2
* Device model for Cadence UART
4
* Copyright (c) 2010 Xilinx Inc.
5
* Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6
* Copyright (c) 2012 PetaLogix Pty Ltd.
7
* Written by Haibing Ma
10
* This program is free software; you can redistribute it and/or
11
* modify it under the terms of the GNU General Public License
12
* as published by the Free Software Foundation; either version
13
* 2 of the License, or (at your option) any later version.
15
* You should have received a copy of the GNU General Public License along
16
* with this program; if not, see <http://www.gnu.org/licenses/>.
20
#include "qemu-char.h"
21
#include "qemu-timer.h"
23
#ifdef CADENCE_UART_ERR_DEBUG
24
#define DB_PRINT(...) do { \
25
fprintf(stderr, ": %s: ", __func__); \
26
fprintf(stderr, ## __VA_ARGS__); \
32
#define UART_SR_INTR_RTRIG 0x00000001
33
#define UART_SR_INTR_REMPTY 0x00000002
34
#define UART_SR_INTR_RFUL 0x00000004
35
#define UART_SR_INTR_TEMPTY 0x00000008
36
#define UART_SR_INTR_TFUL 0x00000010
37
/* bits fields in CSR that correlate to CISR. If any of these bits are set in
38
* SR, then the same bit in CISR is set high too */
39
#define UART_SR_TO_CISR_MASK 0x0000001F
41
#define UART_INTR_ROVR 0x00000020
42
#define UART_INTR_FRAME 0x00000040
43
#define UART_INTR_PARE 0x00000080
44
#define UART_INTR_TIMEOUT 0x00000100
45
#define UART_INTR_DMSI 0x00000200
47
#define UART_SR_RACTIVE 0x00000400
48
#define UART_SR_TACTIVE 0x00000800
49
#define UART_SR_FDELT 0x00001000
51
#define UART_CR_RXRST 0x00000001
52
#define UART_CR_TXRST 0x00000002
53
#define UART_CR_RX_EN 0x00000004
54
#define UART_CR_RX_DIS 0x00000008
55
#define UART_CR_TX_EN 0x00000010
56
#define UART_CR_TX_DIS 0x00000020
57
#define UART_CR_RST_TO 0x00000040
58
#define UART_CR_STARTBRK 0x00000080
59
#define UART_CR_STOPBRK 0x00000100
61
#define UART_MR_CLKS 0x00000001
62
#define UART_MR_CHRL 0x00000006
63
#define UART_MR_CHRL_SH 1
64
#define UART_MR_PAR 0x00000038
65
#define UART_MR_PAR_SH 3
66
#define UART_MR_NBSTOP 0x000000C0
67
#define UART_MR_NBSTOP_SH 6
68
#define UART_MR_CHMODE 0x00000300
69
#define UART_MR_CHMODE_SH 8
70
#define UART_MR_UCLKEN 0x00000400
71
#define UART_MR_IRMODE 0x00000800
73
#define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
74
#define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
75
#define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
76
#define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
77
#define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
78
#define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
79
#define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
80
#define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
81
#define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
82
#define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
84
#define RX_FIFO_SIZE 16
85
#define TX_FIFO_SIZE 16
86
#define UART_INPUT_CLK 50000000
90
#define R_IER (0x08/4)
91
#define R_IDR (0x0C/4)
92
#define R_IMR (0x10/4)
93
#define R_CISR (0x14/4)
94
#define R_BRGR (0x18/4)
95
#define R_RTOR (0x1C/4)
96
#define R_RTRIG (0x20/4)
97
#define R_MCR (0x24/4)
98
#define R_MSR (0x28/4)
100
#define R_TX_RX (0x30/4)
101
#define R_BDIV (0x34/4)
102
#define R_FDEL (0x38/4)
103
#define R_PMIN (0x3C/4)
104
#define R_PWID (0x40/4)
105
#define R_TTRIG (0x44/4)
107
#define R_MAX (R_TTRIG + 1)
113
uint8_t r_fifo[RX_FIFO_SIZE];
116
uint64_t char_tx_time;
117
CharDriverState *chr;
119
struct QEMUTimer *fifo_trigger_handle;
120
struct QEMUTimer *tx_time_handle;
123
static void uart_update_status(UartState *s)
125
s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
126
qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
129
static void fifo_trigger_update(void *opaque)
131
UartState *s = (UartState *)opaque;
133
s->r[R_CISR] |= UART_INTR_TIMEOUT;
135
uart_update_status(s);
138
static void uart_tx_redo(UartState *s)
140
uint64_t new_tx_time = qemu_get_clock_ns(vm_clock);
142
qemu_mod_timer(s->tx_time_handle, new_tx_time + s->char_tx_time);
144
s->r[R_SR] |= UART_SR_INTR_TEMPTY;
146
uart_update_status(s);
149
static void uart_tx_write(void *opaque)
151
UartState *s = (UartState *)opaque;
156
static void uart_rx_reset(UartState *s)
161
s->r[R_SR] |= UART_SR_INTR_REMPTY;
162
s->r[R_SR] &= ~UART_SR_INTR_RFUL;
165
static void uart_tx_reset(UartState *s)
167
s->r[R_SR] |= UART_SR_INTR_TEMPTY;
168
s->r[R_SR] &= ~UART_SR_INTR_TFUL;
171
static void uart_send_breaks(UartState *s)
173
int break_enabled = 1;
175
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
179
static void uart_parameters_setup(UartState *s)
181
QEMUSerialSetParams ssp;
182
unsigned int baud_rate, packet_size;
184
baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
185
UART_INPUT_CLK / 8 : UART_INPUT_CLK;
187
ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
190
switch (s->r[R_MR] & UART_MR_PAR) {
191
case UART_PARITY_EVEN:
195
case UART_PARITY_ODD:
204
switch (s->r[R_MR] & UART_MR_CHRL) {
205
case UART_DATA_BITS_6:
208
case UART_DATA_BITS_7:
216
switch (s->r[R_MR] & UART_MR_NBSTOP) {
217
case UART_STOP_BITS_1:
225
packet_size += ssp.data_bits + ssp.stop_bits;
226
s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
227
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
230
static int uart_can_receive(void *opaque)
232
UartState *s = (UartState *)opaque;
234
return RX_FIFO_SIZE - s->rx_count;
237
static void uart_ctrl_update(UartState *s)
239
if (s->r[R_CR] & UART_CR_TXRST) {
243
if (s->r[R_CR] & UART_CR_RXRST) {
247
s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
249
if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
253
if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
258
static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
260
UartState *s = (UartState *)opaque;
261
uint64_t new_rx_time = qemu_get_clock_ns(vm_clock);
264
if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
268
s->r[R_SR] &= ~UART_SR_INTR_REMPTY;
270
if (s->rx_count == RX_FIFO_SIZE) {
271
s->r[R_CISR] |= UART_INTR_ROVR;
273
for (i = 0; i < size; i++) {
274
s->r_fifo[s->rx_wpos] = buf[i];
275
s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
278
if (s->rx_count == RX_FIFO_SIZE) {
279
s->r[R_SR] |= UART_SR_INTR_RFUL;
283
if (s->rx_count >= s->r[R_RTRIG]) {
284
s->r[R_SR] |= UART_SR_INTR_RTRIG;
287
qemu_mod_timer(s->fifo_trigger_handle, new_rx_time +
288
(s->char_tx_time * 4));
290
uart_update_status(s);
293
static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
295
if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
300
size -= qemu_chr_fe_write(s->chr, buf, size);
304
static void uart_receive(void *opaque, const uint8_t *buf, int size)
306
UartState *s = (UartState *)opaque;
307
uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
309
if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
310
uart_write_rx_fifo(opaque, buf, size);
312
if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
313
uart_write_tx_fifo(s, buf, size);
317
static void uart_event(void *opaque, int event)
319
UartState *s = (UartState *)opaque;
322
if (event == CHR_EVENT_BREAK) {
323
uart_write_rx_fifo(opaque, &buf, 1);
326
uart_update_status(s);
329
static void uart_read_rx_fifo(UartState *s, uint32_t *c)
331
if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
335
s->r[R_SR] &= ~UART_SR_INTR_RFUL;
339
(RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
340
*c = s->r_fifo[rx_rpos];
344
s->r[R_SR] |= UART_SR_INTR_REMPTY;
348
s->r[R_SR] |= UART_SR_INTR_REMPTY;
351
if (s->rx_count < s->r[R_RTRIG]) {
352
s->r[R_SR] &= ~UART_SR_INTR_RTRIG;
354
uart_update_status(s);
357
static void uart_write(void *opaque, target_phys_addr_t offset,
358
uint64_t value, unsigned size)
360
UartState *s = (UartState *)opaque;
362
DB_PRINT(" offset:%x data:%08x\n", offset, (unsigned)value);
365
case R_IER: /* ier (wts imr) */
366
s->r[R_IMR] |= value;
368
case R_IDR: /* idr (wtc imr) */
369
s->r[R_IMR] &= ~value;
371
case R_IMR: /* imr (read only) */
373
case R_CISR: /* cisr (wtc) */
374
s->r[R_CISR] &= ~value;
376
case R_TX_RX: /* UARTDR */
377
switch (s->r[R_MR] & UART_MR_CHMODE) {
379
uart_write_tx_fifo(s, (uint8_t *) &value, 1);
382
uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
387
s->r[offset] = value;
395
uart_parameters_setup(s);
400
static uint64_t uart_read(void *opaque, target_phys_addr_t offset,
403
UartState *s = (UartState *)opaque;
407
if (offset > R_MAX) {
409
} else if (offset == R_TX_RX) {
410
uart_read_rx_fifo(s, &c);
416
static const MemoryRegionOps uart_ops = {
419
.endianness = DEVICE_NATIVE_ENDIAN,
422
static void cadence_uart_reset(UartState *s)
424
s->r[R_CR] = 0x00000128;
427
s->r[R_RTRIG] = 0x00000020;
428
s->r[R_BRGR] = 0x0000000F;
429
s->r[R_TTRIG] = 0x00000020;
438
static int cadence_uart_init(SysBusDevice *dev)
440
UartState *s = FROM_SYSBUS(UartState, dev);
442
memory_region_init_io(&s->iomem, &uart_ops, s, "uart", 0x1000);
443
sysbus_init_mmio(dev, &s->iomem);
444
sysbus_init_irq(dev, &s->irq);
446
s->fifo_trigger_handle = qemu_new_timer_ns(vm_clock,
447
(QEMUTimerCB *)fifo_trigger_update, s);
449
s->tx_time_handle = qemu_new_timer_ns(vm_clock,
450
(QEMUTimerCB *)uart_tx_write, s);
452
s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
454
s->chr = qemu_char_get_next_serial();
456
cadence_uart_reset(s);
459
qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
466
static int cadence_uart_post_load(void *opaque, int version_id)
468
UartState *s = opaque;
470
uart_parameters_setup(s);
471
uart_update_status(s);
475
static const VMStateDescription vmstate_cadence_uart = {
476
.name = "cadence_uart",
478
.minimum_version_id = 1,
479
.minimum_version_id_old = 1,
480
.post_load = cadence_uart_post_load,
481
.fields = (VMStateField[]) {
482
VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
483
VMSTATE_UINT8_ARRAY(r_fifo, UartState, RX_FIFO_SIZE),
484
VMSTATE_UINT32(rx_count, UartState),
485
VMSTATE_UINT32(rx_wpos, UartState),
486
VMSTATE_TIMER(fifo_trigger_handle, UartState),
487
VMSTATE_TIMER(tx_time_handle, UartState),
488
VMSTATE_END_OF_LIST()
492
static void cadence_uart_class_init(ObjectClass *klass, void *data)
494
DeviceClass *dc = DEVICE_CLASS(klass);
495
SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
497
sdc->init = cadence_uart_init;
498
dc->vmsd = &vmstate_cadence_uart;
501
static TypeInfo cadence_uart_info = {
502
.name = "cadence_uart",
503
.parent = TYPE_SYS_BUS_DEVICE,
504
.instance_size = sizeof(UartState),
505
.class_init = cadence_uart_class_init,
508
static void cadence_uart_register_types(void)
510
type_register_static(&cadence_uart_info);
513
type_init(cadence_uart_register_types)