce it) */
 
1204
        for(i=0; i<dstW; i++)
 
1205
        {
 
1206
                int j;
 
1207
 
 
1208
                for(j=0; j<filterSize; j++)
 
1209
                {
 
1210
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
 
1211
                        else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
 
1212
                }
 
1213
        }
 
1214
        av_free(filter2); filter2=NULL;
 
1215
        
 
1216
 
 
1217
        //FIXME try to align filterpos if possible
 
1218
 
 
1219
        //fix borders
 
1220
        for(i=0; i<dstW; i++)
 
1221
        {
 
1222
                int j;
 
1223
                if((*filterPos)[i] < 0)
 
1224
                {
 
1225
                        // Move filter coeffs left to compensate for filterPos
 
1226
                        for(j=1; j<filterSize; j++)
 
1227
                        {
 
1228
                                int left= FFMAX(j + (*filterPos)[i], 0);
 
1229
                                filter[i*filterSize + left] += filter[i*filterSize + j];
 
1230
                                filter[i*filterSize + j]=0;
 
1231
                        }
 
1232
                        (*filterPos)[i]= 0;
 
1233
                }
 
1234
 
 
1235
                if((*filterPos)[i] + filterSize > srcW)
 
1236
                {
 
1237
                        int shift= (*filterPos)[i] + filterSize - srcW;
 
1238
                        // Move filter coeffs right to compensate for filterPos
 
1239
                        for(j=filterSize-2; j>=0; j--)
 
1240
                        {
 
1241
                                int right= FFMIN(j + shift, filterSize-1);
 
1242
                                filter[i*filterSize +right] += filter[i*filterSize +j];
 
1243
                                filter[i*filterSize +j]=0;
 
1244
                        }
 
1245
                        (*filterPos)[i]= srcW - filterSize;
 
1246
                }
 
1247
        }
 
1248
 
 
1249
        // Note the +1 is for the MMXscaler which reads over the end
 
1250
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
 
1251
        *outFilter= av_malloc(*outFilterSize*(dstW+1)*sizeof(int16_t));
 
1252
        memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
 
1253
 
 
1254
        /* Normalize & Store in outFilter */
 
1255
        for(i=0; i<dstW; i++)
 
1256
        {
 
1257
                int j;
 
1258
                double error=0;
 
1259
                double sum=0;
 
1260
                double scale= one;
 
1261
 
 
1262
                for(j=0; j<filterSize; j++)
 
1263
                {
 
1264
                        sum+= filter[i*filterSize + j];
 
1265
                }
 
1266
                scale/= sum;
 
1267
                for(j=0; j<*outFilterSize; j++)
 
1268
                {
 
1269
                        double v= filter[i*filterSize + j]*scale + error;
 
1270
                        int intV= floor(v + 0.5);
 
1271
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
 
1272
                        error = v - intV;
 
1273
                }
 
1274
        }
 
1275
        
 
1276
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
 
1277
        for(i=0; i<*outFilterSize; i++)
 
1278
        {
 
1279
                int j= dstW*(*outFilterSize);
 
1280
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
 
1281
        }
 
1282
 
 
1283
        av_free(filter);
 
1284
        return 0;
 
1285
}
 
1286
 
 
1287
#ifdef COMPILE_MMX2
 
1288
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
 
1289
{
 
1290
        uint8_t *fragmentA;
 
1291
        long imm8OfPShufW1A;
 
1292
        long imm8OfPShufW2A;
 
1293
        long fragmentLengthA;
 
1294
        uint8_t *fragmentB;
 
1295
        long imm8OfPShufW1B;
 
1296
        long imm8OfPShufW2B;
 
1297
        long fragmentLengthB;
 
1298
        int fragmentPos;
 
1299
 
 
1300
        int xpos, i;
 
1301
 
 
1302
        // create an optimized horizontal scaling routine
 
1303
 
 
1304
        //code fragment
 
1305
 
 
1306
        asm volatile(
 
1307
                "jmp 9f                         \n\t"
 
1308
        // Begin
 
1309
                "0:                             \n\t"
 
1310
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
 
1311
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
 
1312
                "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
 
1313
                "punpcklbw %%mm7, %%mm1         \n\t"
 
1314
                "punpcklbw %%mm7, %%mm0         \n\t"
 
1315
                "pshufw $0xFF, %%mm1, %%mm1     \n\t"
 
1316
                "1:                             \n\t"
 
1317
                "pshufw $0xFF, %%mm0, %%mm0     \n\t"
 
1318
                "2:                             \n\t"
 
1319
                "psubw %%mm1, %%mm0             \n\t"
 
1320
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
 
1321
                "pmullw %%mm3, %%mm0            \n\t"
 
1322
                "psllw $7, %%mm1                \n\t"
 
1323
                "paddw %%mm1, %%mm0             \n\t"
 
1324
 
 
1325
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
 
1326
 
 
1327
                "add $8, %%"REG_a"              \n\t"
 
1328
        // End
 
1329
                "9:                             \n\t"
 
1330
//              "int $3\n\t"
 
1331
                "lea 0b, %0                     \n\t"
 
1332
                "lea 1b, %1                     \n\t"
 
1333
                "lea 2b, %2                     \n\t"
 
1334
                "dec %1                         \n\t"
 
1335
                "dec %2                         \n\t"
 
1336
                "sub %0, %1                     \n\t"
 
1337
                "sub %0, %2                     \n\t"
 
1338
                "lea 9b, %3                     \n\t"
 
1339
                "sub %0, %3                     \n\t"
 
1340
 
 
1341
 
 
1342
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
 
1343
                "=r" (fragmentLengthA)
 
1344
        );
 
1345
 
 
1346
        asm volatile(
 
1347
                "jmp 9f                         \n\t"
 
1348
        // Begin
 
1349
                "0:                             \n\t"
 
1350
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
 
1351
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
 
1352
                "punpcklbw %%mm7, %%mm0         \n\t"
 
1353
                "pshufw $0xFF, %%mm0, %%mm1     \n\t"
 
1354
                "1:                             \n\t"
 
1355
                "pshufw $0xFF, %%mm0, %%mm0     \n\t"
 
1356
                "2:                             \n\t"
 
1357
                "psubw %%mm1, %%mm0             \n\t"
 
1358
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
 
1359
                "pmullw %%mm3, %%mm0            \n\t"
 
1360
                "psllw $7, %%mm1                \n\t"
 
1361
                "paddw %%mm1, %%mm0             \n\t"
 
1362
 
 
1363
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
 
1364
 
 
1365
                "add $8, %%"REG_a"              \n\t"
 
1366
        // End
 
1367
                "9:                             \n\t"
 
1368
//              "int $3\n\t"
 
1369
                "lea 0b, %0                     \n\t"
 
1370
                "lea 1b, %1                     \n\t"
 
1371
                "lea 2b, %2                     \n\t"
 
1372
                "dec %1                         \n\t"
 
1373
                "dec %2                         \n\t"
 
1374
                "sub %0, %1                     \n\t"
 
1375
                "sub %0, %2                     \n\t"
 
1376
                "lea 9b, %3                     \n\t"
 
1377
                "sub %0, %3                     \n\t"
 
1378
 
 
1379
 
 
1380
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
 
1381
                "=r" (fragmentLengthB)
 
1382
        );
 
1383
 
 
1384
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
 
1385
        fragmentPos=0;
 
1386
        
 
1387
        for(i=0; i<dstW/numSplits; i++)
 
1388
        {
 
1389
                int xx=xpos>>16;
 
1390
 
 
1391
                if((i&3) == 0)
 
1392
                {
 
1393
                        int a=0;
 
1394
                        int b=((xpos+xInc)>>16) - xx;
 
1395
                        int c=((xpos+xInc*2)>>16) - xx;
 
1396
                        int d=((xpos+xInc*3)>>16) - xx;
 
1397
 
 
1398
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
 
1399
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
 
1400
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
 
1401
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
 
1402
                        filterPos[i/2]= xx;
 
1403
 
 
1404
                        if(d+1<4)
 
1405
                        {
 
1406
                                int maxShift= 3-(d+1);
 
1407
                                int shift=0;
 
1408
 
 
1409
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
 
1410
 
 
1411
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
 
1412
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
 
1413
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
 
1414
                                        a | (b<<2) | (c<<4) | (d<<6);
 
1415
 
 
1416
                                if(i+3>=dstW) shift=maxShift; //avoid overread
 
1417
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
 
1418
 
 
1419
                                if(shift && i>=shift)
 
1420
                                {
 
1421
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
 
1422
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
 
1423
                                        filterPos[i/2]-=shift;
 
1424
                                }
 
1425
 
 
1426
                                fragmentPos+= fragmentLengthB;
 
1427
                        }
 
1428
                        else
 
1429
                        {
 
1430
                                int maxShift= 3-d;
 
1431
                                int shift=0;
 
1432
 
 
1433
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
 
1434
 
 
1435
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
 
1436
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
 
1437
                                        a | (b<<2) | (c<<4) | (d<<6);
 
1438
 
 
1439
                                if(i+4>=dstW) shift=maxShift; //avoid overread
 
1440
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
 
1441
 
 
1442
                                if(shift && i>=shift)
 
1443
                                {
 
1444
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
 
1445
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
 
1446
                                        filterPos[i/2]-=shift;
 
1447
                                }
 
1448
 
 
1449
                                fragmentPos+= fragmentLengthA;
 
1450
                        }
 
1451
 
 
1452
                        funnyCode[fragmentPos]= RET;
 
1453
                }
 
1454
                xpos+=xInc;
 
1455
        }
 
1456
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
 
1457
}
 
1458
#endif /* COMPILE_MMX2 */
 
1459
 
 
1460
static void globalInit(void){
 
1461
    // generating tables:
 
1462
    int i;
 
1463
    for(i=0; i<768; i++){
 
1464
        int c= FFMIN(FFMAX(i-256, 0), 255);
 
1465
        clip_table[i]=c;
 
1466
    }
 
1467
}
 
1468
 
 
1469
static SwsFunc getSwsFunc(int flags){
 
1470
    
 
1471
#ifdef RUNTIME_CPUDETECT
 
1472
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
1473
        // ordered per speed fasterst first
 
1474
        if(flags & SWS_CPU_CAPS_MMX2)
 
1475
                return swScale_MMX2;
 
1476
        else if(flags & SWS_CPU_CAPS_3DNOW)
 
1477
                return swScale_3DNow;
 
1478
        else if(flags & SWS_CPU_CAPS_MMX)
 
1479
                return swScale_MMX;
 
1480
        else
 
1481
                return swScale_C;
 
1482
 
 
1483
#else
 
1484
#ifdef ARCH_POWERPC
 
1485
        if(flags & SWS_CPU_CAPS_ALTIVEC)
 
1486
          return swScale_altivec;
 
1487
        else
 
1488
          return swScale_C;
 
1489
#endif
 
1490
        return swScale_C;
 
1491
#endif /* defined(ARCH_X86) || defined(ARCH_X86_64) */
 
1492
#else //RUNTIME_CPUDETECT
 
1493
#ifdef HAVE_MMX2
 
1494
        return swScale_MMX2;
 
1495
#elif defined (HAVE_3DNOW)
 
1496
        return swScale_3DNow;
 
1497
#elif defined (HAVE_MMX)
 
1498
        return swScale_MMX;
 
1499
#elif defined (HAVE_ALTIVEC)
 
1500
        return swScale_altivec;
 
1501
#else
 
1502
        return swScale_C;
 
1503
#endif
 
1504
#endif //!RUNTIME_CPUDETECT
 
1505
}
 
1506
 
 
1507
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
 
1508
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
 
1509
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
 
1510
        /* Copy Y plane */
 
1511
        if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
 
1512
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
 
1513
        else
 
1514
        {
 
1515
                int i;
 
1516
                uint8_t *srcPtr= src[0];
 
1517
                uint8_t *dstPtr= dst;
 
1518
                for(i=0; i<srcSliceH; i++)
 
1519
                {
 
1520
                        memcpy(dstPtr, srcPtr, c->srcW);
 
1521
                        srcPtr+= srcStride[0];
 
1522
                        dstPtr+= dstStride[0];
 
1523
                }
 
1524
        }
 
1525
        dst = dstParam[1] + dstStride[1]*srcSliceY/2;
 
1526
        if (c->dstFormat == PIX_FMT_NV12)
 
1527
                interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
 
1528
        else
 
1529
                interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
 
1530
 
 
1531
        return srcSliceH;
 
1532
}
 
1533
 
 
1534
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
 
1535
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
 
1536
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
 
1537
 
 
1538
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
 
1539
 
 
1540
        return srcSliceH;
 
1541
}
 
1542
 
 
1543
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
 
1544
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
 
1545
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
 
1546
 
 
1547
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
 
1548
 
 
1549
        return srcSliceH;
 
1550
}
 
1551
 
 
1552
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
 
1553
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
 
1554
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
 
1555
        const int srcFormat= c->srcFormat;
 
1556
        const int dstFormat= c->dstFormat;
 
1557
        const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
 
1558
        const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
 
1559
        const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
 
1560
        const int dstId= fmt_depth(dstFormat) >> 2;
 
1561
        void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
 
1562
 
 
1563
        /* BGR -> BGR */
 
1564
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
 
1565
           || (isRGB(srcFormat) && isRGB(dstFormat))){
 
1566
                switch(srcId | (dstId<<4)){
 
1567
                case 0x34: conv= rgb16to15; break;
 
1568
                case 0x36: conv= rgb24to15; break;
 
1569
                case 0x38: conv= rgb32to15; break;
 
1570
                case 0x43: conv= rgb15to16; break;
 
1571
                case 0x46: conv= rgb24to16; break;
 
1572
                case 0x48: conv= rgb32to16; break;
 
1573
                case 0x63: conv= rgb15to24; break;
 
1574
                case 0x64: conv= rgb16to24; break;
 
1575
                case 0x68: conv= rgb32to24; break;
 
1576
                case 0x83: conv= rgb15to32; break;
 
1577
                case 0x84: conv= rgb16to32; break;
 
1578
                case 0x86: conv= rgb24to32; break;
 
1579
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
 
1580
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
 
1581
                }
 
1582
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
 
1583
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
 
1584
                switch(srcId | (dstId<<4)){
 
1585
                case 0x33: conv= rgb15tobgr15; break;
 
1586
                case 0x34: conv= rgb16tobgr15; break;
 
1587
                case 0x36: conv= rgb24tobgr15; break;
 
1588
                case 0x38: conv= rgb32tobgr15; break;
 
1589
                case 0x43: conv= rgb15tobgr16; break;
 
1590
                case 0x44: conv= rgb16tobgr16; break;
 
1591
                case 0x46: conv= rgb24tobgr16; break;
 
1592
                case 0x48: conv= rgb32tobgr16; break;
 
1593
                case 0x63: conv= rgb15tobgr24; break;
 
1594
                case 0x64: conv= rgb16tobgr24; break;
 
1595
                case 0x66: conv= rgb24tobgr24; break;
 
1596
                case 0x68: conv= rgb32tobgr24; break;
 
1597
                case 0x83: conv= rgb15tobgr32; break;
 
1598
                case 0x84: conv= rgb16tobgr32; break;
 
1599
                case 0x86: conv= rgb24tobgr32; break;
 
1600
                case 0x88: conv= rgb32tobgr32; break;
 
1601
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
 
1602
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
 
1603
                }
 
1604
        }else{
 
1605
                MSG_ERR("swScaler: internal error %s -> %s converter\n", 
 
1606
                         sws_format_name(srcFormat), sws_format_name(dstFormat));
 
1607
        }
 
1608
 
 
1609
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
 
1610
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
 
1611
        else
 
1612
        {
 
1613
                int i;
 
1614
                uint8_t *srcPtr= src[0];
 
1615
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
 
1616
 
 
1617
                for(i=0; i<srcSliceH; i++)
 
1618
                {
 
1619
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
 
1620
                        srcPtr+= srcStride[0];
 
1621
                        dstPtr+= dstStride[0];
 
1622
                }
 
1623
        }     
 
1624
        return srcSliceH;
 
1625
}
 
1626
 
 
1627
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
 
1628
             int srcSliceH, uint8_t* dst[], int dstStride[]){
 
1629
 
 
1630
        rgb24toyv12(
 
1631
                src[0], 
 
1632
                dst[0]+ srcSliceY    *dstStride[0], 
 
1633
                dst[1]+(srcSliceY>>1)*dstStride[1], 
 
1634
                dst[2]+(srcSliceY>>1)*dstStride[2],
 
1635
                c->srcW, srcSliceH, 
 
1636
                dstStride[0], dstStride[1], srcStride[0]);
 
1637
        return srcSliceH;
 
1638
}
 
1639
 
 
1640
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
 
1641
             int srcSliceH, uint8_t* dst[], int dstStride[]){
 
1642
        int i;
 
1643
 
 
1644
        /* copy Y */
 
1645
        if(srcStride[0]==dstStride[0] && srcStride[0] > 0) 
 
1646
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
 
1647
        else{
 
1648
                uint8_t *srcPtr= src[0];
 
1649
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
 
1650
 
 
1651
                for(i=0; i<srcSliceH; i++)
 
1652
                {
 
1653
                        memcpy(dstPtr, srcPtr, c->srcW);
 
1654
                        srcPtr+= srcStride[0];
 
1655
                        dstPtr+= dstStride[0];
 
1656
                }
 
1657
        }
 
1658
 
 
1659
        if(c->dstFormat==PIX_FMT_YUV420P){
 
1660
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
 
1661
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
 
1662
        }else{
 
1663
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
 
1664
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
 
1665
        }
 
1666
        return srcSliceH;
 
1667
}
 
1668
 
 
1669
/* unscaled copy like stuff (assumes nearly identical formats) */
 
1670
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
 
1671
             int srcSliceH, uint8_t* dst[], int dstStride[]){
 
1672
 
 
1673
        if(isPacked(c->srcFormat))
 
1674
        {
 
1675
                if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
 
1676
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
 
1677
                else
 
1678
                {
 
1679
                        int i;
 
1680
                        uint8_t *srcPtr= src[0];
 
1681
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
 
1682
                        int length=0;
 
1683
 
 
1684
                        /* universal length finder */
 
1685
                        while(length+c->srcW <= ABS(dstStride[0]) 
 
1686
                           && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
 
1687
                        ASSERT(length!=0);
 
1688
 
 
1689
                        for(i=0; i<srcSliceH; i++)
 
1690
                        {
 
1691
                                memcpy(dstPtr, srcPtr, length);
 
1692
                                srcPtr+= srcStride[0];
 
1693
                                dstPtr+= dstStride[0];
 
1694
                        }
 
1695
                }
 
1696
        }
 
1697
        else 
 
1698
        { /* Planar YUV or gray */
 
1699
                int plane;
 
1700
                for(plane=0; plane<3; plane++)
 
1701
                {
 
1702
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
 
1703
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
 
1704
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
 
1705
 
 
1706
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
 
1707
                        {
 
1708
                                if(!isGray(c->dstFormat))
 
1709
                                        memset(dst[plane], 128, dstStride[plane]*height);
 
1710
                        }
 
1711
                        else
 
1712
                        {
 
1713
                                if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
 
1714
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
 
1715
                                else
 
1716
                                {
 
1717
                                        int i;
 
1718
                                        uint8_t *srcPtr= src[plane];
 
1719
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
 
1720
                                        for(i=0; i<height; i++)
 
1721
                                        {
 
1722
                                                memcpy(dstPtr, srcPtr, length);
 
1723
                                                srcPtr+= srcStride[plane];
 
1724
                                                dstPtr+= dstStride[plane];
 
1725
                                        }
 
1726
                                }
 
1727
                        }
 
1728
                }
 
1729
        }
 
1730
        return srcSliceH;
 
1731
}
 
1732
 
 
1733
static void getSubSampleFactors(int *h, int *v, int format){
 
1734
        switch(format){
 
1735
        case PIX_FMT_UYVY422:
 
1736
        case PIX_FMT_YUYV422:
 
1737
                *h=1;
 
1738
                *v=0;
 
1739
                break;
 
1740
        case PIX_FMT_YUV420P:
 
1741
        case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
 
1742
        case PIX_FMT_NV12:
 
1743
        case PIX_FMT_NV21:
 
1744
                *h=1;
 
1745
                *v=1;
 
1746
                break;
 
1747
        case PIX_FMT_YUV410P:
 
1748
                *h=2;
 
1749
                *v=2;
 
1750
                break;
 
1751
        case PIX_FMT_YUV444P:
 
1752
                *h=0;
 
1753
                *v=0;
 
1754
                break;
 
1755
        case PIX_FMT_YUV422P:
 
1756
                *h=1;
 
1757
                *v=0;
 
1758
                break;
 
1759
        case PIX_FMT_YUV411P:
 
1760
                *h=2;
 
1761
                *v=0;
 
1762
                break;
 
1763
        default:
 
1764
                *h=0;
 
1765
                *v=0;
 
1766
                break;
 
1767
        }
 
1768
}
 
1769
 
 
1770
static uint16_t roundToInt16(int64_t f){
 
1771
        int r= (f + (1<<15))>>16;
 
1772
             if(r<-0x7FFF) return 0x8000;
 
1773
        else if(r> 0x7FFF) return 0x7FFF;
 
1774
        else               return r;
 
1775
}
 
1776
 
 
1777
/**
 
1778
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
 
1779
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
 
1780
 * @return -1 if not supported
 
1781
 */
 
1782
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
 
1783
        int64_t crv =  inv_table[0];
 
1784
        int64_t cbu =  inv_table[1];
 
1785
        int64_t cgu = -inv_table[2];
 
1786
        int64_t cgv = -inv_table[3];
 
1787
        int64_t cy  = 1<<16;
 
1788
        int64_t oy  = 0;
 
1789
 
 
1790
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
 
1791
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
 
1792
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
 
1793
 
 
1794
        c->brightness= brightness;
 
1795
        c->contrast  = contrast;
 
1796
        c->saturation= saturation;
 
1797
        c->srcRange  = srcRange;
 
1798
        c->dstRange  = dstRange;
 
1799
 
 
1800
        c->uOffset=   0x0400040004000400LL;
 
1801
        c->vOffset=   0x0400040004000400LL;
 
1802
 
 
1803
        if(!srcRange){
 
1804
                cy= (cy*255) / 219;
 
1805
                oy= 16<<16;
 
1806
        }
 
1807
 
 
1808
        cy = (cy *contrast             )>>16;
 
1809
        crv= (crv*contrast * saturation)>>32;
 
1810
        cbu= (cbu*contrast * saturation)>>32;
 
1811
        cgu= (cgu*contrast * saturation)>>32;
 
1812
        cgv= (cgv*contrast * saturation)>>32;
 
1813
 
 
1814
        oy -= 256*brightness;
 
1815
 
 
1816
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
 
1817
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
 
1818
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
 
1819
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
 
1820
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
 
1821
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
 
1822
 
 
1823
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
 
1824
        //FIXME factorize
 
1825
 
 
1826
#ifdef COMPILE_ALTIVEC
 
1827
        if (c->flags & SWS_CPU_CAPS_ALTIVEC)
 
1828
            yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
 
1829
#endif  
 
1830
        return 0;
 
1831
}
 
1832
 
 
1833
/**
 
1834
 * @return -1 if not supported
 
1835
 */
 
1836
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
 
1837
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
 
1838
 
 
1839
        *inv_table = c->srcColorspaceTable;
 
1840
        *table     = c->dstColorspaceTable;
 
1841
        *srcRange  = c->srcRange;
 
1842
        *dstRange  = c->dstRange;
 
1843
        *brightness= c->brightness;
 
1844
        *contrast  = c->contrast;
 
1845
        *saturation= c->saturation;
 
1846
        
 
1847
        return 0;       
 
1848
}
 
1849
 
 
1850
static int handle_jpeg(int *format)
 
1851
{
 
1852
        switch (*format) {
 
1853
                case PIX_FMT_YUVJ420P:
 
1854
                        *format = PIX_FMT_YUV420P;
 
1855
                        return 1;
 
1856
                case PIX_FMT_YUVJ422P:
 
1857
                        *format = PIX_FMT_YUV422P;
 
1858
                        return 1;
 
1859
                case PIX_FMT_YUVJ444P:
 
1860
                        *format = PIX_FMT_YUV444P;
 
1861
                        return 1;
 
1862
                default:
 
1863
                        return 0;
 
1864
        }
 
1865
}
 
1866
 
 
1867
SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
 
1868
                         SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
 
1869
 
 
1870
        SwsContext *c;
 
1871
        int i;
 
1872
        int usesVFilter, usesHFilter;
 
1873
        int unscaled, needsDither;
 
1874
        int srcRange, dstRange;
 
1875
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
 
1876
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
1877
        if(flags & SWS_CPU_CAPS_MMX)
 
1878
                asm volatile("emms\n\t"::: "memory");
 
1879
#endif
 
1880
 
 
1881
#ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
 
1882
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
 
1883
#ifdef HAVE_MMX2
 
1884
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
 
1885
#elif defined (HAVE_3DNOW)
 
1886
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
 
1887
#elif defined (HAVE_MMX)
 
1888
        flags |= SWS_CPU_CAPS_MMX;
 
1889
#elif defined (HAVE_ALTIVEC)
 
1890
        flags |= SWS_CPU_CAPS_ALTIVEC;
 
1891
#endif
 
1892
#endif /* RUNTIME_CPUDETECT */
 
1893
        if(clip_table[512] != 255) globalInit();
 
1894
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
 
1895
 
 
1896
        unscaled = (srcW == dstW && srcH == dstH);
 
1897
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
 
1898
                     && (fmt_depth(dstFormat))<24
 
1899
                     && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
 
1900
 
 
1901
        srcRange = handle_jpeg(&srcFormat);
 
1902
        dstRange = handle_jpeg(&dstFormat);
 
1903
 
 
1904
        if(!isSupportedIn(srcFormat)) 
 
1905
        {
 
1906
                MSG_ERR("swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
 
1907
                return NULL;
 
1908
        }
 
1909
        if(!isSupportedOut(dstFormat))
 
1910
        {
 
1911
                MSG_ERR("swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
 
1912
                return NULL;
 
1913
        }
 
1914
 
 
1915
        /* sanity check */
 
1916
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
 
1917
        {
 
1918
                 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
 
1919
                        srcW, srcH, dstW, dstH);
 
1920
                return NULL;
 
1921
        }
 
1922
 
 
1923
        if(!dstFilter) dstFilter= &dummyFilter;
 
1924
        if(!srcFilter) srcFilter= &dummyFilter;
 
1925
 
 
1926
        c= av_malloc(sizeof(SwsContext));
 
1927
        memset(c, 0, sizeof(SwsContext));
 
1928
 
 
1929
        c->srcW= srcW;
 
1930
        c->srcH= srcH;
 
1931
        c->dstW= dstW;
 
1932
        c->dstH= dstH;
 
1933
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
 
1934
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
 
1935
        c->flags= flags;
 
1936
        c->dstFormat= dstFormat;
 
1937
        c->srcFormat= srcFormat;
 
1938
        c->vRounder= 4* 0x0001000100010001ULL;
 
1939
 
 
1940
        usesHFilter= usesVFilter= 0;
 
1941
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
 
1942
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
 
1943
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
 
1944
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
 
1945
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
 
1946
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
 
1947
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
 
1948
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
 
1949
 
 
1950
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
 
1951
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
 
1952
 
 
1953
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
 
1954
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
 
1955
 
 
1956
        // drop some chroma lines if the user wants it
 
1957
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
 
1958
        c->chrSrcVSubSample+= c->vChrDrop;
 
1959
 
 
1960
        // drop every 2. pixel for chroma calculation unless user wants full chroma
 
1961
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
 
1962
                c->chrSrcHSubSample=1;
 
1963
 
 
1964
        if(param){
 
1965
                c->param[0] = param[0];
 
1966
                c->param[1] = param[1];
 
1967
        }else{
 
1968
                c->param[0] =
 
1969
                c->param[1] = SWS_PARAM_DEFAULT;
 
1970
        }
 
1971
 
 
1972
        c->chrIntHSubSample= c->chrDstHSubSample;
 
1973
        c->chrIntVSubSample= c->chrSrcVSubSample;
 
1974
 
 
1975
        // note the -((-x)>>y) is so that we allways round toward +inf
 
1976
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
 
1977
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
 
1978
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
 
1979
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
 
1980
 
 
1981
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16); 
 
1982
 
 
1983
        /* unscaled special Cases */
 
1984
        if(unscaled && !usesHFilter && !usesVFilter)
 
1985
        {
 
1986
                /* yv12_to_nv12 */
 
1987
                if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
 
1988
                {
 
1989
                        c->swScale= PlanarToNV12Wrapper;
 
1990
                }
 
1991
                /* yuv2bgr */
 
1992
                if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
 
1993
                {
 
1994
                        c->swScale= yuv2rgb_get_func_ptr(c);
 
1995
                }
 
1996
                
 
1997
                if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
 
1998
                {
 
1999
                        c->swScale= yvu9toyv12Wrapper;
 
2000
                }
 
2001
 
 
2002
                /* bgr24toYV12 */
 
2003
                if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
 
2004
                        c->swScale= bgr24toyv12Wrapper;
 
2005
                
 
2006
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
 
2007
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
 
2008
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
 
2009
                   && !needsDither)
 
2010
                        c->swScale= rgb2rgbWrapper;
 
2011
 
 
2012
                /* LQ converters if -sws 0 or -sws 4*/
 
2013
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
 
2014
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
 
2015
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
 
2016
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
 
2017
                          && needsDither)
 
2018
                                c->swScale= rgb2rgbWrapper;
 
2019
 
 
2020
                        /* yv12_to_yuy2 */
 
2021
                        if(srcFormat == PIX_FMT_YUV420P && 
 
2022
                            (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
 
2023
                        {
 
2024
                                if (dstFormat == PIX_FMT_YUYV422)
 
2025
                                    c->swScale= PlanarToYuy2Wrapper;
 
2026
                                else
 
2027
                                    c->swScale= PlanarToUyvyWrapper;
 
2028
                        }
 
2029
                }
 
2030
 
 
2031
#ifdef COMPILE_ALTIVEC
 
2032
                if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
 
2033
                    ((srcFormat == PIX_FMT_YUV420P && 
 
2034
                      (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
 
2035
                  // unscaled YV12 -> packed YUV, we want speed
 
2036
                  if (dstFormat == PIX_FMT_YUYV422)
 
2037
                    c->swScale= yv12toyuy2_unscaled_altivec;
 
2038
                  else
 
2039
                    c->swScale= yv12touyvy_unscaled_altivec;
 
2040
                }
 
2041
#endif
 
2042
 
 
2043
                /* simple copy */
 
2044
                if(   srcFormat == dstFormat
 
2045
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
 
2046
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
 
2047
                  )
 
2048
                {
 
2049
                        c->swScale= simpleCopy;
 
2050
                }
 
2051
 
 
2052
                if(c->swScale){
 
2053
                        if(flags&SWS_PRINT_INFO)
 
2054
                                MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
 
2055
                                        sws_format_name(srcFormat), sws_format_name(dstFormat));
 
2056
                        return c;
 
2057
                }
 
2058
        }
 
2059
 
 
2060
        if(flags & SWS_CPU_CAPS_MMX2)
 
2061
        {
 
2062
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
 
2063
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
 
2064
                {
 
2065
                        if(flags&SWS_PRINT_INFO)
 
2066
                                MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
 
2067
                }
 
2068
                if(usesHFilter) c->canMMX2BeUsed=0;
 
2069
        }
 
2070
        else
 
2071
                c->canMMX2BeUsed=0;
 
2072
 
 
2073
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
 
2074
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
 
2075
 
 
2076
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
 
2077
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
 
2078
        // n-2 is the last chrominance sample available
 
2079
        // this is not perfect, but noone shuld notice the difference, the more correct variant
 
2080
        // would be like the vertical one, but that would require some special code for the
 
2081
        // first and last pixel
 
2082
        if(flags&SWS_FAST_BILINEAR)
 
2083
        {
 
2084
                if(c->canMMX2BeUsed)
 
2085
                {
 
2086
                        c->lumXInc+= 20;
 
2087
                        c->chrXInc+= 20;
 
2088
                }
 
2089
                //we don't use the x86asm scaler if mmx is available
 
2090
                else if(flags & SWS_CPU_CAPS_MMX)
 
2091
                {
 
2092
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
 
2093
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
 
2094
                }
 
2095
        }
 
2096
 
 
2097
        /* precalculate horizontal scaler filter coefficients */
 
2098
        {
 
2099
                const int filterAlign=
 
2100
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
 
2101
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
 
2102
                  1;
 
2103
 
 
2104
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
 
2105
                                 srcW      ,       dstW, filterAlign, 1<<14,
 
2106
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
 
2107
                                 srcFilter->lumH, dstFilter->lumH, c->param);
 
2108
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
 
2109
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
 
2110
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
 
2111
                                 srcFilter->chrH, dstFilter->chrH, c->param);
 
2112
 
 
2113
#define MAX_FUNNY_CODE_SIZE 10000
 
2114
#if defined(COMPILE_MMX2)
 
2115
// can't downscale !!!
 
2116
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
 
2117
                {
 
2118
#ifdef MAP_ANONYMOUS
 
2119
                        c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
 
2120
                        c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
 
2121
#else
 
2122
                        c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
 
2123
                        c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
 
2124
#endif
 
2125
 
 
2126
                        c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
 
2127
                        c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
 
2128
                        c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
 
2129
                        c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
 
2130
 
 
2131
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
 
2132
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
 
2133
                }
 
2134
#endif /* defined(COMPILE_MMX2) */
 
2135
        } // Init Horizontal stuff
 
2136
 
 
2137
 
 
2138
 
 
2139
        /* precalculate vertical scaler filter coefficients */
 
2140
        {
 
2141
                const int filterAlign=
 
2142
                  (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
 
2143
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
 
2144
                  1;
 
2145
 
 
2146
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
 
2147
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
 
2148
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
 
2149
                                srcFilter->lumV, dstFilter->lumV, c->param);
 
2150
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
 
2151
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
 
2152
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
 
2153
                                srcFilter->chrV, dstFilter->chrV, c->param);
 
2154
 
 
2155
#ifdef HAVE_ALTIVEC
 
2156
                c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
 
2157
                c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
 
2158
 
 
2159
                for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
 
2160
                  int j;
 
2161
                  short *p = (short *)&c->vYCoeffsBank[i];
 
2162
                  for (j=0;j<8;j++)
 
2163
                    p[j] = c->vLumFilter[i];
 
2164
                }
 
2165
 
 
2166
                for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
 
2167
                  int j;
 
2168
                  short *p = (short *)&c->vCCoeffsBank[i];
 
2169
                  for (j=0;j<8;j++)
 
2170
                    p[j] = c->vChrFilter[i];
 
2171
                }
 
2172
#endif
 
2173
        }
 
2174
 
 
2175
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
 
2176
        c->vLumBufSize= c->vLumFilterSize;
 
2177
        c->vChrBufSize= c->vChrFilterSize;
 
2178
        for(i=0; i<dstH; i++)
 
2179
        {
 
2180
                int chrI= i*c->chrDstH / dstH;
 
2181
                int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
 
2182
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
 
2183
 
 
2184
                nextSlice>>= c->chrSrcVSubSample;
 
2185
                nextSlice<<= c->chrSrcVSubSample;
 
2186
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
 
2187
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
 
2188
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
 
2189
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
 
2190
        }
 
2191
 
 
2192
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
 
2193
        c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
 
2194
        c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
 
2195
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
 
2196
        /* align at 16 bytes for AltiVec */
 
2197
        for(i=0; i<c->vLumBufSize; i++)
 
2198
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_malloc(4000);
 
2199
        for(i=0; i<c->vChrBufSize; i++)
 
2200
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
 
2201
 
 
2202
        //try to avoid drawing green stuff between the right end and the stride end
 
2203
        for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
 
2204
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
 
2205
 
 
2206
        ASSERT(c->chrDstH <= dstH)
 
2207
 
 
2208
        if(flags&SWS_PRINT_INFO)
 
2209
        {
 
2210
#ifdef DITHER1XBPP
 
2211
                char *dither= " dithered";
 
2212
#else
 
2213
                char *dither= "";
 
2214
#endif
 
2215
                if(flags&SWS_FAST_BILINEAR)
 
2216
                        MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
 
2217
                else if(flags&SWS_BILINEAR)
 
2218
                        MSG_INFO("\nSwScaler: BILINEAR scaler, ");
 
2219
                else if(flags&SWS_BICUBIC)
 
2220
                        MSG_INFO("\nSwScaler: BICUBIC scaler, ");
 
2221
                else if(flags&SWS_X)
 
2222
                        MSG_INFO("\nSwScaler: Experimental scaler, ");
 
2223
                else if(flags&SWS_POINT)
 
2224
                        MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
 
2225
                else if(flags&SWS_AREA)
 
2226
                        MSG_INFO("\nSwScaler: Area Averageing scaler, ");
 
2227
                else if(flags&SWS_BICUBLIN)
 
2228
                        MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
 
2229
                else if(flags&SWS_GAUSS)
 
2230
                        MSG_INFO("\nSwScaler: Gaussian scaler, ");
 
2231
                else if(flags&SWS_SINC)
 
2232
                        MSG_INFO("\nSwScaler: Sinc scaler, ");
 
2233
                else if(flags&SWS_LANCZOS)
 
2234
                        MSG_INFO("\nSwScaler: Lanczos scaler, ");
 
2235
                else if(flags&SWS_SPLINE)
 
2236
                        MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
 
2237
                else
 
2238
                        MSG_INFO("\nSwScaler: ehh flags invalid?! ");
 
2239
 
 
2240
                if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
 
2241
                        MSG_INFO("from %s to%s %s ", 
 
2242
                                sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
 
2243
                else
 
2244
                        MSG_INFO("from %s to %s ", 
 
2245
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
 
2246
 
 
2247
                if(flags & SWS_CPU_CAPS_MMX2)
 
2248
                        MSG_INFO("using MMX2\n");
 
2249
                else if(flags & SWS_CPU_CAPS_3DNOW)
 
2250
                        MSG_INFO("using 3DNOW\n");
 
2251
                else if(flags & SWS_CPU_CAPS_MMX)
 
2252
                        MSG_INFO("using MMX\n");
 
2253
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
 
2254
                        MSG_INFO("using AltiVec\n");
 
2255
                else 
 
2256
                        MSG_INFO("using C\n");
 
2257
        }
 
2258
 
 
2259
        if(flags & SWS_PRINT_INFO)
 
2260
        {
 
2261
                if(flags & SWS_CPU_CAPS_MMX)
 
2262
                {
 
2263
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
 
2264
                                MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
 
2265
                        else
 
2266
                        {
 
2267
                                if(c->hLumFilterSize==4)
 
2268
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
 
2269
                                else if(c->hLumFilterSize==8)
 
2270
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
 
2271
                                else
 
2272
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
 
2273
 
 
2274
                                if(c->hChrFilterSize==4)
 
2275
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
 
2276
                                else if(c->hChrFilterSize==8)
 
2277
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
 
2278
                                else
 
2279
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
 
2280
                        }
 
2281
                }
 
2282
                else
 
2283
                {
 
2284
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
2285
                        MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
 
2286
#else
 
2287
                        if(flags & SWS_FAST_BILINEAR)
 
2288
                                MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
 
2289
                        else
 
2290
                                MSG_V("SwScaler: using C scaler for horizontal scaling\n");
 
2291
#endif
 
2292
                }
 
2293
                if(isPlanarYUV(dstFormat))
 
2294
                {
 
2295
                        if(c->vLumFilterSize==1)
 
2296
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
 
2297
                        else
 
2298
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
 
2299
                }
 
2300
                else
 
2301
                {
 
2302
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
 
2303
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
 
2304
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
 
2305
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
 
2306
                                MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
 
2307
                        else
 
2308
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
 
2309
                }
 
2310
 
 
2311
                if(dstFormat==PIX_FMT_BGR24)
 
2312
                        MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
 
2313
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
 
2314
                else if(dstFormat==PIX_FMT_RGB32)
 
2315
                        MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
 
2316
                else if(dstFormat==PIX_FMT_BGR565)
 
2317
                        MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
 
2318
                else if(dstFormat==PIX_FMT_BGR555)
 
2319
                        MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
 
2320
 
 
2321
                MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
 
2322
        }
 
2323
        if(flags & SWS_PRINT_INFO)
 
2324
        {
 
2325
                MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
 
2326
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
 
2327
                MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
 
2328
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
 
2329
        }
 
2330
 
 
2331
        c->swScale= getSwsFunc(flags);
 
2332
        return c;
 
2333
}
 
2334
 
 
2335
/**
 
2336
 * swscale warper, so we don't need to export the SwsContext.
 
2337
 * assumes planar YUV to be in YUV order instead of YVU
 
2338
 */
 
2339
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
 
2340
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
 
2341
        if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
 
2342
            MSG_ERR("swScaler: slices start in the middle!\n");
 
2343
            return 0;
 
2344
        }
 
2345
        if (c->sliceDir == 0) {
 
2346
            if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
 
2347
        }
 
2348
 
 
2349
        // copy strides, so they can safely be modified
 
2350
        if (c->sliceDir == 1) {
 
2351
            // slices go from top to bottom
 
2352
            int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
 
2353
            int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
 
2354
            return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
 
2355
        } else {
 
2356
            // slices go from bottom to top => we flip the image internally
 
2357
            uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
 
2358
                               src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
 
2359
                               src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
 
2360
            };
 
2361
            uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
 
2362
                               dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
 
2363
                               dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
 
2364
            int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
 
2365
            int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
 
2366
            
 
2367
            return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
 
2368
        }
 
2369
}
 
2370
 
 
2371
/**
 
2372
 * swscale warper, so we don't need to export the SwsContext
 
2373
 */
 
2374
int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStride[], int srcSliceY,
 
2375
                           int srcSliceH, uint8_t* dstParam[], int dstStride[]){
 
2376
        uint8_t *src[3];
 
2377
        uint8_t *dst[3];
 
2378
        src[0] = srcParam[0]; src[1] = srcParam[1]; src[2] = srcParam[2];
 
2379
        dst[0] = dstParam[0]; dst[1] = dstParam[1]; dst[2] = dstParam[2];
 
2380
//printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
 
2381
 
 
2382
        return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
 
2383
}
 
2384
 
 
2385
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
 
2386
                                float lumaSharpen, float chromaSharpen,
 
2387
                                float chromaHShift, float chromaVShift,
 
2388
                                int verbose)
 
2389
{
 
2390
        SwsFilter *filter= av_malloc(sizeof(SwsFilter));
 
2391
 
 
2392
        if(lumaGBlur!=0.0){
 
2393
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
 
2394
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
 
2395
        }else{
 
2396
                filter->lumH= sws_getIdentityVec();
 
2397
                filter->lumV= sws_getIdentityVec();
 
2398
        }
 
2399
 
 
2400
        if(chromaGBlur!=0.0){
 
2401
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
 
2402
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
 
2403
        }else{
 
2404
                filter->chrH= sws_getIdentityVec();
 
2405
                filter->chrV= sws_getIdentityVec();
 
2406
        }
 
2407
 
 
2408
        if(chromaSharpen!=0.0){
 
2409
                SwsVector *id= sws_getIdentityVec();
 
2410
                sws_scaleVec(filter->chrH, -chromaSharpen);
 
2411
                sws_scaleVec(filter->chrV, -chromaSharpen);
 
2412
                sws_addVec(filter->chrH, id);
 
2413
                sws_addVec(filter->chrV, id);
 
2414
                sws_freeVec(id);
 
2415
        }
 
2416
 
 
2417
        if(lumaSharpen!=0.0){
 
2418
                SwsVector *id= sws_getIdentityVec();
 
2419
                sws_scaleVec(filter->lumH, -lumaSharpen);
 
2420
                sws_scaleVec(filter->lumV, -lumaSharpen);
 
2421
                sws_addVec(filter->lumH, id);
 
2422
                sws_addVec(filter->lumV, id);
 
2423
                sws_freeVec(id);
 
2424
        }
 
2425
 
 
2426
        if(chromaHShift != 0.0)
 
2427
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
 
2428
 
 
2429
        if(chromaVShift != 0.0)
 
2430
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
 
2431
 
 
2432
        sws_normalizeVec(filter->chrH, 1.0);
 
2433
        sws_normalizeVec(filter->chrV, 1.0);
 
2434
        sws_normalizeVec(filter->lumH, 1.0);
 
2435
        sws_normalizeVec(filter->lumV, 1.0);
 
2436
 
 
2437
        if(verbose) sws_printVec(filter->chrH);
 
2438
        if(verbose) sws_printVec(filter->lumH);
 
2439
 
 
2440
        return filter;
 
2441
}
 
2442
 
 
2443
/**
 
2444
 * returns a normalized gaussian curve used to filter stuff
 
2445
 * quality=3 is high quality, lowwer is lowwer quality
 
2446
 */
 
2447
SwsVector *sws_getGaussianVec(double variance, double quality){
 
2448
        const int length= (int)(variance*quality + 0.5) | 1;
 
2449
        int i;
 
2450
        double *coeff= av_malloc(length*sizeof(double));
 
2451
        double middle= (length-1)*0.5;
 
2452
        SwsVector *vec= av_malloc(sizeof(SwsVector));
 
2453
 
 
2454
        vec->coeff= coeff;
 
2455
        vec->length= length;
 
2456
 
 
2457
        for(i=0; i<length; i++)
 
2458
        {
 
2459
                double dist= i-middle;
 
2460
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
 
2461
        }
 
2462
 
 
2463
        sws_normalizeVec(vec, 1.0);
 
2464
 
 
2465
        return vec;
 
2466
}
 
2467
 
 
2468
SwsVector *sws_getConstVec(double c, int length){
 
2469
        int i;
 
2470
        double *coeff= av_malloc(length*sizeof(double));
 
2471
        SwsVector *vec= av_malloc(sizeof(SwsVector));
 
2472
 
 
2473
        vec->coeff= coeff;
 
2474
        vec->length= length;
 
2475
 
 
2476
        for(i=0; i<length; i++)
 
2477
                coeff[i]= c;
 
2478
 
 
2479
        return vec;
 
2480
}
 
2481
 
 
2482
 
 
2483
SwsVector *sws_getIdentityVec(void){
 
2484
        return sws_getConstVec(1.0, 1);
 
2485
}
 
2486
 
 
2487
double sws_dcVec(SwsVector *a){
 
2488
        int i;
 
2489
        double sum=0;
 
2490
 
 
2491
        for(i=0; i<a->length; i++)
 
2492
                sum+= a->coeff[i];
 
2493
 
 
2494
        return sum;
 
2495
}
 
2496
 
 
2497
void sws_scaleVec(SwsVector *a, double scalar){
 
2498
        int i;
 
2499
 
 
2500
        for(i=0; i<a->length; i++)
 
2501
                a->coeff[i]*= scalar;
 
2502
}
 
2503
 
 
2504
void sws_normalizeVec(SwsVector *a, double height){
 
2505
        sws_scaleVec(a, height/sws_dcVec(a));
 
2506
}
 
2507
 
 
2508
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
 
2509
        int length= a->length + b->length - 1;
 
2510
        double *coeff= av_malloc(length*sizeof(double));
 
2511
        int i, j;
 
2512
        SwsVector *vec= av_malloc(sizeof(SwsVector));
 
2513
 
 
2514
        vec->coeff= coeff;
 
2515
        vec->length= length;
 
2516
 
 
2517
        for(i=0; i<length; i++) coeff[i]= 0.0;
 
2518
 
 
2519
        for(i=0; i<a->length; i++)
 
2520
        {
 
2521
                for(j=0; j<b->length; j++)
 
2522
                {
 
2523
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
 
2524
                }
 
2525
        }
 
2526
 
 
2527
        return vec;
 
2528
}
 
2529
 
 
2530
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
 
2531
        int length= FFMAX(a->length, b->length);
 
2532
        double *coeff= av_malloc(length*sizeof(double));
 
2533
        int i;
 
2534
        SwsVector *vec= av_malloc(sizeof(SwsVector));
 
2535
 
 
2536
        vec->coeff= coeff;
 
2537
        vec->length= length;
 
2538
 
 
2539
        for(i=0; i<length; i++) coeff[i]= 0.0;
 
2540
 
 
2541
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
 
2542
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
 
2543
 
 
2544
        return vec;
 
2545
}
 
2546
 
 
2547
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
 
2548
        int length= FFMAX(a->length, b->length);
 
2549
        double *coeff= av_malloc(length*sizeof(double));
 
2550
        int i;
 
2551
        SwsVector *vec= av_malloc(sizeof(SwsVector));
 
2552
 
 
2553
        vec->coeff= coeff;
 
2554
        vec->length= length;
 
2555
 
 
2556
        for(i=0; i<length; i++) coeff[i]= 0.0;
 
2557
 
 
2558
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
 
2559
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
 
2560
 
 
2561
        return vec;
 
2562
}
 
2563
 
 
2564
/* shift left / or right if "shift" is negative */
 
2565
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
 
2566
        int length= a->length + ABS(shift)*2;
 
2567
        double *coeff= av_malloc(length*sizeof(double));
 
2568
        int i;
 
2569
        SwsVector *vec= av_malloc(sizeof(SwsVector));
 
2570
 
 
2571
        vec->coeff= coeff;
 
2572
        vec->length= length;
 
2573
 
 
2574
        for(i=0; i<length; i++) coeff[i]= 0.0;
 
2575
 
 
2576
        for(i=0; i<a->length; i++)
 
2577
        {
 
2578
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
 
2579
        }
 
2580
 
 
2581
        return vec;
 
2582
}
 
2583
 
 
2584
void sws_shiftVec(SwsVector *a, int shift){
 
2585
        SwsVector *shifted= sws_getShiftedVec(a, shift);
 
2586
        av_free(a->coeff);
 
2587
        a->coeff= shifted->coeff;
 
2588
        a->length= shifted->length;
 
2589
        av_free(shifted);
 
2590
}
 
2591
 
 
2592
void sws_addVec(SwsVector *a, SwsVector *b){
 
2593
        SwsVector *sum= sws_sumVec(a, b);
 
2594
        av_free(a->coeff);
 
2595
        a->coeff= sum->coeff;
 
2596
        a->length= sum->length;
 
2597
        av_free(sum);
 
2598
}
 
2599
 
 
2600
void sws_subVec(SwsVector *a, SwsVector *b){
 
2601
        SwsVector *diff= sws_diffVec(a, b);
 
2602
        av_free(a->coeff);
 
2603
        a->coeff= diff->coeff;
 
2604
        a->length= diff->length;
 
2605
        av_free(diff);
 
2606
}
 
2607
 
 
2608
void sws_convVec(SwsVector *a, SwsVector *b){
 
2609
        SwsVector *conv= sws_getConvVec(a, b);
 
2610
        av_free(a->coeff);  
 
2611
        a->coeff= conv->coeff;
 
2612
        a->length= conv->length;
 
2613
        av_free(conv);
 
2614
}
 
2615
 
 
2616
SwsVector *sws_cloneVec(SwsVector *a){
 
2617
        double *coeff= av_malloc(a->length*sizeof(double));
 
2618
        int i;
 
2619
        SwsVector *vec= av_malloc(sizeof(SwsVector));
 
2620
 
 
2621
        vec->coeff= coeff;
 
2622
        vec->length= a->length;
 
2623
 
 
2624
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
 
2625
 
 
2626
        return vec;
 
2627
}
 
2628
 
 
2629
void sws_printVec(SwsVector *a){
 
2630
        int i;
 
2631
        double max=0;
 
2632
        double min=0;
 
2633
        double range;
 
2634
 
 
2635
        for(i=0; i<a->length; i++)
 
2636
                if(a->coeff[i]>max) max= a->coeff[i];
 
2637
 
 
2638
        for(i=0; i<a->length; i++)
 
2639
                if(a->coeff[i]<min) min= a->coeff[i];
 
2640
 
 
2641
        range= max - min;
 
2642
 
 
2643
        for(i=0; i<a->length; i++)
 
2644
        {
 
2645
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
 
2646
                MSG_DBG2("%1.3f ", a->coeff[i]);
 
2647
                for(;x>0; x--) MSG_DBG2(" ");
 
2648
                MSG_DBG2("|\n");
 
2649
        }
 
2650
}
 
2651
 
 
2652
void sws_freeVec(SwsVector *a){
 
2653
        if(!a) return;
 
2654
        av_free(a->coeff);
 
2655
        a->coeff=NULL;
 
2656
        a->length=0;
 
2657
        av_free(a);
 
2658
}
 
2659
 
 
2660
void sws_freeFilter(SwsFilter *filter){
 
2661
        if(!filter) return;
 
2662
 
 
2663
        if(filter->lumH) sws_freeVec(filter->lumH);
 
2664
        if(filter->lumV) sws_freeVec(filter->lumV);
 
2665
        if(filter->chrH) sws_freeVec(filter->chrH);
 
2666
        if(filter->chrV) sws_freeVec(filter->chrV);
 
2667
        av_free(filter);
 
2668
}
 
2669
 
 
2670
 
 
2671
void sws_freeContext(SwsContext *c){
 
2672
        int i;
 
2673
        if(!c) return;
 
2674
 
 
2675
        if(c->lumPixBuf)
 
2676
        {
 
2677
                for(i=0; i<c->vLumBufSize; i++)
 
2678
                {
 
2679
                        av_free(c->lumPixBuf[i]);
 
2680
                        c->lumPixBuf[i]=NULL;
 
2681
                }
 
2682
                av_free(c->lumPixBuf);
 
2683
                c->lumPixBuf=NULL;
 
2684
        }
 
2685
 
 
2686
        if(c->chrPixBuf)
 
2687
        {
 
2688
                for(i=0; i<c->vChrBufSize; i++)
 
2689
                {
 
2690
                        av_free(c->chrPixBuf[i]);
 
2691
                        c->chrPixBuf[i]=NULL;
 
2692
                }
 
2693
                av_free(c->chrPixBuf);
 
2694
                c->chrPixBuf=NULL;
 
2695
        }
 
2696
 
 
2697
        av_free(c->vLumFilter);
 
2698
        c->vLumFilter = NULL;
 
2699
        av_free(c->vChrFilter);
 
2700
        c->vChrFilter = NULL;
 
2701
        av_free(c->hLumFilter);
 
2702
        c->hLumFilter = NULL;
 
2703
        av_free(c->hChrFilter);
 
2704
        c->hChrFilter = NULL;
 
2705
#ifdef HAVE_ALTIVEC
 
2706
        av_free(c->vYCoeffsBank);
 
2707
        c->vYCoeffsBank = NULL;
 
2708
        av_free(c->vCCoeffsBank);
 
2709
        c->vCCoeffsBank = NULL;
 
2710
#endif
 
2711
 
 
2712
        av_free(c->vLumFilterPos);
 
2713
        c->vLumFilterPos = NULL;
 
2714
        av_free(c->vChrFilterPos);
 
2715
        c->vChrFilterPos = NULL;
 
2716
        av_free(c->hLumFilterPos);
 
2717
        c->hLumFilterPos = NULL;
 
2718
        av_free(c->hChrFilterPos);
 
2719
        c->hChrFilterPos = NULL;
 
2720
 
 
2721
#if defined(ARCH_X86) || defined(ARCH_X86_64)
 
2722
#ifdef MAP_ANONYMOUS
 
2723
        if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
 
2724
        if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
 
2725
#else
 
2726
        av_free(c->funnyYCode);
 
2727
        av_free(c->funnyUVCode);
 
2728
#endif
 
2729
        c->funnyYCode=NULL;
 
2730
        c->funnyUVCode=NULL;
 
2731
#endif /* defined(ARCH_X86) || defined(ARCH_X86_64) */
 
2732
 
 
2733
        av_free(c->lumMmx2Filter);
 
2734
        c->lumMmx2Filter=NULL;
 
2735
        av_free(c->chrMmx2Filter);
 
2736
        c->chrMmx2Filter=NULL;
 
2737
        av_free(c->lumMmx2FilterPos);
 
2738
        c->lumMmx2FilterPos=NULL;
 
2739
        av_free(c->chrMmx2FilterPos);
 
2740
        c->chrMmx2FilterPos=NULL;
 
2741
        av_free(c->yuvTable);
 
2742
        c->yuvTable=NULL;
 
2743
 
 
2744
        av_free(c);
 
2745
}
 
2746
 
 
2747
/**
 
2748
 * Checks if context is valid or reallocs a new one instead.
 
2749
 * If context is NULL, just calls sws_getContext() to get a new one.
 
2750
 * Otherwise, checks if the parameters are the same already saved in context.
 
2751
 * If that is the case, returns the current context.
 
2752
 * Otherwise, frees context and gets a new one.
 
2753
 *
 
2754
 * Be warned that srcFilter, dstFilter are not checked, they are
 
2755
 * asumed to remain valid.
 
2756
 */
 
2757
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
 
2758
                        int srcW, int srcH, int srcFormat,
 
2759
                        int dstW, int dstH, int dstFormat, int flags,
 
2760
                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
 
2761
{
 
2762
    if (context != NULL) {
 
2763
        if ((context->srcW != srcW) || (context->srcH != srcH) ||
 
2764
            (context->srcFormat != srcFormat) ||
 
2765
            (context->dstW != dstW) || (context->dstH != dstH) ||
 
2766
            (context->dstFormat != dstFormat) || (context->flags != flags) ||
 
2767
            (context->param != param))
 
2768
        {
 
2769
            sws_freeContext(context);
 
2770
            context = NULL;
 
2771
        }
 
2772
    }
 
2773
    if (context == NULL) {
 
2774
        return sws_getContext(srcW, srcH, srcFormat,
 
2775
                        dstW, dstH, dstFormat, flags,
 
2776
                        srcFilter, dstFilter, param);
 
2777
    }
 
2778
    return context;
 
2779
}
 
2780