~ubuntu-branches/ubuntu/karmic/maxima/karmic

« back to all changes in this revision

Viewing changes to doc/info/Elliptic.texi

  • Committer: Bazaar Package Importer
  • Author(s): Camm Maguire
  • Date: 2004-11-13 18:39:14 UTC
  • mto: (2.1.2 hoary) (3.2.1 sid) (1.1.5 upstream)
  • mto: This revision was merged to the branch mainline in revision 3.
  • Revision ID: james.westby@ubuntu.com-20041113183914-ttig0evwuatnqosl
Tags: upstream-5.9.1
ImportĀ upstreamĀ versionĀ 5.9.1

Show diffs side-by-side

added added

removed removed

Lines of Context:
41
41
 
42
42
Some examples of elliptic functions:
43
43
@example
44
 
(C1) jacobi_sn(u,m);
45
 
(D1)                            JACOBI_SN(u, m)
46
 
(C2) jacobi_sn(u,1);
47
 
(D2)                                TANH(u)
48
 
(C3) jacobi_sn(u,0);
49
 
(D3)                                SIN(u)
50
 
(C4) diff(jacobi_sn(u,m),u);
51
 
(D4)                    JACOBI_CN(u, m) JACOBI_DN(u, m)
52
 
(C5) diff(jacobi_sn(u,m),m);
53
 
(D5) JACOBI_CN(u, m) JACOBI_DN(u, m)
 
44
(%i1) jacobi_sn(u,m);
 
45
(%o1)                            JACOBI_SN(u, m)
 
46
(%i2) jacobi_sn(u,1);
 
47
(%o2)                                TANH(u)
 
48
(%i3) jacobi_sn(u,0);
 
49
(%o3)                                SIN(u)
 
50
(%i4) diff(jacobi_sn(u,m),u);
 
51
(%o4)                    JACOBI_CN(u, m) JACOBI_DN(u, m)
 
52
(%i5) diff(jacobi_sn(u,m),m);
 
53
(%o5) JACOBI_CN(u, m) JACOBI_DN(u, m)
54
54
 
55
55
      ELLIPTIC_E(ASIN(JACOBI_SN(u, m)), m)
56
56
 (u - ------------------------------------)/(2 m)
64
64
 
65
65
Some examples of elliptic integrals:
66
66
@example
67
 
(C1) elliptic_f(phi,m);
68
 
(D1)                          ELLIPTIC_F(PHI, m)
69
 
(C2) elliptic_f(phi,0);
70
 
(D2)                                  PHI
71
 
(C3) elliptic_f(phi,1);
 
67
(%i1) elliptic_f(phi,m);
 
68
(%o1)                          ELLIPTIC_F(PHI, m)
 
69
(%i2) elliptic_f(phi,0);
 
70
(%o2)                                  PHI
 
71
(%i3) elliptic_f(phi,1);
72
72
                                      PHI   %PI
73
 
(D3)                          LOG(TAN(--- + ---))
 
73
(%o3)                          LOG(TAN(--- + ---))
74
74
                                       2     4
75
 
(C4) elliptic_e(phi,1);
76
 
(D4)                               SIN(PHI)
77
 
(C5) elliptic_e(phi,0);
78
 
(D5)                                  PHI
79
 
(C6) elliptic_kc(1/2);
 
75
(%i4) elliptic_e(phi,1);
 
76
(%o4)                               SIN(PHI)
 
77
(%i5) elliptic_e(phi,0);
 
78
(%o5)                                  PHI
 
79
(%i6) elliptic_kc(1/2);
80
80
                                            1
81
 
(D6)                            ELLIPTIC_KC(-)
 
81
(%o6)                            ELLIPTIC_KC(-)
82
82
                                            2
83
 
(C7) makegamma(%);
 
83
(%i7) makegamma(%);
84
84
                                        2 1
85
85
                                   GAMMA (-)
86
86
                                          4
87
 
(D7)                              -----------
 
87
(%o7)                              -----------
88
88
                                  4 SQRT(%PI)
89
 
(C8) diff(elliptic_f(phi,m),phi);
 
89
(%i8) diff(elliptic_f(phi,m),phi);
90
90
                                       1
91
 
(D8)                         ---------------------
 
91
(%o8)                         ---------------------
92
92
                                           2
93
93
                             SQRT(1 - m SIN (PHI))
94
 
(C9) diff(elliptic_f(phi,m),m);
 
94
(%i9) diff(elliptic_f(phi,m),m);
95
95
      ELLIPTIC_E(PHI, m) - (1 - m) ELLIPTIC_F(PHI, m)
96
 
(D9) (-----------------------------------------------
 
96
(%o9) (-----------------------------------------------
97
97
                             m
98
98
 
99
99
                            COS(PHI) SIN(PHI)