~ubuntu-branches/ubuntu/wily/ntop/wily-proposed

« back to all changes in this revision

Viewing changes to gdchart0.94c/zlib-1.1.3/algorithm.txt

  • Committer: Bazaar Package Importer
  • Author(s): Dennis Schoen
  • Date: 2002-04-12 11:38:47 UTC
  • Revision ID: james.westby@ubuntu.com-20020412113847-4k4yydw0pzybc6g8
Tags: upstream-2.0.0
ImportĀ upstreamĀ versionĀ 2.0.0

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
1. Compression algorithm (deflate)
 
2
 
 
3
The deflation algorithm used by gzip (also zip and zlib) is a variation of
 
4
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
 
5
the input data.  The second occurrence of a string is replaced by a
 
6
pointer to the previous string, in the form of a pair (distance,
 
7
length).  Distances are limited to 32K bytes, and lengths are limited
 
8
to 258 bytes. When a string does not occur anywhere in the previous
 
9
32K bytes, it is emitted as a sequence of literal bytes.  (In this
 
10
description, `string' must be taken as an arbitrary sequence of bytes,
 
11
and is not restricted to printable characters.)
 
12
 
 
13
Literals or match lengths are compressed with one Huffman tree, and
 
14
match distances are compressed with another tree. The trees are stored
 
15
in a compact form at the start of each block. The blocks can have any
 
16
size (except that the compressed data for one block must fit in
 
17
available memory). A block is terminated when deflate() determines that
 
18
it would be useful to start another block with fresh trees. (This is
 
19
somewhat similar to the behavior of LZW-based _compress_.)
 
20
 
 
21
Duplicated strings are found using a hash table. All input strings of
 
22
length 3 are inserted in the hash table. A hash index is computed for
 
23
the next 3 bytes. If the hash chain for this index is not empty, all
 
24
strings in the chain are compared with the current input string, and
 
25
the longest match is selected.
 
26
 
 
27
The hash chains are searched starting with the most recent strings, to
 
28
favor small distances and thus take advantage of the Huffman encoding.
 
29
The hash chains are singly linked. There are no deletions from the
 
30
hash chains, the algorithm simply discards matches that are too old.
 
31
 
 
32
To avoid a worst-case situation, very long hash chains are arbitrarily
 
33
truncated at a certain length, determined by a runtime option (level
 
34
parameter of deflateInit). So deflate() does not always find the longest
 
35
possible match but generally finds a match which is long enough.
 
36
 
 
37
deflate() also defers the selection of matches with a lazy evaluation
 
38
mechanism. After a match of length N has been found, deflate() searches for
 
39
a longer match at the next input byte. If a longer match is found, the
 
40
previous match is truncated to a length of one (thus producing a single
 
41
literal byte) and the process of lazy evaluation begins again. Otherwise,
 
42
the original match is kept, and the next match search is attempted only N
 
43
steps later.
 
44
 
 
45
The lazy match evaluation is also subject to a runtime parameter. If
 
46
the current match is long enough, deflate() reduces the search for a longer
 
47
match, thus speeding up the whole process. If compression ratio is more
 
48
important than speed, deflate() attempts a complete second search even if
 
49
the first match is already long enough.
 
50
 
 
51
The lazy match evaluation is not performed for the fastest compression
 
52
modes (level parameter 1 to 3). For these fast modes, new strings
 
53
are inserted in the hash table only when no match was found, or
 
54
when the match is not too long. This degrades the compression ratio
 
55
but saves time since there are both fewer insertions and fewer searches.
 
56
 
 
57
 
 
58
2. Decompression algorithm (inflate)
 
59
 
 
60
2.1 Introduction
 
61
 
 
62
The real question is, given a Huffman tree, how to decode fast.  The most
 
63
important realization is that shorter codes are much more common than
 
64
longer codes, so pay attention to decoding the short codes fast, and let
 
65
the long codes take longer to decode.
 
66
 
 
67
inflate() sets up a first level table that covers some number of bits of
 
68
input less than the length of longest code.  It gets that many bits from the
 
69
stream, and looks it up in the table.  The table will tell if the next
 
70
code is that many bits or less and how many, and if it is, it will tell
 
71
the value, else it will point to the next level table for which inflate()
 
72
grabs more bits and tries to decode a longer code.
 
73
 
 
74
How many bits to make the first lookup is a tradeoff between the time it
 
75
takes to decode and the time it takes to build the table.  If building the
 
76
table took no time (and if you had infinite memory), then there would only
 
77
be a first level table to cover all the way to the longest code.  However,
 
78
building the table ends up taking a lot longer for more bits since short
 
79
codes are replicated many times in such a table.  What inflate() does is
 
80
simply to make the number of bits in the first table a variable, and set it
 
81
for the maximum speed.
 
82
 
 
83
inflate() sends new trees relatively often, so it is possibly set for a
 
84
smaller first level table than an application that has only one tree for
 
85
all the data.  For inflate, which has 286 possible codes for the
 
86
literal/length tree, the size of the first table is nine bits.  Also the
 
87
distance trees have 30 possible values, and the size of the first table is
 
88
six bits.  Note that for each of those cases, the table ended up one bit
 
89
longer than the ``average'' code length, i.e. the code length of an
 
90
approximately flat code which would be a little more than eight bits for
 
91
286 symbols and a little less than five bits for 30 symbols.  It would be
 
92
interesting to see if optimizing the first level table for other
 
93
applications gave values within a bit or two of the flat code size.
 
94
 
 
95
 
 
96
2.2 More details on the inflate table lookup
 
97
 
 
98
Ok, you want to know what this cleverly obfuscated inflate tree actually  
 
99
looks like.  You are correct that it's not a Huffman tree.  It is simply a  
 
100
lookup table for the first, let's say, nine bits of a Huffman symbol.  The  
 
101
symbol could be as short as one bit or as long as 15 bits.  If a particular  
 
102
symbol is shorter than nine bits, then that symbol's translation is duplicated
 
103
in all those entries that start with that symbol's bits.  For example, if the  
 
104
symbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a  
 
105
symbol is nine bits long, it appears in the table once.
 
106
 
 
107
If the symbol is longer than nine bits, then that entry in the table points  
 
108
to another similar table for the remaining bits.  Again, there are duplicated  
 
109
entries as needed.  The idea is that most of the time the symbol will be short
 
110
and there will only be one table look up.  (That's whole idea behind data  
 
111
compression in the first place.)  For the less frequent long symbols, there  
 
112
will be two lookups.  If you had a compression method with really long  
 
113
symbols, you could have as many levels of lookups as is efficient.  For  
 
114
inflate, two is enough.
 
115
 
 
116
So a table entry either points to another table (in which case nine bits in  
 
117
the above example are gobbled), or it contains the translation for the symbol  
 
118
and the number of bits to gobble.  Then you start again with the next  
 
119
ungobbled bit.
 
120
 
 
121
You may wonder: why not just have one lookup table for how ever many bits the  
 
122
longest symbol is?  The reason is that if you do that, you end up spending  
 
123
more time filling in duplicate symbol entries than you do actually decoding.   
 
124
At least for deflate's output that generates new trees every several 10's of  
 
125
kbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code  
 
126
would take too long if you're only decoding several thousand symbols.  At the  
 
127
other extreme, you could make a new table for every bit in the code.  In fact,
 
128
that's essentially a Huffman tree.  But then you spend two much time  
 
129
traversing the tree while decoding, even for short symbols.
 
130
 
 
131
So the number of bits for the first lookup table is a trade of the time to  
 
132
fill out the table vs. the time spent looking at the second level and above of
 
133
the table.
 
134
 
 
135
Here is an example, scaled down:
 
136
 
 
137
The code being decoded, with 10 symbols, from 1 to 6 bits long:
 
138
 
 
139
A: 0
 
140
B: 10
 
141
C: 1100
 
142
D: 11010
 
143
E: 11011
 
144
F: 11100
 
145
G: 11101
 
146
H: 11110
 
147
I: 111110
 
148
J: 111111
 
149
 
 
150
Let's make the first table three bits long (eight entries):
 
151
 
 
152
000: A,1
 
153
001: A,1
 
154
010: A,1
 
155
011: A,1
 
156
100: B,2
 
157
101: B,2
 
158
110: -> table X (gobble 3 bits)
 
159
111: -> table Y (gobble 3 bits)
 
160
 
 
161
Each entry is what the bits decode to and how many bits that is, i.e. how  
 
162
many bits to gobble.  Or the entry points to another table, with the number of
 
163
bits to gobble implicit in the size of the table.
 
164
 
 
165
Table X is two bits long since the longest code starting with 110 is five bits
 
166
long:
 
167
 
 
168
00: C,1
 
169
01: C,1
 
170
10: D,2
 
171
11: E,2
 
172
 
 
173
Table Y is three bits long since the longest code starting with 111 is six  
 
174
bits long:
 
175
 
 
176
000: F,2
 
177
001: F,2
 
178
010: G,2
 
179
011: G,2
 
180
100: H,2
 
181
101: H,2
 
182
110: I,3
 
183
111: J,3
 
184
 
 
185
So what we have here are three tables with a total of 20 entries that had to  
 
186
be constructed.  That's compared to 64 entries for a single table.  Or  
 
187
compared to 16 entries for a Huffman tree (six two entry tables and one four  
 
188
entry table).  Assuming that the code ideally represents the probability of  
 
189
the symbols, it takes on the average 1.25 lookups per symbol.  That's compared
 
190
to one lookup for the single table, or 1.66 lookups per symbol for the  
 
191
Huffman tree.
 
192
 
 
193
There, I think that gives you a picture of what's going on.  For inflate, the  
 
194
meaning of a particular symbol is often more than just a letter.  It can be a  
 
195
byte (a "literal"), or it can be either a length or a distance which  
 
196
indicates a base value and a number of bits to fetch after the code that is  
 
197
added to the base value.  Or it might be the special end-of-block code.  The  
 
198
data structures created in inftrees.c try to encode all that information  
 
199
compactly in the tables.
 
200
 
 
201
 
 
202
Jean-loup Gailly        Mark Adler
 
203
jloup@gzip.org          madler@alumni.caltech.edu
 
204
 
 
205
 
 
206
References:
 
207
 
 
208
[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
 
209
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
 
210
pp. 337-343.
 
211
 
 
212
``DEFLATE Compressed Data Format Specification'' available in
 
213
ftp://ds.internic.net/rfc/rfc1951.txt