~ubuntu-branches/ubuntu/hardy/openssl/hardy-security

« back to all changes in this revision

Viewing changes to crypto/sha/sha256.c

  • Committer: Bazaar Package Importer
  • Author(s): Kurt Roeckx
  • Date: 2005-12-13 21:37:42 UTC
  • mfrom: (1.1.2 upstream)
  • Revision ID: james.westby@ubuntu.com-20051213213742-7em5nrw5c7ceegyd
Tags: 0.9.8a-5
Stop ssh from crashing randomly on sparc (Closes: #335912)
Patch from upstream cvs.

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/* crypto/sha/sha256.c */
 
2
/* ====================================================================
 
3
 * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
 
4
 * according to the OpenSSL license [found in ../../LICENSE].
 
5
 * ====================================================================
 
6
 */
 
7
#include <openssl/opensslconf.h>
 
8
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
 
9
 
 
10
#include <stdlib.h>
 
11
#include <string.h>
 
12
 
 
13
#include <openssl/crypto.h>
 
14
#include <openssl/sha.h>
 
15
#include <openssl/opensslv.h>
 
16
 
 
17
const char *SHA256_version="SHA-256" OPENSSL_VERSION_PTEXT;
 
18
 
 
19
int SHA224_Init (SHA256_CTX *c)
 
20
        {
 
21
        c->h[0]=0xc1059ed8UL;   c->h[1]=0x367cd507UL;
 
22
        c->h[2]=0x3070dd17UL;   c->h[3]=0xf70e5939UL;
 
23
        c->h[4]=0xffc00b31UL;   c->h[5]=0x68581511UL;
 
24
        c->h[6]=0x64f98fa7UL;   c->h[7]=0xbefa4fa4UL;
 
25
        c->Nl=0;        c->Nh=0;
 
26
        c->num=0;       c->md_len=SHA224_DIGEST_LENGTH;
 
27
        return 1;
 
28
        }
 
29
 
 
30
int SHA256_Init (SHA256_CTX *c)
 
31
        {
 
32
        c->h[0]=0x6a09e667UL;   c->h[1]=0xbb67ae85UL;
 
33
        c->h[2]=0x3c6ef372UL;   c->h[3]=0xa54ff53aUL;
 
34
        c->h[4]=0x510e527fUL;   c->h[5]=0x9b05688cUL;
 
35
        c->h[6]=0x1f83d9abUL;   c->h[7]=0x5be0cd19UL;
 
36
        c->Nl=0;        c->Nh=0;
 
37
        c->num=0;       c->md_len=SHA256_DIGEST_LENGTH;
 
38
        return 1;
 
39
        }
 
40
 
 
41
unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
 
42
        {
 
43
        SHA256_CTX c;
 
44
        static unsigned char m[SHA224_DIGEST_LENGTH];
 
45
 
 
46
        if (md == NULL) md=m;
 
47
        SHA224_Init(&c);
 
48
        SHA256_Update(&c,d,n);
 
49
        SHA256_Final(md,&c);
 
50
        OPENSSL_cleanse(&c,sizeof(c));
 
51
        return(md);
 
52
        }
 
53
 
 
54
unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
 
55
        {
 
56
        SHA256_CTX c;
 
57
        static unsigned char m[SHA256_DIGEST_LENGTH];
 
58
 
 
59
        if (md == NULL) md=m;
 
60
        SHA256_Init(&c);
 
61
        SHA256_Update(&c,d,n);
 
62
        SHA256_Final(md,&c);
 
63
        OPENSSL_cleanse(&c,sizeof(c));
 
64
        return(md);
 
65
        }
 
66
 
 
67
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
 
68
{   return SHA256_Update (c,data,len);   }
 
69
int SHA224_Final (unsigned char *md, SHA256_CTX *c)
 
70
{   return SHA256_Final (md,c);   }
 
71
 
 
72
#ifndef SHA_LONG_LOG2
 
73
#define SHA_LONG_LOG2   2       /* default to 32 bits */
 
74
#endif
 
75
 
 
76
#define DATA_ORDER_IS_BIG_ENDIAN
 
77
 
 
78
#define HASH_LONG               SHA_LONG
 
79
#define HASH_LONG_LOG2          SHA_LONG_LOG2
 
80
#define HASH_CTX                SHA256_CTX
 
81
#define HASH_CBLOCK             SHA_CBLOCK
 
82
#define HASH_LBLOCK             SHA_LBLOCK
 
83
/*
 
84
 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
 
85
 * default: case below covers for it. It's not clear however if it's
 
86
 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
 
87
 * but if it is, then default: case shall be extended. For reference.
 
88
 * Idea behind separate cases for pre-defined lenghts is to let the
 
89
 * compiler decide if it's appropriate to unroll small loops.
 
90
 */
 
91
#define HASH_MAKE_STRING(c,s)   do {    \
 
92
        unsigned long ll;               \
 
93
        unsigned int  n;                \
 
94
        switch ((c)->md_len)            \
 
95
        {   case SHA224_DIGEST_LENGTH:  \
 
96
                for (n=0;n<SHA224_DIGEST_LENGTH/4;n++)  \
 
97
                {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
 
98
                break;                  \
 
99
            case SHA256_DIGEST_LENGTH:  \
 
100
                for (n=0;n<SHA256_DIGEST_LENGTH/4;n++)  \
 
101
                {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
 
102
                break;                  \
 
103
            default:                    \
 
104
                if ((c)->md_len > SHA256_DIGEST_LENGTH) \
 
105
                    return 0;                           \
 
106
                for (n=0;n<(c)->md_len/4;n++)           \
 
107
                {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
 
108
                break;                  \
 
109
        }                               \
 
110
        } while (0)
 
111
 
 
112
#define HASH_UPDATE             SHA256_Update
 
113
#define HASH_TRANSFORM          SHA256_Transform
 
114
#define HASH_FINAL              SHA256_Final
 
115
#define HASH_BLOCK_HOST_ORDER   sha256_block_host_order
 
116
#define HASH_BLOCK_DATA_ORDER   sha256_block_data_order
 
117
void sha256_block_host_order (SHA256_CTX *ctx, const void *in, size_t num);
 
118
void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
 
119
 
 
120
#include "md32_common.h"
 
121
 
 
122
#ifdef SHA256_ASM
 
123
void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host);
 
124
#else
 
125
static const SHA_LONG K256[64] = {
 
126
        0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
 
127
        0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
 
128
        0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
 
129
        0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
 
130
        0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
 
131
        0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
 
132
        0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
 
133
        0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
 
134
        0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
 
135
        0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
 
136
        0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
 
137
        0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
 
138
        0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
 
139
        0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
 
140
        0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
 
141
        0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
 
142
 
 
143
/*
 
144
 * FIPS specification refers to right rotations, while our ROTATE macro
 
145
 * is left one. This is why you might notice that rotation coefficients
 
146
 * differ from those observed in FIPS document by 32-N...
 
147
 */
 
148
#define Sigma0(x)       (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
 
149
#define Sigma1(x)       (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
 
150
#define sigma0(x)       (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
 
151
#define sigma1(x)       (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
 
152
 
 
153
#define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
 
154
#define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
 
155
 
 
156
#ifdef OPENSSL_SMALL_FOOTPRINT
 
157
 
 
158
static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
 
159
        {
 
160
        unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
 
161
        SHA_LONG        X[16];
 
162
        int i;
 
163
        const unsigned char *data=in;
 
164
 
 
165
                        while (num--) {
 
166
 
 
167
        a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
 
168
        e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
 
169
 
 
170
        if (host)
 
171
                {
 
172
                const SHA_LONG *W=(const SHA_LONG *)data;
 
173
 
 
174
                for (i=0;i<16;i++)
 
175
                        {
 
176
                        T1 = X[i] = W[i];
 
177
                        T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
 
178
                        T2 = Sigma0(a) + Maj(a,b,c);
 
179
                        h = g;  g = f;  f = e;  e = d + T1;
 
180
                        d = c;  c = b;  b = a;  a = T1 + T2;
 
181
                        }
 
182
 
 
183
                data += SHA256_CBLOCK;
 
184
                }
 
185
        else
 
186
                {
 
187
                SHA_LONG l;
 
188
 
 
189
                for (i=0;i<16;i++)
 
190
                        {
 
191
                        HOST_c2l(data,l); T1 = X[i] = l;
 
192
                        T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
 
193
                        T2 = Sigma0(a) + Maj(a,b,c);
 
194
                        h = g;  g = f;  f = e;  e = d + T1;
 
195
                        d = c;  c = b;  b = a;  a = T1 + T2;
 
196
                        }
 
197
                }
 
198
 
 
199
        for (;i<64;i++)
 
200
                {
 
201
                s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);
 
202
                s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);
 
203
 
 
204
                T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
 
205
                T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
 
206
                T2 = Sigma0(a) + Maj(a,b,c);
 
207
                h = g;  g = f;  f = e;  e = d + T1;
 
208
                d = c;  c = b;  b = a;  a = T1 + T2;
 
209
                }
 
210
 
 
211
        ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
 
212
        ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
 
213
 
 
214
                        }
 
215
}
 
216
 
 
217
#else
 
218
 
 
219
#define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
 
220
        T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];      \
 
221
        h = Sigma0(a) + Maj(a,b,c);                     \
 
222
        d += T1;        h += T1;                } while (0)
 
223
 
 
224
#define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)        do {    \
 
225
        s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
 
226
        s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
 
227
        T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
 
228
        ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)
 
229
 
 
230
static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
 
231
        {
 
232
        unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
 
233
        SHA_LONG        X[16];
 
234
        int i;
 
235
        const unsigned char *data=in;
 
236
 
 
237
                        while (num--) {
 
238
 
 
239
        a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
 
240
        e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
 
241
 
 
242
        if (host)
 
243
                {
 
244
                const SHA_LONG *W=(const SHA_LONG *)data;
 
245
 
 
246
                T1 = X[0] = W[0];       ROUND_00_15(0,a,b,c,d,e,f,g,h);
 
247
                T1 = X[1] = W[1];       ROUND_00_15(1,h,a,b,c,d,e,f,g);
 
248
                T1 = X[2] = W[2];       ROUND_00_15(2,g,h,a,b,c,d,e,f);
 
249
                T1 = X[3] = W[3];       ROUND_00_15(3,f,g,h,a,b,c,d,e);
 
250
                T1 = X[4] = W[4];       ROUND_00_15(4,e,f,g,h,a,b,c,d);
 
251
                T1 = X[5] = W[5];       ROUND_00_15(5,d,e,f,g,h,a,b,c);
 
252
                T1 = X[6] = W[6];       ROUND_00_15(6,c,d,e,f,g,h,a,b);
 
253
                T1 = X[7] = W[7];       ROUND_00_15(7,b,c,d,e,f,g,h,a);
 
254
                T1 = X[8] = W[8];       ROUND_00_15(8,a,b,c,d,e,f,g,h);
 
255
                T1 = X[9] = W[9];       ROUND_00_15(9,h,a,b,c,d,e,f,g);
 
256
                T1 = X[10] = W[10];     ROUND_00_15(10,g,h,a,b,c,d,e,f);
 
257
                T1 = X[11] = W[11];     ROUND_00_15(11,f,g,h,a,b,c,d,e);
 
258
                T1 = X[12] = W[12];     ROUND_00_15(12,e,f,g,h,a,b,c,d);
 
259
                T1 = X[13] = W[13];     ROUND_00_15(13,d,e,f,g,h,a,b,c);
 
260
                T1 = X[14] = W[14];     ROUND_00_15(14,c,d,e,f,g,h,a,b);
 
261
                T1 = X[15] = W[15];     ROUND_00_15(15,b,c,d,e,f,g,h,a);
 
262
 
 
263
                data += SHA256_CBLOCK;
 
264
                }
 
265
        else
 
266
                {
 
267
                SHA_LONG l;
 
268
 
 
269
                HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
 
270
                HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
 
271
                HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
 
272
                HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
 
273
                HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
 
274
                HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
 
275
                HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
 
276
                HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
 
277
                HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
 
278
                HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
 
279
                HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
 
280
                HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
 
281
                HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
 
282
                HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
 
283
                HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
 
284
                HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
 
285
                }
 
286
 
 
287
        for (i=16;i<64;i+=8)
 
288
                {
 
289
                ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
 
290
                ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
 
291
                ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
 
292
                ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
 
293
                ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
 
294
                ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
 
295
                ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
 
296
                ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
 
297
                }
 
298
 
 
299
        ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
 
300
        ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
 
301
 
 
302
                        }
 
303
        }
 
304
 
 
305
#endif
 
306
#endif /* SHA256_ASM */
 
307
 
 
308
/*
 
309
 * Idea is to trade couple of cycles for some space. On IA-32 we save
 
310
 * about 4K in "big footprint" case. In "small footprint" case any gain
 
311
 * is appreciated:-)
 
312
 */
 
313
void HASH_BLOCK_HOST_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
 
314
{   sha256_block (ctx,in,num,1);   }
 
315
 
 
316
void HASH_BLOCK_DATA_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
 
317
{   sha256_block (ctx,in,num,0);   }
 
318
 
 
319
#endif /* OPENSSL_NO_SHA256 */