~ubuntu-branches/ubuntu/precise/classpath/precise

« back to all changes in this revision

Viewing changes to native/fdlibm/s_log1p.c

  • Committer: Bazaar Package Importer
  • Author(s): Michael Koch
  • Date: 2006-05-27 16:11:15 UTC
  • mfrom: (1.1.3 upstream)
  • Revision ID: james.westby@ubuntu.com-20060527161115-h6e39eposdt5snb6
Tags: 2:0.91-3
* Install header files to /usr/include/classpath.
* debian/control: classpath: Conflict with jamvm < 1.4.3 and
  cacao < 0.96 (Closes: #368172).

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
 
 
2
/* @(#)s_log1p.c 1.4 96/03/07 */
 
3
/*
 
4
 * ====================================================
 
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 
6
 *
 
7
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 
8
 * Permission to use, copy, modify, and distribute this
 
9
 * software is freely granted, provided that this notice 
 
10
 * is preserved.
 
11
 * ====================================================
 
12
 */
 
13
 
 
14
/* double log1p(double x)
 
15
 *
 
16
 * Method :                  
 
17
 *   1. Argument Reduction: find k and f such that 
 
18
 *                      1+x = 2^k * (1+f), 
 
19
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
 
20
 *
 
21
 *      Note. If k=0, then f=x is exact. However, if k!=0, then f
 
22
 *      may not be representable exactly. In that case, a correction
 
23
 *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
 
24
 *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
 
25
 *      and add back the correction term c/u.
 
26
 *      (Note: when x > 2**53, one can simply return log(x))
 
27
 *
 
28
 *   2. Approximation of log1p(f).
 
29
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 
30
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 
31
 *               = 2s + s*R
 
32
 *      We use a special Remes algorithm on [0,0.1716] to generate 
 
33
 *      a polynomial of degree 14 to approximate R The maximum error 
 
34
 *      of this polynomial approximation is bounded by 2**-58.45. In
 
35
 *      other words,
 
36
 *                      2      4      6      8      10      12      14
 
37
 *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
 
38
 *      (the values of Lp1 to Lp7 are listed in the program)
 
39
 *      and
 
40
 *          |      2          14          |     -58.45
 
41
 *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2 
 
42
 *          |                             |
 
43
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 
44
 *      In order to guarantee error in log below 1ulp, we compute log
 
45
 *      by
 
46
 *              log1p(f) = f - (hfsq - s*(hfsq+R)).
 
47
 *      
 
48
 *      3. Finally, log1p(x) = k*ln2 + log1p(f).  
 
49
 *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 
50
 *         Here ln2 is split into two floating point number: 
 
51
 *                      ln2_hi + ln2_lo,
 
52
 *         where n*ln2_hi is always exact for |n| < 2000.
 
53
 *
 
54
 * Special cases:
 
55
 *      log1p(x) is NaN with signal if x < -1 (including -INF) ; 
 
56
 *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
 
57
 *      log1p(NaN) is that NaN with no signal.
 
58
 *
 
59
 * Accuracy:
 
60
 *      according to an error analysis, the error is always less than
 
61
 *      1 ulp (unit in the last place).
 
62
 *
 
63
 * Constants:
 
64
 * The hexadecimal values are the intended ones for the following 
 
65
 * constants. The decimal values may be used, provided that the 
 
66
 * compiler will convert from decimal to binary accurately enough 
 
67
 * to produce the hexadecimal values shown.
 
68
 *
 
69
 * Note: Assuming log() return accurate answer, the following
 
70
 *       algorithm can be used to compute log1p(x) to within a few ULP:
 
71
 *      
 
72
 *              u = 1+x;
 
73
 *              if(u==1.0) return x ; else
 
74
 *                         return log(u)*(x/(u-1.0));
 
75
 *
 
76
 *       See HP-15C Advanced Functions Handbook, p.193.
 
77
 */
 
78
 
 
79
#include "fdlibm.h"
 
80
 
 
81
#ifndef _DOUBLE_IS_32BITS
 
82
 
 
83
#ifdef __STDC__
 
84
static const double
 
85
#else
 
86
static double
 
87
#endif
 
88
ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
 
89
ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
 
90
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
 
91
Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
 
92
Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
 
93
Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
 
94
Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
 
95
Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
 
96
Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
 
97
Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
 
98
 
 
99
static double zero = 0.0;
 
100
 
 
101
#ifdef __STDC__
 
102
        double log1p(double x)
 
103
#else
 
104
        double log1p(x)
 
105
        double x;
 
106
#endif
 
107
{
 
108
        double hfsq,f,c,s,z,R,u;
 
109
        int32_t k,hx,hu,ax;
 
110
 
 
111
        GET_HIGH_WORD(hx,x); /* high word of x */
 
112
        ax = hx&0x7fffffff;
 
113
 
 
114
        k = 1;
 
115
        if (hx < 0x3FDA827A) {                  /* x < 0.41422  */
 
116
            if(ax>=0x3ff00000) {                /* x <= -1.0 */
 
117
                if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
 
118
                else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
 
119
            }
 
120
            if(ax<0x3e200000) {                 /* |x| < 2**-29 */
 
121
                if(two54+x>zero                 /* raise inexact */
 
122
                    &&ax<0x3c900000)            /* |x| < 2**-54 */
 
123
                    return x;
 
124
                else
 
125
                    return x - x*x*0.5;
 
126
            }
 
127
            if(hx>0||hx<=((int)0xbfd2bec3)) {
 
128
                k=0;f=x;hu=1;}  /* -0.2929<x<0.41422 */
 
129
        } 
 
130
        if (hx >= 0x7ff00000) return x+x;
 
131
        if(k!=0) {
 
132
            if(hx<0x43400000) {
 
133
                u  = 1.0+x; 
 
134
                GET_HIGH_WORD(hu,u); /* high word of u */
 
135
                k  = (hu>>20)-1023;
 
136
                c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
 
137
                c /= u;
 
138
            } else {
 
139
                u  = x;
 
140
                GET_HIGH_WORD(hu,u); /* high word of u */
 
141
                k  = (hu>>20)-1023;
 
142
                c  = 0;
 
143
            }
 
144
            hu &= 0x000fffff;
 
145
            if(hu<0x6a09e) {
 
146
                SET_HIGH_WORD(u, hu|0x3ff00000);        /* normalize u */
 
147
            } else {
 
148
                k += 1; 
 
149
                SET_HIGH_WORD(u, hu|0x3fe00000);        /* normalize u/2 */
 
150
                hu = (0x00100000-hu)>>2;
 
151
            }
 
152
            f = u-1.0;
 
153
        }
 
154
        hfsq=0.5*f*f;
 
155
        if(hu==0) {     /* |f| < 2**-20 */
 
156
            if(f==zero) if(k==0) return zero;  
 
157
                        else {c += k*ln2_lo; return k*ln2_hi+c;}
 
158
            R = hfsq*(1.0-0.66666666666666666*f);
 
159
            if(k==0) return f-R; else
 
160
                     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
 
161
        }
 
162
        s = f/(2.0+f); 
 
163
        z = s*s;
 
164
        R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
 
165
        if(k==0) return f-(hfsq-s*(hfsq+R)); else
 
166
                 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
 
167
}
 
168
#endif /* _DOUBLE_IS_32BITS */