1
/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
3
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4
Free Software Foundation, Inc.
6
Contributed by Red Hat, Inc.
8
This file is part of GDB.
10
This program is free software; you can redistribute it and/or modify
11
it under the terms of the GNU General Public License as published by
12
the Free Software Foundation; either version 3 of the License, or
13
(at your option) any later version.
15
This program is distributed in the hope that it will be useful,
16
but WITHOUT ANY WARRANTY; without even the implied warranty of
17
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18
GNU General Public License for more details.
20
You should have received a copy of the GNU General Public License
21
along with this program. If not, see <http://www.gnu.org/licenses/>. */
25
#include "frame-unwind.h"
26
#include "frame-base.h"
31
#include "gdb_string.h"
38
#include "arch-utils.h"
41
#include "floatformat.h"
42
#include "sim-regno.h"
44
#include "trad-frame.h"
45
#include "reggroups.h"
48
#include "prologue-value.h"
49
#include "opcode/cgen-bitset.h"
52
#include "gdb_assert.h"
54
/* Get the user's customized MeP coprocessor register names from
56
#include "opcodes/mep-desc.h"
57
#include "opcodes/mep-opc.h"
60
/* The gdbarch_tdep structure. */
62
/* A quick recap for GDB hackers not familiar with the whole Toshiba
63
Media Processor story:
65
The MeP media engine is a configureable processor: users can design
66
their own coprocessors, implement custom instructions, adjust cache
67
sizes, select optional standard facilities like add-and-saturate
68
instructions, and so on. Then, they can build custom versions of
69
the GNU toolchain to support their customized chips. The
70
MeP-Integrator program (see utils/mep) takes a GNU toolchain source
71
tree, and a config file pointing to various files provided by the
72
user describing their customizations, and edits the source tree to
73
produce a compiler that can generate their custom instructions, an
74
assembler that can assemble them and recognize their custom
75
register names, and so on.
77
Furthermore, the user can actually specify several of these custom
78
configurations, called 'me_modules', and get a toolchain which can
79
produce code for any of them, given a compiler/assembler switch;
80
you say something like 'gcc -mconfig=mm_max' to generate code for
81
the me_module named 'mm_max'.
83
GDB, in particular, needs to:
85
- use the coprocessor control register names provided by the user
86
in their hardware description, in expressions, 'info register'
87
output, and disassembly,
89
- know the number, names, and types of the coprocessor's
90
general-purpose registers, adjust the 'info all-registers' output
91
accordingly, and print error messages if the user refers to one
94
- allow access to the control bus space only when the configuration
95
actually has a control bus, and recognize which regions of the
96
control bus space are actually populated,
98
- disassemble using the user's provided mnemonics for their custom
101
- recognize whether the $hi and $lo registers are present, and
102
allow access to them only when they are actually there.
104
There are three sources of information about what sort of me_module
105
we're actually dealing with:
107
- A MeP executable file indicates which me_module it was compiled
108
for, and libopcodes has tables describing each module. So, given
109
an executable file, we can find out about the processor it was
112
- There are SID command-line options to select a particular
113
me_module, overriding the one specified in the ELF file. SID
114
provides GDB with a fake read-only register, 'module', which
115
indicates which me_module GDB is communicating with an instance
118
- There are SID command-line options to enable or disable certain
119
optional processor features, overriding the defaults for the
120
selected me_module. The MeP $OPT register indicates which
121
options are present on the current processor. */
126
/* A CGEN cpu descriptor for this BFD architecture and machine.
128
Note: this is *not* customized for any particular me_module; the
129
MeP libopcodes machinery actually puts off module-specific
130
customization until the last minute. So this contains
131
information about all supported me_modules. */
132
CGEN_CPU_DESC cpu_desc;
134
/* The me_module index from the ELF file we used to select this
135
architecture, or CONFIG_NONE if there was none.
137
Note that we should prefer to use the me_module number available
138
via the 'module' register, whenever we're actually talking to a
141
In the absence of live information, we'd like to get the
142
me_module number from the ELF file. But which ELF file: the
143
executable file, the core file, ... ? The answer is, "the last
144
ELF file we used to set the current architecture". Thus, we
145
create a separate instance of the gdbarch structure for each
146
me_module value mep_gdbarch_init sees, and store the me_module
147
value from the ELF file here. */
148
CONFIG_ATTR me_module;
153
/* Getting me_module information from the CGEN tables. */
156
/* Find an entry in the DESC's hardware table whose name begins with
157
PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
158
intersect with GENERIC_ISA_MASK. If there is no matching entry,
160
static const CGEN_HW_ENTRY *
161
find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
163
CGEN_BITSET *copro_isa_mask,
164
CGEN_BITSET *generic_isa_mask)
166
int prefix_len = strlen (prefix);
169
for (i = 0; i < desc->hw_table.num_entries; i++)
171
const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
172
if (strncmp (prefix, hw->name, prefix_len) == 0)
174
CGEN_BITSET *hw_isa_mask
176
&CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
178
if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
179
&& ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
188
/* Find an entry in DESC's hardware table whose type is TYPE. Return
189
zero if there is none. */
190
static const CGEN_HW_ENTRY *
191
find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
195
for (i = 0; i < desc->hw_table.num_entries; i++)
197
const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
199
if (hw->type == type)
207
/* Return the CGEN hardware table entry for the coprocessor register
208
set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
209
no such register set, return zero. If ME_MODULE is the generic
210
me_module CONFIG_NONE, return the table entry for the register set
211
whose hardware type is GENERIC_TYPE. */
212
static const CGEN_HW_ENTRY *
213
me_module_register_set (CONFIG_ATTR me_module,
215
CGEN_HW_TYPE generic_type)
217
/* This is kind of tricky, because the hardware table is constructed
218
in a way that isn't very helpful. Perhaps we can fix that, but
219
here's how it works at the moment:
221
The configuration map, `mep_config_map', is indexed by me_module
222
number, and indicates which coprocessor and core ISAs that
223
me_module supports. The 'core_isa' mask includes all the core
224
ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
225
The entry for the generic me_module, CONFIG_NONE, has an empty
226
'cop_isa', and its 'core_isa' selects only the standard MeP
229
The CGEN CPU descriptor's hardware table, desc->hw_table, has
230
entries for all the register sets, for all me_modules. Each
231
entry has a mask indicating which ISAs use that register set.
232
So, if an me_module supports some coprocessor ISA, we can find
233
applicable register sets by scanning the hardware table for
234
register sets whose masks include (at least some of) those ISAs.
236
Each hardware table entry also has a name, whose prefix says
237
whether it's a general-purpose ("h-cr") or control ("h-ccr")
238
coprocessor register set. It might be nicer to have an attribute
239
indicating what sort of register set it was, that we could use
240
instead of pattern-matching on the name.
242
When there is no hardware table entry whose mask includes a
243
particular coprocessor ISA and whose name starts with a given
244
prefix, then that means that that coprocessor doesn't have any
245
registers of that type. In such cases, this function must return
248
Coprocessor register sets' masks may or may not include the core
249
ISA for the me_module they belong to. Those generated by a2cgen
250
do, but the sample me_module included in the unconfigured tree,
253
There are generic coprocessor register sets, intended only for
254
use with the generic me_module. Unfortunately, their masks
255
include *all* ISAs --- even those for coprocessors that don't
256
have such register sets. This makes detecting the case where a
257
coprocessor lacks a particular register set more complicated.
259
So, here's the approach we take:
261
- For CONFIG_NONE, we return the generic coprocessor register set.
263
- For any other me_module, we search for a register set whose
264
mask contains any of the me_module's coprocessor ISAs,
265
specifically excluding the generic coprocessor register sets. */
267
CGEN_CPU_DESC desc = gdbarch_tdep (current_gdbarch)->cpu_desc;
268
const CGEN_HW_ENTRY *hw;
270
if (me_module == CONFIG_NONE)
271
hw = find_hw_entry_by_type (desc, generic_type);
274
CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
275
CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
276
CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
277
CGEN_BITSET *cop_and_core;
279
/* The coprocessor ISAs include the ISA for the specific core which
280
has that coprocessor. */
281
cop_and_core = cgen_bitset_copy (cop);
282
cgen_bitset_union (cop, core, cop_and_core);
283
hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
290
/* Given a hardware table entry HW representing a register set, return
291
a pointer to the keyword table with all the register names. If HW
292
is NULL, return NULL, to propage the "no such register set" info
294
static CGEN_KEYWORD *
295
register_set_keyword_table (const CGEN_HW_ENTRY *hw)
300
/* Check that HW is actually a keyword table. */
301
gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
303
/* The 'asm_data' field of a register set's hardware table entry
304
refers to a keyword table. */
305
return (CGEN_KEYWORD *) hw->asm_data;
309
/* Given a keyword table KEYWORD and a register number REGNUM, return
310
the name of the register, or "" if KEYWORD contains no register
311
whose number is REGNUM. */
313
register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
315
const CGEN_KEYWORD_ENTRY *entry
316
= cgen_keyword_lookup_value (keyword_table, regnum);
320
char *name = entry->name;
322
/* The CGEN keyword entries for register names include the
323
leading $, which appears in MeP assembly as well as in GDB.
324
But we don't want to return that; GDB core code adds that
336
/* Masks for option bits in the OPT special-purpose register. */
338
MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
339
MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
340
MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
341
MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
342
MEP_OPT_CLP = 1 << 21, /* clip instruction option */
343
MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
344
MEP_OPT_AVE = 1 << 19, /* average instruction option */
345
MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
346
MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
347
MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
348
MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
349
MEP_OPT_COP = 1 << 4, /* coprocessor option */
350
MEP_OPT_DSP = 1 << 2, /* DSP option */
351
MEP_OPT_UCI = 1 << 1, /* UCI option */
352
MEP_OPT_DBG = 1 << 0, /* DBG function option */
356
/* Given the option_mask value for a particular entry in
357
mep_config_map, produce the value the processor's OPT register
358
would use to represent the same set of options. */
360
opt_from_option_mask (unsigned int option_mask)
362
/* A table mapping OPT register bits onto CGEN config map option
365
unsigned int opt_bit, option_mask_bit;
367
{ MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
368
{ MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
369
{ MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370
{ MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
371
{ MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
372
{ MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
373
{ MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
374
{ MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
375
{ MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
376
{ MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
377
{ MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
378
{ MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
379
{ MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
383
unsigned int opt = 0;
385
for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
386
if (option_mask & bits[i].option_mask_bit)
387
opt |= bits[i].opt_bit;
393
/* Return the value the $OPT register would use to represent the set
394
of options for ME_MODULE. */
396
me_module_opt (CONFIG_ATTR me_module)
398
return opt_from_option_mask (mep_config_map[me_module].option_mask);
402
/* Return the width of ME_MODULE's coprocessor data bus, in bits.
403
This is either 32 or 64. */
405
me_module_cop_data_bus_width (CONFIG_ATTR me_module)
407
if (mep_config_map[me_module].option_mask
408
& (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
415
/* Return true if ME_MODULE is big-endian, false otherwise. */
417
me_module_big_endian (CONFIG_ATTR me_module)
419
return mep_config_map[me_module].big_endian;
423
/* Return the name of ME_MODULE, or NULL if it has no name. */
425
me_module_name (CONFIG_ATTR me_module)
427
/* The default me_module has "" as its name, but it's easier for our
428
callers to test for NULL. */
429
if (! mep_config_map[me_module].name
430
|| mep_config_map[me_module].name[0] == '\0')
433
return mep_config_map[me_module].name;
439
/* The MeP spec defines the following registers:
440
16 general purpose registers (r0-r15)
441
32 control/special registers (csr0-csr31)
442
32 coprocessor general-purpose registers (c0 -- c31)
443
64 coprocessor control registers (ccr0 -- ccr63)
445
For the raw registers, we assign numbers here explicitly, instead
446
of letting the enum assign them for us; the numbers are a matter of
447
external protocol, and shouldn't shift around as things are edited.
449
We access the control/special registers via pseudoregisters, to
450
enforce read-only portions that some registers have.
452
We access the coprocessor general purpose and control registers via
453
pseudoregisters, to make sure they appear in the proper order in
454
the 'info all-registers' command (which uses the register number
455
ordering), and also to allow them to be renamed and resized
456
depending on the me_module in use.
458
The MeP allows coprocessor general-purpose registers to be either
459
32 or 64 bits long, depending on the configuration. Since we don't
460
want the format of the 'g' packet to vary from one core to another,
461
the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
462
types of registers to change (see the implementation of
463
register_type), so we have four banks of pseudoregisters for the
464
coprocessor gprs --- 32-bit vs. 64-bit, and integer
465
vs. floating-point --- and we show or hide them depending on the
469
MEP_FIRST_RAW_REGNUM = 0,
471
MEP_FIRST_GPR_REGNUM = 0,
485
MEP_FP_REGNUM = MEP_R8_REGNUM,
487
MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
489
MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
491
MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
492
MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
494
/* The raw control registers. These are the values as received via
495
the remote protocol, directly from the target; we only let user
496
code touch the via the pseudoregisters, which enforce read-only
498
MEP_FIRST_RAW_CSR_REGNUM = 16,
499
MEP_RAW_PC_REGNUM = 16, /* Program counter */
500
MEP_RAW_LP_REGNUM = 17, /* Link pointer */
501
MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
502
MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
503
MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
504
MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
505
MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
506
MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
507
MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
508
MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
509
MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
510
MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
511
MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
512
MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
513
MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
514
MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
515
MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
516
MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
517
MEP_RAW_TMP_REGNUM = 34, /* Temporary */
518
MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
519
MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
520
MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
521
MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
522
MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
523
MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
524
MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
525
MEP_RAW_OPT_REGNUM = 42, /* Raw options */
526
MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
527
MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
528
MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
529
MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
530
MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
531
MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
533
/* The raw coprocessor general-purpose registers. These are all 64
535
MEP_FIRST_RAW_CR_REGNUM = 48,
536
MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
538
MEP_FIRST_RAW_CCR_REGNUM = 80,
539
MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
541
/* The module number register. This is the index of the me_module
542
of which the current target is an instance. (This is not a real
543
MeP-specified register; it's provided by SID.) */
546
MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
548
MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
550
/* Pseudoregisters. See mep_pseudo_register_read and
551
mep_pseudo_register_write. */
552
MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
554
/* We have a pseudoregister for every control/special register, to
555
implement registers with read-only bits. */
556
MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
557
MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
558
MEP_LP_REGNUM, /* Link pointer */
559
MEP_SAR_REGNUM, /* shift amount */
560
MEP_CSR3_REGNUM, /* csr3: reserved */
561
MEP_RPB_REGNUM, /* repeat begin address */
562
MEP_RPE_REGNUM, /* Repeat end address */
563
MEP_RPC_REGNUM, /* Repeat count */
564
MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
565
MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
566
MEP_CSR9_REGNUM, /* csr3: reserved */
567
MEP_CSR10_REGNUM, /* csr3: reserved */
568
MEP_CSR11_REGNUM, /* csr3: reserved */
569
MEP_MB0_REGNUM, /* modulo begin address 0 */
570
MEP_ME0_REGNUM, /* modulo end address 0 */
571
MEP_MB1_REGNUM, /* modulo begin address 1 */
572
MEP_ME1_REGNUM, /* modulo end address 1 */
573
MEP_PSW_REGNUM, /* program status word */
574
MEP_ID_REGNUM, /* processor ID/revision */
575
MEP_TMP_REGNUM, /* Temporary */
576
MEP_EPC_REGNUM, /* Exception program counter */
577
MEP_EXC_REGNUM, /* exception cause */
578
MEP_CFG_REGNUM, /* processor configuration*/
579
MEP_CSR22_REGNUM, /* csr3: reserved */
580
MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
581
MEP_DBG_REGNUM, /* debug */
582
MEP_DEPC_REGNUM, /* Debug exception PC */
583
MEP_OPT_REGNUM, /* options */
584
MEP_RCFG_REGNUM, /* local ram config */
585
MEP_CCFG_REGNUM, /* cache config */
586
MEP_CSR29_REGNUM, /* csr3: reserved */
587
MEP_CSR30_REGNUM, /* csr3: reserved */
588
MEP_CSR31_REGNUM, /* csr3: reserved */
589
MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
591
/* The 32-bit integer view of the coprocessor GPR's. */
592
MEP_FIRST_CR32_REGNUM,
593
MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
595
/* The 32-bit floating-point view of the coprocessor GPR's. */
596
MEP_FIRST_FP_CR32_REGNUM,
597
MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
599
/* The 64-bit integer view of the coprocessor GPR's. */
600
MEP_FIRST_CR64_REGNUM,
601
MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
603
/* The 64-bit floating-point view of the coprocessor GPR's. */
604
MEP_FIRST_FP_CR64_REGNUM,
605
MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
607
MEP_FIRST_CCR_REGNUM,
608
MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
610
MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
612
MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
614
MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
618
#define IN_SET(set, n) \
619
(MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
621
#define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
622
#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
623
#define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
624
#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
626
#define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
627
#define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
628
#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
629
#define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
630
#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
631
#define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
632
|| IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
633
#define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
635
#define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
636
#define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
638
#define NUM_REGS_IN_SET(set) \
639
(MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
641
#define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
642
#define MEP_PSW_SIZE (4) /* Size of the PSW register. */
643
#define MEP_LP_SIZE (4) /* Size of the LP register. */
646
/* Many of the control/special registers contain bits that cannot be
647
written to; some are entirely read-only. So we present them all as
650
The following table describes the special properties of each CSR. */
651
struct mep_csr_register
653
/* The number of this CSR's raw register. */
656
/* The number of this CSR's pseudoregister. */
659
/* A mask of the bits that are writeable: if a bit is set here, then
660
it can be modified; if the bit is clear, then it cannot. */
661
LONGEST writeable_bits;
665
/* mep_csr_registers[i] describes the i'th CSR.
666
We just list the register numbers here explicitly to help catch
668
#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
669
struct mep_csr_register mep_csr_registers[] = {
670
{ CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
671
{ CSR(LP), 0xffffffff },
672
{ CSR(SAR), 0x0000003f },
673
{ CSR(CSR3), 0xffffffff },
674
{ CSR(RPB), 0xfffffffe },
675
{ CSR(RPE), 0xffffffff },
676
{ CSR(RPC), 0xffffffff },
677
{ CSR(HI), 0xffffffff },
678
{ CSR(LO), 0xffffffff },
679
{ CSR(CSR9), 0xffffffff },
680
{ CSR(CSR10), 0xffffffff },
681
{ CSR(CSR11), 0xffffffff },
682
{ CSR(MB0), 0x0000ffff },
683
{ CSR(ME0), 0x0000ffff },
684
{ CSR(MB1), 0x0000ffff },
685
{ CSR(ME1), 0x0000ffff },
686
{ CSR(PSW), 0x000003ff },
687
{ CSR(ID), 0x00000000 },
688
{ CSR(TMP), 0xffffffff },
689
{ CSR(EPC), 0xffffffff },
690
{ CSR(EXC), 0x000030f0 },
691
{ CSR(CFG), 0x00c0001b },
692
{ CSR(CSR22), 0xffffffff },
693
{ CSR(NPC), 0xffffffff },
694
{ CSR(DBG), 0x00000580 },
695
{ CSR(DEPC), 0xffffffff },
696
{ CSR(OPT), 0x00000000 },
697
{ CSR(RCFG), 0x00000000 },
698
{ CSR(CCFG), 0x00000000 },
699
{ CSR(CSR29), 0xffffffff },
700
{ CSR(CSR30), 0xffffffff },
701
{ CSR(CSR31), 0xffffffff },
705
/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
706
the number of the corresponding pseudoregister. Otherwise,
707
mep_raw_to_pseudo[R] == R. */
708
static int mep_raw_to_pseudo[MEP_NUM_REGS];
710
/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
711
is the number of the underlying raw register. Otherwise
712
mep_pseudo_to_raw[R] == R. */
713
static int mep_pseudo_to_raw[MEP_NUM_REGS];
716
mep_init_pseudoregister_maps (void)
720
/* Verify that mep_csr_registers covers all the CSRs, in order. */
721
gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
722
gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
724
/* Verify that the raw and pseudo ranges have matching sizes. */
725
gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
726
gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
727
gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
728
gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
730
for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
732
struct mep_csr_register *r = &mep_csr_registers[i];
734
gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
735
gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
738
/* Set up the initial raw<->pseudo mappings. */
739
for (i = 0; i < MEP_NUM_REGS; i++)
741
mep_raw_to_pseudo[i] = i;
742
mep_pseudo_to_raw[i] = i;
745
/* Add the CSR raw<->pseudo mappings. */
746
for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
748
struct mep_csr_register *r = &mep_csr_registers[i];
750
mep_raw_to_pseudo[r->raw] = r->pseudo;
751
mep_pseudo_to_raw[r->pseudo] = r->raw;
754
/* Add the CR raw<->pseudo mappings. */
755
for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
757
int raw = MEP_FIRST_RAW_CR_REGNUM + i;
758
int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
759
int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
760
int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
761
int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
763
/* Truly, the raw->pseudo mapping depends on the current module.
764
But we use the raw->pseudo mapping when we read the debugging
765
info; at that point, we don't know what module we'll actually
766
be running yet. So, we always supply the 64-bit register
767
numbers; GDB knows how to pick a smaller value out of a
768
larger register properly. */
769
mep_raw_to_pseudo[raw] = pseudo64;
770
mep_pseudo_to_raw[pseudo32] = raw;
771
mep_pseudo_to_raw[pseudofp32] = raw;
772
mep_pseudo_to_raw[pseudo64] = raw;
773
mep_pseudo_to_raw[pseudofp64] = raw;
776
/* Add the CCR raw<->pseudo mappings. */
777
for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
779
int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
780
int pseudo = MEP_FIRST_CCR_REGNUM + i;
781
mep_raw_to_pseudo[raw] = pseudo;
782
mep_pseudo_to_raw[pseudo] = raw;
788
mep_debug_reg_to_regnum (int debug_reg)
790
/* The debug info uses the raw register numbers. */
791
return mep_raw_to_pseudo[debug_reg];
795
/* Return the size, in bits, of the coprocessor pseudoregister
798
mep_pseudo_cr_size (int pseudo)
800
if (IS_CR32_REGNUM (pseudo)
801
|| IS_FP_CR32_REGNUM (pseudo))
803
else if (IS_CR64_REGNUM (pseudo)
804
|| IS_FP_CR64_REGNUM (pseudo))
811
/* If the coprocessor pseudoregister numbered PSEUDO is a
812
floating-point register, return non-zero; if it is an integer
813
register, return zero. */
815
mep_pseudo_cr_is_float (int pseudo)
817
return (IS_FP_CR32_REGNUM (pseudo)
818
|| IS_FP_CR64_REGNUM (pseudo));
822
/* Given a coprocessor GPR pseudoregister number, return its index
823
within that register bank. */
825
mep_pseudo_cr_index (int pseudo)
827
if (IS_CR32_REGNUM (pseudo))
828
return pseudo - MEP_FIRST_CR32_REGNUM;
829
else if (IS_FP_CR32_REGNUM (pseudo))
830
return pseudo - MEP_FIRST_FP_CR32_REGNUM;
831
else if (IS_CR64_REGNUM (pseudo))
832
return pseudo - MEP_FIRST_CR64_REGNUM;
833
else if (IS_FP_CR64_REGNUM (pseudo))
834
return pseudo - MEP_FIRST_FP_CR64_REGNUM;
840
/* Return the me_module index describing the current target.
842
If the current target has registers (e.g., simulator, remote
843
target), then this uses the value of the 'module' register, raw
844
register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
845
from the ELF header's e_flags field of the current executable
850
if (target_has_registers)
853
regcache_cooked_read_unsigned (get_current_regcache (),
854
MEP_MODULE_REGNUM, ®val);
858
return gdbarch_tdep (current_gdbarch)->me_module;
862
/* Return the set of options for the current target, in the form that
863
the OPT register would use.
865
If the current target has registers (e.g., simulator, remote
866
target), then this is the actual value of the OPT register. If the
867
current target does not have registers (e.g., an executable file),
868
then use the 'module_opt' field we computed when we build the
869
gdbarch object for this module. */
873
if (target_has_registers)
876
regcache_cooked_read_unsigned (get_current_regcache (),
877
MEP_OPT_REGNUM, ®val);
881
return me_module_opt (current_me_module ());
885
/* Return the width of the current me_module's coprocessor data bus,
886
in bits. This is either 32 or 64. */
888
current_cop_data_bus_width ()
890
return me_module_cop_data_bus_width (current_me_module ());
894
/* Return the keyword table of coprocessor general-purpose register
895
names appropriate for the me_module we're dealing with. */
896
static CGEN_KEYWORD *
899
const CGEN_HW_ENTRY *hw
900
= me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
902
return register_set_keyword_table (hw);
906
/* Return non-zero if the coprocessor general-purpose registers are
907
floating-point values, zero otherwise. */
909
current_cr_is_float ()
911
const CGEN_HW_ENTRY *hw
912
= me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
914
return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
918
/* Return the keyword table of coprocessor control register names
919
appropriate for the me_module we're dealing with. */
920
static CGEN_KEYWORD *
923
const CGEN_HW_ENTRY *hw
924
= me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
926
return register_set_keyword_table (hw);
931
mep_register_name (int regnr)
933
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
935
/* General-purpose registers. */
936
static const char *gpr_names[] = {
937
"r0", "r1", "r2", "r3", /* 0 */
938
"r4", "r5", "r6", "r7", /* 4 */
939
"fp", "r9", "r10", "r11", /* 8 */
940
"r12", "tp", "gp", "sp" /* 12 */
943
/* Special-purpose registers. */
944
static const char *csr_names[] = {
945
"pc", "lp", "sar", "", /* 0 csr3: reserved */
946
"rpb", "rpe", "rpc", "hi", /* 4 */
947
"lo", "", "", "", /* 8 csr9-csr11: reserved */
948
"mb0", "me0", "mb1", "me1", /* 12 */
950
"psw", "id", "tmp", "epc", /* 16 */
951
"exc", "cfg", "", "npc", /* 20 csr22: reserved */
952
"dbg", "depc", "opt", "rcfg", /* 24 */
953
"ccfg", "", "", "" /* 28 csr29-csr31: reserved */
956
if (IS_GPR_REGNUM (regnr))
957
return gpr_names[regnr - MEP_R0_REGNUM];
958
else if (IS_CSR_REGNUM (regnr))
960
/* The 'hi' and 'lo' registers are only present on processors
961
that have the 'MUL' or 'DIV' instructions enabled. */
962
if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
963
&& (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
966
return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
968
else if (IS_CR_REGNUM (regnr))
974
/* Does this module have a coprocessor at all? */
975
if (! (current_options () & MEP_OPT_COP))
978
names = current_cr_names ();
980
/* This module's coprocessor has no general-purpose registers. */
983
cr_size = current_cop_data_bus_width ();
984
if (cr_size != mep_pseudo_cr_size (regnr))
985
/* This module's coprocessor's GPR's are of a different size. */
988
cr_is_float = current_cr_is_float ();
989
/* The extra ! operators ensure we get boolean equality, not
991
if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
992
/* This module's coprocessor's GPR's are of a different type. */
995
return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
997
else if (IS_CCR_REGNUM (regnr))
999
/* Does this module have a coprocessor at all? */
1000
if (! (current_options () & MEP_OPT_COP))
1004
CGEN_KEYWORD *names = current_ccr_names ();
1007
/* This me_module's coprocessor has no control registers. */
1010
return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1014
/* It might be nice to give the 'module' register a name, but that
1015
would affect the output of 'info all-registers', which would
1016
disturb the test suites. So we leave it invisible. */
1022
/* Custom register groups for the MeP. */
1023
static struct reggroup *mep_csr_reggroup; /* control/special */
1024
static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1025
static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1029
mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1030
struct reggroup *group)
1032
/* Filter reserved or unused register numbers. */
1034
const char *name = mep_register_name (regnum);
1036
if (! name || name[0] == '\0')
1040
/* We could separate the GPRs and the CSRs. Toshiba has approved of
1041
the existing behavior, so we'd want to run that by them. */
1042
if (group == general_reggroup)
1043
return (IS_GPR_REGNUM (regnum)
1044
|| IS_CSR_REGNUM (regnum));
1046
/* Everything is in the 'all' reggroup, except for the raw CSR's. */
1047
else if (group == all_reggroup)
1048
return (IS_GPR_REGNUM (regnum)
1049
|| IS_CSR_REGNUM (regnum)
1050
|| IS_CR_REGNUM (regnum)
1051
|| IS_CCR_REGNUM (regnum));
1053
/* All registers should be saved and restored, except for the raw
1056
This is probably right if the coprocessor is something like a
1057
floating-point unit, but would be wrong if the coprocessor is
1058
something that does I/O, where register accesses actually cause
1059
externally-visible actions. But I get the impression that the
1060
coprocessor isn't supposed to do things like that --- you'd use a
1061
hardware engine, perhaps. */
1062
else if (group == save_reggroup || group == restore_reggroup)
1063
return (IS_GPR_REGNUM (regnum)
1064
|| IS_CSR_REGNUM (regnum)
1065
|| IS_CR_REGNUM (regnum)
1066
|| IS_CCR_REGNUM (regnum));
1068
else if (group == mep_csr_reggroup)
1069
return IS_CSR_REGNUM (regnum);
1070
else if (group == mep_cr_reggroup)
1071
return IS_CR_REGNUM (regnum);
1072
else if (group == mep_ccr_reggroup)
1073
return IS_CCR_REGNUM (regnum);
1079
static struct type *
1080
mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1082
/* Coprocessor general-purpose registers may be either 32 or 64 bits
1083
long. So for them, the raw registers are always 64 bits long (to
1084
keep the 'g' packet format fixed), and the pseudoregisters vary
1086
if (IS_RAW_CR_REGNUM (reg_nr))
1087
return builtin_type_uint64;
1089
/* Since GDB doesn't allow registers to change type, we have two
1090
banks of pseudoregisters for the coprocessor general-purpose
1091
registers: one that gives a 32-bit view, and one that gives a
1092
64-bit view. We hide or show one or the other depending on the
1094
if (IS_CR_REGNUM (reg_nr))
1096
int size = mep_pseudo_cr_size (reg_nr);
1099
if (mep_pseudo_cr_is_float (reg_nr))
1100
return builtin_type_float;
1102
return builtin_type_uint32;
1104
else if (size == 64)
1106
if (mep_pseudo_cr_is_float (reg_nr))
1107
return builtin_type_double;
1109
return builtin_type_uint64;
1115
/* All other registers are 32 bits long. */
1117
return builtin_type_uint32;
1122
mep_read_pc (struct regcache *regcache)
1125
regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1130
mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
1132
regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
1137
mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1138
struct regcache *regcache,
1142
/* Read the raw register into a 64-bit buffer, and then return the
1143
appropriate end of that buffer. */
1144
int rawnum = mep_pseudo_to_raw[cookednum];
1147
gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1148
gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1149
regcache_raw_read (regcache, rawnum, buf64);
1150
/* Slow, but legible. */
1151
store_unsigned_integer (buf, 4, extract_unsigned_integer (buf64, 8));
1156
mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1157
struct regcache *regcache,
1161
regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1166
mep_pseudo_register_read (struct gdbarch *gdbarch,
1167
struct regcache *regcache,
1171
if (IS_CSR_REGNUM (cookednum)
1172
|| IS_CCR_REGNUM (cookednum))
1173
regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1174
else if (IS_CR32_REGNUM (cookednum)
1175
|| IS_FP_CR32_REGNUM (cookednum))
1176
mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1177
else if (IS_CR64_REGNUM (cookednum)
1178
|| IS_FP_CR64_REGNUM (cookednum))
1179
mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1186
mep_pseudo_csr_write (struct gdbarch *gdbarch,
1187
struct regcache *regcache,
1191
int size = register_size (gdbarch, cookednum);
1192
struct mep_csr_register *r
1193
= &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1195
if (r->writeable_bits == 0)
1196
/* A completely read-only register; avoid the read-modify-
1197
write cycle, and juts ignore the entire write. */
1201
/* A partially writeable register; do a read-modify-write cycle. */
1204
ULONGEST mixed_bits;
1206
regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1207
new_bits = extract_unsigned_integer (buf, size);
1208
mixed_bits = ((r->writeable_bits & new_bits)
1209
| (~r->writeable_bits & old_bits));
1210
regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1216
mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1217
struct regcache *regcache,
1221
/* Expand the 32-bit value into a 64-bit value, and write that to
1222
the pseudoregister. */
1223
int rawnum = mep_pseudo_to_raw[cookednum];
1226
gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1227
gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1228
/* Slow, but legible. */
1229
store_unsigned_integer (buf64, 8, extract_unsigned_integer (buf, 4));
1230
regcache_raw_write (regcache, rawnum, buf64);
1235
mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1236
struct regcache *regcache,
1240
regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1245
mep_pseudo_register_write (struct gdbarch *gdbarch,
1246
struct regcache *regcache,
1248
const gdb_byte *buf)
1250
if (IS_CSR_REGNUM (cookednum))
1251
mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1252
else if (IS_CR32_REGNUM (cookednum)
1253
|| IS_FP_CR32_REGNUM (cookednum))
1254
mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1255
else if (IS_CR64_REGNUM (cookednum)
1256
|| IS_FP_CR64_REGNUM (cookednum))
1257
mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1258
else if (IS_CCR_REGNUM (cookednum))
1259
regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1268
/* The mep disassembler needs to know about the section in order to
1271
mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1273
struct obj_section * s = find_pc_section (pc);
1277
/* The libopcodes disassembly code uses the section to find the
1278
BFD, the BFD to find the ELF header, the ELF header to find
1279
the me_module index, and the me_module index to select the
1280
right instructions to print. */
1281
info->section = s->the_bfd_section;
1282
info->arch = bfd_arch_mep;
1284
return print_insn_mep (pc, info);
1291
/* Prologue analysis. */
1294
/* The MeP has two classes of instructions: "core" instructions, which
1295
are pretty normal RISC chip stuff, and "coprocessor" instructions,
1296
which are mostly concerned with moving data in and out of
1297
coprocessor registers, and branching on coprocessor condition
1298
codes. There's space in the instruction set for custom coprocessor
1301
Instructions can be 16 or 32 bits long; the top two bits of the
1302
first byte indicate the length. The coprocessor instructions are
1303
mixed in with the core instructions, and there's no easy way to
1304
distinguish them; you have to completely decode them to tell one
1307
The MeP also supports a "VLIW" operation mode, where instructions
1308
always occur in fixed-width bundles. The bundles are either 32
1309
bits or 64 bits long, depending on a fixed configuration flag. You
1310
decode the first part of the bundle as normal; if it's a core
1311
instruction, and there's any space left in the bundle, the
1312
remainder of the bundle is a coprocessor instruction, which will
1313
execute in parallel with the core instruction. If the first part
1314
of the bundle is a coprocessor instruction, it occupies the entire
1317
So, here are all the cases:
1320
Every bundle is four bytes long, and naturally aligned, and can hold
1321
one or two instructions:
1322
- 16-bit core instruction; 16-bit coprocessor instruction
1323
These execute in parallel.
1324
- 32-bit core instruction
1325
- 32-bit coprocessor instruction
1328
Every bundle is eight bytes long, and naturally aligned, and can hold
1329
one or two instructions:
1330
- 16-bit core instruction; 48-bit (!) coprocessor instruction
1331
These execute in parallel.
1332
- 32-bit core instruction; 32-bit coprocessor instruction
1333
These execute in parallel.
1334
- 64-bit coprocessor instruction
1336
Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1337
instruction, so I don't really know what's up there; perhaps these
1338
are always the user-defined coprocessor instructions. */
1341
/* Return non-zero if PC is in a VLIW code section, zero
1344
mep_pc_in_vliw_section (CORE_ADDR pc)
1346
struct obj_section *s = find_pc_section (pc);
1348
return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1353
/* Set *INSN to the next core instruction at PC, and return the
1354
address of the next instruction.
1356
The MeP instruction encoding is endian-dependent. 16- and 32-bit
1357
instructions are encoded as one or two two-byte parts, and each
1358
part is byte-swapped independently. Thus:
1363
asm ("movu $1, 0x123456");
1364
asm ("sb $1,0x5678($2)");
1365
asm ("clip $1, 19");
1368
compiles to this big-endian code:
1370
0: d1 56 12 34 movu $1,0x123456
1371
4: c1 28 56 78 sb $1,22136($2)
1372
8: f1 01 10 98 clip $1,0x13
1375
and this little-endian code:
1377
0: 56 d1 34 12 movu $1,0x123456
1378
4: 28 c1 78 56 sb $1,22136($2)
1379
8: 01 f1 98 10 clip $1,0x13
1382
Instructions are returned in *INSN in an endian-independent form: a
1383
given instruction always appears in *INSN the same way, regardless
1384
of whether the instruction stream is big-endian or little-endian.
1386
*INSN's most significant 16 bits are the first (i.e., at lower
1387
addresses) 16 bit part of the instruction. Its least significant
1388
16 bits are the second (i.e., higher-addressed) 16 bit part of the
1389
instruction, or zero for a 16-bit instruction. Both 16-bit parts
1390
are fetched using the current endianness.
1392
So, the *INSN values for the instruction sequence above would be
1393
the following, in either endianness:
1395
0xd1561234 movu $1,0x123456
1396
0xc1285678 sb $1,22136($2)
1397
0xf1011098 clip $1,0x13
1400
(In a sense, it would be more natural to return 16-bit instructions
1401
in the least significant 16 bits of *INSN, but that would be
1402
ambiguous. In order to tell whether you're looking at a 16- or a
1403
32-bit instruction, you have to consult the major opcode field ---
1404
the most significant four bits of the instruction's first 16-bit
1405
part. But if we put 16-bit instructions at the least significant
1406
end of *INSN, then you don't know where to find the major opcode
1407
field until you know if it's a 16- or a 32-bit instruction ---
1408
which is where we started.)
1410
If PC points to a core / coprocessor bundle in a VLIW section, set
1411
*INSN to the core instruction, and return the address of the next
1412
bundle. This has the effect of skipping the bundled coprocessor
1413
instruction. That's okay, since coprocessor instructions aren't
1414
significant to prologue analysis --- for the time being,
1418
mep_get_insn (CORE_ADDR pc, long *insn)
1420
int pc_in_vliw_section;
1427
/* Are we in a VLIW section? */
1428
pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1429
if (pc_in_vliw_section)
1431
/* Yes, find out which bundle size. */
1432
vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1434
/* If PC is in a VLIW section, but the current core doesn't say
1435
that it supports either VLIW mode, then we don't have enough
1436
information to parse the instruction stream it contains.
1437
Since the "undifferentiated" standard core doesn't have
1438
either VLIW mode bit set, this could happen.
1440
But it shouldn't be an error to (say) set a breakpoint in a
1441
VLIW section, if you know you'll never reach it. (Perhaps
1442
you have a script that sets a bunch of standard breakpoints.)
1444
So we'll just return zero here, and hope for the best. */
1445
if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1448
/* If both VL32 and VL64 are set, that's bogus, too. */
1449
if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1455
read_memory (pc, buf, sizeof (buf));
1456
*insn = extract_unsigned_integer (buf, 2) << 16;
1458
/* The major opcode --- the top four bits of the first 16-bit
1459
part --- indicates whether this instruction is 16 or 32 bits
1460
long. All 32-bit instructions have a major opcode whose top
1461
two bits are 11; all the rest are 16-bit instructions. */
1462
if ((*insn & 0xc0000000) == 0xc0000000)
1464
/* Fetch the second 16-bit part of the instruction. */
1465
read_memory (pc + 2, buf, sizeof (buf));
1466
*insn = *insn | extract_unsigned_integer (buf, 2);
1469
/* If we're in VLIW code, then the VLIW width determines the address
1470
of the next instruction. */
1473
/* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1474
coprocessor half of a core / copro bundle. */
1475
if (vliw_mode == MEP_OPT_VL32)
1478
/* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1479
coprocessor half of a core / copro bundle. */
1480
else if (vliw_mode == MEP_OPT_VL64)
1483
/* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1488
/* Otherwise, the top two bits of the major opcode are (again) what
1489
we need to check. */
1490
else if ((*insn & 0xc0000000) == 0xc0000000)
1495
return pc + insn_len;
1499
/* Sign-extend the LEN-bit value N. */
1500
#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1502
/* Return the LEN-bit field at POS from I. */
1503
#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1505
/* Like FIELD, but sign-extend the field's value. */
1506
#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1509
/* Macros for decoding instructions.
1511
Remember that 16-bit instructions are placed in bits 16..31 of i,
1512
not at the least significant end; this means that the major opcode
1513
field is always in the same place, regardless of the width of the
1514
instruction. As a reminder of this, we show the lower 16 bits of a
1515
16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1517
/* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1518
/* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1519
/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1521
/* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1522
#define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1523
/* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1524
#define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1525
/* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1526
#define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1527
#define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1528
#define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1529
#define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1531
/* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1532
#define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1533
#define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1534
#define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1536
/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1537
#define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1538
#define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1539
#define SW_REG_BASE(i) (FIELD (i, 20, 4))
1541
/* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1542
#define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1543
#define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1544
#define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1546
/* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1547
#define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1548
#define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1549
#define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1550
#define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1552
/* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1553
#define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1554
#define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1555
#define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1557
/* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1558
#define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1559
#define ADD_TARGET(i) (FIELD (i, 24, 4))
1560
#define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1562
/* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1564
#define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1565
#define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1566
#define LDC_TARGET(i) (FIELD (i, 24, 4))
1568
/* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1569
#define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1570
#define LW_TARGET(i) (FIELD (i, 24, 4))
1571
#define LW_BASE(i) (FIELD (i, 20, 4))
1572
#define LW_OFFSET(i) (SFIELD (i, 0, 16))
1574
/* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1575
#define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1576
#define MOV_TARGET(i) (FIELD (i, 24, 4))
1577
#define MOV_SOURCE(i) (FIELD (i, 20, 4))
1579
/* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1580
#define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1581
#define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1584
/* This structure holds the results of a prologue analysis. */
1587
/* The offset from the frame base to the stack pointer --- always
1590
Calling this a "size" is a bit misleading, but given that the
1591
stack grows downwards, using offsets for everything keeps one
1592
from going completely sign-crazy: you never change anything's
1593
sign for an ADD instruction; always change the second operand's
1594
sign for a SUB instruction; and everything takes care of
1598
/* Non-zero if this function has initialized the frame pointer from
1599
the stack pointer, zero otherwise. */
1602
/* If has_frame_ptr is non-zero, this is the offset from the frame
1603
base to where the frame pointer points. This is always zero or
1605
int frame_ptr_offset;
1607
/* The address of the first instruction at which the frame has been
1608
set up and the arguments are where the debug info says they are
1609
--- as best as we can tell. */
1610
CORE_ADDR prologue_end;
1612
/* reg_offset[R] is the offset from the CFA at which register R is
1613
saved, or 1 if register R has not been saved. (Real values are
1614
always zero or negative.) */
1615
int reg_offset[MEP_NUM_REGS];
1618
/* Return non-zero if VALUE is an incoming argument register. */
1621
is_arg_reg (pv_t value)
1623
return (value.kind == pvk_register
1624
&& MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1628
/* Return non-zero if a store of REG's current value VALUE to ADDR is
1629
probably spilling an argument register to its stack slot in STACK.
1630
Such instructions should be included in the prologue, if possible.
1632
The store is a spill if:
1633
- the value being stored is REG's original value;
1634
- the value has not already been stored somewhere in STACK; and
1635
- ADDR is a stack slot's address (e.g., relative to the original
1636
value of the SP). */
1638
is_arg_spill (pv_t value, pv_t addr, struct pv_area *stack)
1640
return (is_arg_reg (value)
1641
&& pv_is_register (addr, MEP_SP_REGNUM)
1642
&& ! pv_area_find_reg (stack, current_gdbarch, value.reg, 0));
1646
/* Function for finding saved registers in a 'struct pv_area'; we pass
1647
this to pv_area_scan.
1649
If VALUE is a saved register, ADDR says it was saved at a constant
1650
offset from the frame base, and SIZE indicates that the whole
1651
register was saved, record its offset in RESULT_UNTYPED. */
1653
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1655
struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1657
if (value.kind == pvk_register
1659
&& pv_is_register (addr, MEP_SP_REGNUM)
1660
&& size == register_size (current_gdbarch, value.reg))
1661
result->reg_offset[value.reg] = addr.k;
1665
/* Analyze a prologue starting at START_PC, going no further than
1666
LIMIT_PC. Fill in RESULT as appropriate. */
1668
mep_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1669
struct mep_prologue *result)
1675
pv_t reg[MEP_NUM_REGS];
1676
struct pv_area *stack;
1677
struct cleanup *back_to;
1678
CORE_ADDR after_last_frame_setup_insn = start_pc;
1680
memset (result, 0, sizeof (*result));
1682
for (rn = 0; rn < MEP_NUM_REGS; rn++)
1684
reg[rn] = pv_register (rn, 0);
1685
result->reg_offset[rn] = 1;
1688
stack = make_pv_area (MEP_SP_REGNUM);
1689
back_to = make_cleanup_free_pv_area (stack);
1692
while (pc < limit_pc)
1695
pv_t pre_insn_fp, pre_insn_sp;
1697
next_pc = mep_get_insn (pc, &insn);
1699
/* A zero return from mep_get_insn means that either we weren't
1700
able to read the instruction from memory, or that we don't
1701
have enough information to be able to reliably decode it. So
1702
we'll store here and hope for the best. */
1706
/* Note the current values of the SP and FP, so we can tell if
1707
this instruction changed them, below. */
1708
pre_insn_fp = reg[MEP_FP_REGNUM];
1709
pre_insn_sp = reg[MEP_SP_REGNUM];
1713
int rn = ADD_TARGET (insn);
1714
CORE_ADDR imm6 = ADD_OFFSET (insn);
1716
reg[rn] = pv_add_constant (reg[rn], imm6);
1718
else if (IS_ADD3_16 (insn))
1720
int rn = ADD3_16_TARGET (insn);
1721
int imm7 = ADD3_16_OFFSET (insn);
1723
reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1725
else if (IS_ADD3_32 (insn))
1727
int rn = ADD3_32_TARGET (insn);
1728
int rm = ADD3_32_SOURCE (insn);
1729
int imm16 = ADD3_32_OFFSET (insn);
1731
reg[rn] = pv_add_constant (reg[rm], imm16);
1733
else if (IS_SW_REG (insn))
1735
int rn = SW_REG_SOURCE (insn);
1736
int rm = SW_REG_BASE (insn);
1738
/* If simulating this store would require us to forget
1739
everything we know about the stack frame in the name of
1740
accuracy, it would be better to just quit now. */
1741
if (pv_area_store_would_trash (stack, reg[rm]))
1744
if (is_arg_spill (reg[rn], reg[rm], stack))
1745
after_last_frame_setup_insn = next_pc;
1747
pv_area_store (stack, reg[rm], 4, reg[rn]);
1749
else if (IS_SW_IMMD (insn))
1751
int rn = SW_IMMD_SOURCE (insn);
1752
int offset = SW_IMMD_OFFSET (insn);
1753
pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1755
/* If simulating this store would require us to forget
1756
everything we know about the stack frame in the name of
1757
accuracy, it would be better to just quit now. */
1758
if (pv_area_store_would_trash (stack, addr))
1761
if (is_arg_spill (reg[rn], addr, stack))
1762
after_last_frame_setup_insn = next_pc;
1764
pv_area_store (stack, addr, 4, reg[rn]);
1766
else if (IS_MOV (insn))
1768
int rn = MOV_TARGET (insn);
1769
int rm = MOV_SOURCE (insn);
1773
if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1774
after_last_frame_setup_insn = next_pc;
1776
else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1778
int rn = SWBH_32_SOURCE (insn);
1779
int rm = SWBH_32_BASE (insn);
1780
int disp = SWBH_32_OFFSET (insn);
1781
int size = (IS_SB (insn) ? 1
1784
: (gdb_assert (0), 1));
1785
pv_t addr = pv_add_constant (reg[rm], disp);
1787
if (pv_area_store_would_trash (stack, addr))
1790
if (is_arg_spill (reg[rn], addr, stack))
1791
after_last_frame_setup_insn = next_pc;
1793
pv_area_store (stack, addr, size, reg[rn]);
1795
else if (IS_LDC (insn))
1797
int rn = LDC_TARGET (insn);
1798
int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1802
else if (IS_LW (insn))
1804
int rn = LW_TARGET (insn);
1805
int rm = LW_BASE (insn);
1806
int offset = LW_OFFSET (insn);
1807
pv_t addr = pv_add_constant (reg[rm], offset);
1809
reg[rn] = pv_area_fetch (stack, addr, 4);
1811
else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1813
/* When a loop appears as the first statement of a function
1814
body, gcc 4.x will use a BRA instruction to branch to the
1815
loop condition checking code. This BRA instruction is
1816
marked as part of the prologue. We therefore set next_pc
1817
to this branch target and also stop the prologue scan.
1818
The instructions at and beyond the branch target should
1819
no longer be associated with the prologue.
1821
Note that we only consider forward branches here. We
1822
presume that a forward branch is being used to skip over
1825
A backwards branch is covered by the default case below.
1826
If we were to encounter a backwards branch, that would
1827
most likely mean that we've scanned through a loop body.
1828
We definitely want to stop the prologue scan when this
1829
happens and that is precisely what is done by the default
1831
next_pc = pc + BRA_DISP (insn);
1832
after_last_frame_setup_insn = next_pc;
1836
/* We've hit some instruction we don't know how to simulate.
1837
Strictly speaking, we should set every value we're
1838
tracking to "unknown". But we'll be optimistic, assume
1839
that we have enough information already, and stop
1843
/* If this instruction changed the FP or decreased the SP (i.e.,
1844
allocated more stack space), then this may be a good place to
1845
declare the prologue finished. However, there are some
1848
- If the instruction just changed the FP back to its original
1849
value, then that's probably a restore instruction. The
1850
prologue should definitely end before that.
1852
- If the instruction increased the value of the SP (that is,
1853
shrunk the frame), then it's probably part of a frame
1854
teardown sequence, and the prologue should end before that. */
1856
if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1858
if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1859
after_last_frame_setup_insn = next_pc;
1861
else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1863
/* The comparison of constants looks odd, there, because .k
1864
is unsigned. All it really means is that the new value
1865
is lower than it was before the instruction. */
1866
if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1867
&& pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1868
&& ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1869
< (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1870
after_last_frame_setup_insn = next_pc;
1876
/* Is the frame size (offset, really) a known constant? */
1877
if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1878
result->frame_size = reg[MEP_SP_REGNUM].k;
1880
/* Was the frame pointer initialized? */
1881
if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1883
result->has_frame_ptr = 1;
1884
result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1887
/* Record where all the registers were saved. */
1888
pv_area_scan (stack, check_for_saved, (void *) result);
1890
result->prologue_end = after_last_frame_setup_insn;
1892
do_cleanups (back_to);
1897
mep_skip_prologue (CORE_ADDR pc)
1900
CORE_ADDR func_addr, func_end;
1901
struct mep_prologue p;
1903
/* Try to find the extent of the function that contains PC. */
1904
if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1907
mep_analyze_prologue (pc, func_end, &p);
1908
return p.prologue_end;
1915
static const unsigned char *
1916
mep_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1918
static unsigned char breakpoint[] = { 0x70, 0x32 };
1919
*lenptr = sizeof (breakpoint);
1925
/* Frames and frame unwinding. */
1928
static struct mep_prologue *
1929
mep_analyze_frame_prologue (struct frame_info *next_frame,
1930
void **this_prologue_cache)
1932
if (! *this_prologue_cache)
1934
CORE_ADDR func_start, stop_addr;
1936
*this_prologue_cache
1937
= FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1939
func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
1940
stop_addr = frame_pc_unwind (next_frame);
1942
/* If we couldn't find any function containing the PC, then
1943
just initialize the prologue cache, but don't do anything. */
1945
stop_addr = func_start;
1947
mep_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
1950
return *this_prologue_cache;
1954
/* Given the next frame and a prologue cache, return this frame's
1957
mep_frame_base (struct frame_info *next_frame,
1958
void **this_prologue_cache)
1960
struct mep_prologue *p
1961
= mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1963
/* In functions that use alloca, the distance between the stack
1964
pointer and the frame base varies dynamically, so we can't use
1965
the SP plus static information like prologue analysis to find the
1966
frame base. However, such functions must have a frame pointer,
1967
to be able to restore the SP on exit. So whenever we do have a
1968
frame pointer, use that to find the base. */
1969
if (p->has_frame_ptr)
1972
= frame_unwind_register_unsigned (next_frame, MEP_FP_REGNUM);
1973
return fp - p->frame_ptr_offset;
1978
= frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
1979
return sp - p->frame_size;
1985
mep_frame_this_id (struct frame_info *next_frame,
1986
void **this_prologue_cache,
1987
struct frame_id *this_id)
1989
*this_id = frame_id_build (mep_frame_base (next_frame, this_prologue_cache),
1990
frame_func_unwind (next_frame, NORMAL_FRAME));
1995
mep_frame_prev_register (struct frame_info *next_frame,
1996
void **this_prologue_cache,
1997
int regnum, int *optimizedp,
1998
enum lval_type *lvalp, CORE_ADDR *addrp,
1999
int *realnump, gdb_byte *bufferp)
2001
struct mep_prologue *p
2002
= mep_analyze_frame_prologue (next_frame, this_prologue_cache);
2004
/* There are a number of complications in unwinding registers on the
2005
MeP, having to do with core functions calling VLIW functions and
2008
The least significant bit of the link register, LP.LTOM, is the
2009
VLIW mode toggle bit: it's set if a core function called a VLIW
2010
function, or vice versa, and clear when the caller and callee
2011
were both in the same mode.
2013
So, if we're asked to unwind the PC, then we really want to
2014
unwind the LP and clear the least significant bit. (Real return
2015
addresses are always even.) And if we want to unwind the program
2016
status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2018
Tweaking the register values we return in this way means that the
2019
bits in BUFFERP[] are not the same as the bits you'd find at
2020
ADDRP in the inferior, so we make sure lvalp is not_lval when we
2022
if (regnum == MEP_PC_REGNUM)
2024
mep_frame_prev_register (next_frame, this_prologue_cache, MEP_LP_REGNUM,
2025
optimizedp, lvalp, addrp, realnump, bufferp);
2026
store_unsigned_integer (bufferp, MEP_LP_SIZE,
2027
(extract_unsigned_integer (bufferp, MEP_LP_SIZE)
2033
CORE_ADDR frame_base = mep_frame_base (next_frame, this_prologue_cache);
2034
int reg_size = register_size (get_frame_arch (next_frame), regnum);
2036
/* Our caller's SP is our frame base. */
2037
if (regnum == MEP_SP_REGNUM)
2044
store_unsigned_integer (bufferp, reg_size, frame_base);
2047
/* If prologue analysis says we saved this register somewhere,
2048
return a description of the stack slot holding it. */
2049
else if (p->reg_offset[regnum] != 1)
2052
*lvalp = lval_memory;
2053
*addrp = frame_base + p->reg_offset[regnum];
2056
get_frame_memory (next_frame, *addrp, bufferp, reg_size);
2059
/* Otherwise, presume we haven't changed the value of this
2060
register, and get it from the next frame. */
2062
frame_register_unwind (next_frame, regnum,
2063
optimizedp, lvalp, addrp, realnump, bufferp);
2065
/* If we need to toggle the operating mode, do so. */
2066
if (regnum == MEP_PSW_REGNUM)
2069
enum lval_type lp_lval;
2072
char lp_buffer[MEP_LP_SIZE];
2074
/* Get the LP's value, too. */
2075
frame_register_unwind (next_frame, MEP_LP_REGNUM,
2076
&lp_optimized, &lp_lval, &lp_addr,
2077
&lp_realnum, lp_buffer);
2079
/* If LP.LTOM is set, then toggle PSW.OM. */
2080
if (extract_unsigned_integer (lp_buffer, MEP_LP_SIZE) & 0x1)
2081
store_unsigned_integer
2082
(bufferp, MEP_PSW_SIZE,
2083
(extract_unsigned_integer (bufferp, MEP_PSW_SIZE) ^ 0x1000));
2090
static const struct frame_unwind mep_frame_unwind = {
2093
mep_frame_prev_register
2097
static const struct frame_unwind *
2098
mep_frame_sniffer (struct frame_info *next_frame)
2100
return &mep_frame_unwind;
2104
/* Our general unwinding function can handle unwinding the PC. */
2106
mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2108
return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2112
/* Our general unwinding function can handle unwinding the SP. */
2114
mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2116
return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2121
/* Return values. */
2125
mep_use_struct_convention (struct type *type)
2127
return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2132
mep_extract_return_value (struct gdbarch *arch,
2134
struct regcache *regcache,
2137
int byte_order = gdbarch_byte_order (arch);
2139
/* Values that don't occupy a full register appear at the less
2140
significant end of the value. This is the offset to where the
2144
/* Return values > MEP_GPR_SIZE bytes are returned in memory,
2145
pointed to by R0. */
2146
gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2148
if (byte_order == BFD_ENDIAN_BIG)
2149
offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2153
/* Return values that do fit in a single register are returned in R0. */
2154
regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2155
offset, TYPE_LENGTH (type),
2161
mep_store_return_value (struct gdbarch *arch,
2163
struct regcache *regcache,
2164
const gdb_byte *valbuf)
2166
int byte_order = gdbarch_byte_order (arch);
2168
/* Values that fit in a single register go in R0. */
2169
if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2171
/* Values that don't occupy a full register appear at the least
2172
significant end of the value. This is the offset to where the
2176
if (byte_order == BFD_ENDIAN_BIG)
2177
offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2181
regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2182
offset, TYPE_LENGTH (type),
2186
/* Return values larger than a single register are returned in
2187
memory, pointed to by R0. Unfortunately, we can't count on R0
2188
pointing to the return buffer, so we raise an error here. */
2190
error ("GDB cannot set return values larger than four bytes; "
2191
"the Media Processor's\n"
2192
"calling conventions do not provide enough information "
2194
"Try using the 'return' command with no argument.");
2197
enum return_value_convention
2198
mep_return_value (struct gdbarch *gdbarch, struct type *type,
2199
struct regcache *regcache, gdb_byte *readbuf,
2200
const gdb_byte *writebuf)
2202
if (mep_use_struct_convention (type))
2207
/* Although the address of the struct buffer gets passed in R1, it's
2208
returned in R0. Fetch R0's value and then read the memory
2210
regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2211
read_memory (addr, readbuf, TYPE_LENGTH (type));
2215
/* Return values larger than a single register are returned in
2216
memory, pointed to by R0. Unfortunately, we can't count on R0
2217
pointing to the return buffer, so we raise an error here. */
2218
error ("GDB cannot set return values larger than four bytes; "
2219
"the Media Processor's\n"
2220
"calling conventions do not provide enough information "
2222
"Try using the 'return' command with no argument.");
2224
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2228
mep_extract_return_value (gdbarch, type, regcache, readbuf);
2230
mep_store_return_value (gdbarch, type, regcache, writebuf);
2232
return RETURN_VALUE_REGISTER_CONVENTION;
2236
/* Inferior calls. */
2240
mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2242
/* Require word alignment. */
2247
/* From "lang_spec2.txt":
2249
4.2 Calling conventions
2251
4.2.1 Core register conventions
2253
- Parameters should be evaluated from left to right, and they
2254
should be held in $1,$2,$3,$4 in order. The fifth parameter or
2255
after should be held in the stack. If the size is larger than 4
2256
bytes in the first four parameters, the pointer should be held in
2257
the registers instead. If the size is larger than 4 bytes in the
2258
fifth parameter or after, the pointer should be held in the stack.
2260
- Return value of a function should be held in register $0. If the
2261
size of return value is larger than 4 bytes, $1 should hold the
2262
pointer pointing memory that would hold the return value. In this
2263
case, the first parameter should be held in $2, the second one in
2264
$3, and the third one in $4, and the forth parameter or after
2265
should be held in the stack.
2267
[This doesn't say so, but arguments shorter than four bytes are
2268
passed in the least significant end of a four-byte word when
2269
they're passed on the stack.] */
2272
/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2273
large to fit in a register, save it on the stack, and place its
2274
address in COPY[i]. SP is the initial stack pointer; return the
2275
new stack pointer. */
2277
push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2282
for (i = 0; i < argc; i++)
2284
unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2286
if (arg_len > MEP_GPR_SIZE)
2288
/* Reserve space for the copy, and then round the SP down, to
2289
make sure it's all aligned properly. */
2290
sp = (sp - arg_len) & -4;
2291
write_memory (sp, value_contents (argv[i]), arg_len);
2301
mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2302
struct regcache *regcache, CORE_ADDR bp_addr,
2303
int argc, struct value **argv, CORE_ADDR sp,
2305
CORE_ADDR struct_addr)
2307
CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2308
CORE_ADDR func_addr = find_function_addr (function, NULL);
2311
/* The number of the next register available to hold an argument. */
2314
/* The address of the next stack slot available to hold an argument. */
2315
CORE_ADDR arg_stack;
2317
/* The address of the end of the stack area for arguments. This is
2318
just for error checking. */
2319
CORE_ADDR arg_stack_end;
2321
sp = push_large_arguments (sp, argc, argv, copy);
2323
/* Reserve space for the stack arguments, if any. */
2325
if (argc + (struct_addr ? 1 : 0) > 4)
2326
sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2328
arg_reg = MEP_R1_REGNUM;
2331
/* If we're returning a structure by value, push the pointer to the
2332
buffer as the first argument. */
2335
regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2339
for (i = 0; i < argc; i++)
2341
unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2344
/* Arguments that fit in a GPR get expanded to fill the GPR. */
2345
if (arg_size <= MEP_GPR_SIZE)
2346
value = extract_unsigned_integer (value_contents (argv[i]),
2347
TYPE_LENGTH (value_type (argv[i])));
2349
/* Arguments too large to fit in a GPR get copied to the stack,
2350
and we pass a pointer to the copy. */
2354
/* We use $1 -- $4 for passing arguments, then use the stack. */
2355
if (arg_reg <= MEP_R4_REGNUM)
2357
regcache_cooked_write_unsigned (regcache, arg_reg, value);
2362
char buf[MEP_GPR_SIZE];
2363
store_unsigned_integer (buf, MEP_GPR_SIZE, value);
2364
write_memory (arg_stack, buf, MEP_GPR_SIZE);
2365
arg_stack += MEP_GPR_SIZE;
2369
gdb_assert (arg_stack <= arg_stack_end);
2371
/* Set the return address. */
2372
regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2374
/* Update the stack pointer. */
2375
regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2381
static struct frame_id
2382
mep_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2384
return frame_id_build (mep_unwind_sp (gdbarch, next_frame),
2385
frame_pc_unwind (next_frame));
2390
/* Initialization. */
2393
static struct gdbarch *
2394
mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2396
struct gdbarch *gdbarch;
2397
struct gdbarch_tdep *tdep;
2399
/* Which me_module are we building a gdbarch object for? */
2400
CONFIG_ATTR me_module;
2402
/* If we have a BFD in hand, figure out which me_module it was built
2403
for. Otherwise, use the no-particular-me_module code. */
2406
/* The way to get the me_module code depends on the object file
2407
format. At the moment, we only know how to handle ELF. */
2408
if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2409
me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2411
me_module = CONFIG_NONE;
2414
me_module = CONFIG_NONE;
2416
/* If we're setting the architecture from a file, check the
2417
endianness of the file against that of the me_module. */
2420
/* The negations on either side make the comparison treat all
2421
non-zero (true) values as equal. */
2422
if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2424
const char *module_name = me_module_name (me_module);
2425
const char *module_endianness
2426
= me_module_big_endian (me_module) ? "big" : "little";
2427
const char *file_name = bfd_get_filename (info.abfd);
2428
const char *file_endianness
2429
= bfd_big_endian (info.abfd) ? "big" : "little";
2431
fputc_unfiltered ('\n', gdb_stderr);
2433
warning ("the MeP module '%s' is %s-endian, but the executable\n"
2435
module_name, module_endianness,
2436
file_name, file_endianness);
2438
warning ("the selected MeP module is %s-endian, but the "
2441
module_endianness, file_name, file_endianness);
2445
/* Find a candidate among the list of architectures we've created
2446
already. info->bfd_arch_info needs to match, but we also want
2447
the right me_module: the ELF header's e_flags field needs to
2449
for (arches = gdbarch_list_lookup_by_info (arches, &info);
2451
arches = gdbarch_list_lookup_by_info (arches->next, &info))
2452
if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2453
return arches->gdbarch;
2455
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2456
gdbarch = gdbarch_alloc (&info, tdep);
2458
/* Get a CGEN CPU descriptor for this architecture. */
2460
const char *mach_name = info.bfd_arch_info->printable_name;
2461
enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2463
: CGEN_ENDIAN_LITTLE);
2465
tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2466
CGEN_CPU_OPEN_ENDIAN, endian,
2470
tdep->me_module = me_module;
2473
set_gdbarch_read_pc (gdbarch, mep_read_pc);
2474
set_gdbarch_write_pc (gdbarch, mep_write_pc);
2475
set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2476
set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2477
set_gdbarch_register_name (gdbarch, mep_register_name);
2478
set_gdbarch_register_type (gdbarch, mep_register_type);
2479
set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2480
set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2481
set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2482
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2483
set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2485
set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2486
reggroup_add (gdbarch, all_reggroup);
2487
reggroup_add (gdbarch, general_reggroup);
2488
reggroup_add (gdbarch, save_reggroup);
2489
reggroup_add (gdbarch, restore_reggroup);
2490
reggroup_add (gdbarch, mep_csr_reggroup);
2491
reggroup_add (gdbarch, mep_cr_reggroup);
2492
reggroup_add (gdbarch, mep_ccr_reggroup);
2495
set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2498
set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2499
set_gdbarch_decr_pc_after_break (gdbarch, 0);
2500
set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2502
/* Frames and frame unwinding. */
2503
frame_unwind_append_sniffer (gdbarch, mep_frame_sniffer);
2504
set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2505
set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2506
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2507
set_gdbarch_frame_args_skip (gdbarch, 0);
2509
/* Return values. */
2510
set_gdbarch_return_value (gdbarch, mep_return_value);
2512
/* Inferior function calls. */
2513
set_gdbarch_frame_align (gdbarch, mep_frame_align);
2514
set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2515
set_gdbarch_unwind_dummy_id (gdbarch, mep_unwind_dummy_id);
2522
_initialize_mep_tdep (void)
2524
mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2525
mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2526
mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2528
register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2530
mep_init_pseudoregister_maps ();