~ubuntu-branches/ubuntu/natty/linux-backports-modules-2.6.38/natty-proposed

« back to all changes in this revision

Viewing changes to updates/compat-wireless-2.6.36/drivers/net/wireless/ath/ath9k/ar9003_eeprom.c

  • Committer: Bazaar Package Importer
  • Author(s): Tim Gardner, Tim Gardner
  • Date: 2011-06-08 10:44:09 UTC
  • Revision ID: james.westby@ubuntu.com-20110608104409-fnl8carkdo15bwsz
Tags: 2.6.38-10.6
[ Tim Gardner ]

Shorten compat-wireless package name to cw to accomodate
CDROM file name length restrictions.

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/*
2
 
 * Copyright (c) 2010 Atheros Communications Inc.
3
 
 *
4
 
 * Permission to use, copy, modify, and/or distribute this software for any
5
 
 * purpose with or without fee is hereby granted, provided that the above
6
 
 * copyright notice and this permission notice appear in all copies.
7
 
 *
8
 
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9
 
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10
 
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11
 
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12
 
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13
 
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14
 
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15
 
 */
16
 
 
17
 
#include "hw.h"
18
 
#include "ar9003_phy.h"
19
 
#include "ar9003_eeprom.h"
20
 
 
21
 
#define COMP_HDR_LEN 4
22
 
#define COMP_CKSUM_LEN 2
23
 
 
24
 
#define AR_CH0_TOP (0x00016288)
25
 
#define AR_CH0_TOP_XPABIASLVL (0x3)
26
 
#define AR_CH0_TOP_XPABIASLVL_S (8)
27
 
 
28
 
#define AR_CH0_THERM (0x00016290)
29
 
#define AR_CH0_THERM_SPARE (0x3f)
30
 
#define AR_CH0_THERM_SPARE_S (0)
31
 
 
32
 
#define AR_SWITCH_TABLE_COM_ALL (0xffff)
33
 
#define AR_SWITCH_TABLE_COM_ALL_S (0)
34
 
 
35
 
#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
36
 
#define AR_SWITCH_TABLE_COM2_ALL_S (0)
37
 
 
38
 
#define AR_SWITCH_TABLE_ALL (0xfff)
39
 
#define AR_SWITCH_TABLE_ALL_S (0)
40
 
 
41
 
#define LE16(x) __constant_cpu_to_le16(x)
42
 
#define LE32(x) __constant_cpu_to_le32(x)
43
 
 
44
 
/* Local defines to distinguish between extension and control CTL's */
45
 
#define EXT_ADDITIVE (0x8000)
46
 
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
47
 
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
48
 
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
49
 
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
50
 
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9  /* 10*log10(3)*2 */
51
 
#define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
52
 
#define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
53
 
#define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
54
 
 
55
 
#define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
56
 
#define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
57
 
 
58
 
static const struct ar9300_eeprom ar9300_default = {
59
 
        .eepromVersion = 2,
60
 
        .templateVersion = 2,
61
 
        .macAddr = {1, 2, 3, 4, 5, 6},
62
 
        .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
63
 
                     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
64
 
        .baseEepHeader = {
65
 
                .regDmn = { LE16(0), LE16(0x1f) },
66
 
                .txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
67
 
                .opCapFlags = {
68
 
                        .opFlags = AR9300_OPFLAGS_11G | AR9300_OPFLAGS_11A,
69
 
                        .eepMisc = 0,
70
 
                },
71
 
                .rfSilent = 0,
72
 
                .blueToothOptions = 0,
73
 
                .deviceCap = 0,
74
 
                .deviceType = 5, /* takes lower byte in eeprom location */
75
 
                .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
76
 
                .params_for_tuning_caps = {0, 0},
77
 
                .featureEnable = 0x0c,
78
 
                 /*
79
 
                  * bit0 - enable tx temp comp - disabled
80
 
                  * bit1 - enable tx volt comp - disabled
81
 
                  * bit2 - enable fastClock - enabled
82
 
                  * bit3 - enable doubling - enabled
83
 
                  * bit4 - enable internal regulator - disabled
84
 
                  * bit5 - enable pa predistortion - disabled
85
 
                  */
86
 
                .miscConfiguration = 0, /* bit0 - turn down drivestrength */
87
 
                .eepromWriteEnableGpio = 3,
88
 
                .wlanDisableGpio = 0,
89
 
                .wlanLedGpio = 8,
90
 
                .rxBandSelectGpio = 0xff,
91
 
                .txrxgain = 0,
92
 
                .swreg = 0,
93
 
         },
94
 
        .modalHeader2G = {
95
 
        /* ar9300_modal_eep_header  2g */
96
 
                /* 4 idle,t1,t2,b(4 bits per setting) */
97
 
                .antCtrlCommon = LE32(0x110),
98
 
                /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
99
 
                .antCtrlCommon2 = LE32(0x22222),
100
 
 
101
 
                /*
102
 
                 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
103
 
                 * rx1, rx12, b (2 bits each)
104
 
                 */
105
 
                .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
106
 
 
107
 
                /*
108
 
                 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
109
 
                 * for ar9280 (0xa20c/b20c 5:0)
110
 
                 */
111
 
                .xatten1DB = {0, 0, 0},
112
 
 
113
 
                /*
114
 
                 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
115
 
                 * for ar9280 (0xa20c/b20c 16:12
116
 
                 */
117
 
                .xatten1Margin = {0, 0, 0},
118
 
                .tempSlope = 36,
119
 
                .voltSlope = 0,
120
 
 
121
 
                /*
122
 
                 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
123
 
                 * channels in usual fbin coding format
124
 
                 */
125
 
                .spurChans = {0, 0, 0, 0, 0},
126
 
 
127
 
                /*
128
 
                 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
129
 
                 * if the register is per chain
130
 
                 */
131
 
                .noiseFloorThreshCh = {-1, 0, 0},
132
 
                .ob = {1, 1, 1},/* 3 chain */
133
 
                .db_stage2 = {1, 1, 1}, /* 3 chain  */
134
 
                .db_stage3 = {0, 0, 0},
135
 
                .db_stage4 = {0, 0, 0},
136
 
                .xpaBiasLvl = 0,
137
 
                .txFrameToDataStart = 0x0e,
138
 
                .txFrameToPaOn = 0x0e,
139
 
                .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
140
 
                .antennaGain = 0,
141
 
                .switchSettling = 0x2c,
142
 
                .adcDesiredSize = -30,
143
 
                .txEndToXpaOff = 0,
144
 
                .txEndToRxOn = 0x2,
145
 
                .txFrameToXpaOn = 0xe,
146
 
                .thresh62 = 28,
147
 
                .papdRateMaskHt20 = LE32(0x80c080),
148
 
                .papdRateMaskHt40 = LE32(0x80c080),
149
 
                .futureModal = {
150
 
                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
151
 
                        0, 0, 0, 0, 0, 0, 0, 0
152
 
                },
153
 
         },
154
 
        .calFreqPier2G = {
155
 
                FREQ2FBIN(2412, 1),
156
 
                FREQ2FBIN(2437, 1),
157
 
                FREQ2FBIN(2472, 1),
158
 
         },
159
 
        /* ar9300_cal_data_per_freq_op_loop 2g */
160
 
        .calPierData2G = {
161
 
                { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
162
 
                { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
163
 
                { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
164
 
         },
165
 
        .calTarget_freqbin_Cck = {
166
 
                FREQ2FBIN(2412, 1),
167
 
                FREQ2FBIN(2484, 1),
168
 
         },
169
 
        .calTarget_freqbin_2G = {
170
 
                FREQ2FBIN(2412, 1),
171
 
                FREQ2FBIN(2437, 1),
172
 
                FREQ2FBIN(2472, 1)
173
 
         },
174
 
        .calTarget_freqbin_2GHT20 = {
175
 
                FREQ2FBIN(2412, 1),
176
 
                FREQ2FBIN(2437, 1),
177
 
                FREQ2FBIN(2472, 1)
178
 
         },
179
 
        .calTarget_freqbin_2GHT40 = {
180
 
                FREQ2FBIN(2412, 1),
181
 
                FREQ2FBIN(2437, 1),
182
 
                FREQ2FBIN(2472, 1)
183
 
         },
184
 
        .calTargetPowerCck = {
185
 
                 /* 1L-5L,5S,11L,11S */
186
 
                 { {36, 36, 36, 36} },
187
 
                 { {36, 36, 36, 36} },
188
 
        },
189
 
        .calTargetPower2G = {
190
 
                 /* 6-24,36,48,54 */
191
 
                 { {32, 32, 28, 24} },
192
 
                 { {32, 32, 28, 24} },
193
 
                 { {32, 32, 28, 24} },
194
 
        },
195
 
        .calTargetPower2GHT20 = {
196
 
                { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
197
 
                { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
198
 
                { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
199
 
        },
200
 
        .calTargetPower2GHT40 = {
201
 
                { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
202
 
                { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
203
 
                { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
204
 
        },
205
 
        .ctlIndex_2G =  {
206
 
                0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
207
 
                0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
208
 
        },
209
 
        .ctl_freqbin_2G = {
210
 
                {
211
 
                        FREQ2FBIN(2412, 1),
212
 
                        FREQ2FBIN(2417, 1),
213
 
                        FREQ2FBIN(2457, 1),
214
 
                        FREQ2FBIN(2462, 1)
215
 
                },
216
 
                {
217
 
                        FREQ2FBIN(2412, 1),
218
 
                        FREQ2FBIN(2417, 1),
219
 
                        FREQ2FBIN(2462, 1),
220
 
                        0xFF,
221
 
                },
222
 
 
223
 
                {
224
 
                        FREQ2FBIN(2412, 1),
225
 
                        FREQ2FBIN(2417, 1),
226
 
                        FREQ2FBIN(2462, 1),
227
 
                        0xFF,
228
 
                },
229
 
                {
230
 
                        FREQ2FBIN(2422, 1),
231
 
                        FREQ2FBIN(2427, 1),
232
 
                        FREQ2FBIN(2447, 1),
233
 
                        FREQ2FBIN(2452, 1)
234
 
                },
235
 
 
236
 
                {
237
 
                        /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
238
 
                        /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
239
 
                        /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
240
 
                        /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
241
 
                },
242
 
 
243
 
                {
244
 
                        /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
245
 
                        /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
246
 
                        /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
247
 
                        0,
248
 
                },
249
 
 
250
 
                {
251
 
                        /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
252
 
                        /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
253
 
                        FREQ2FBIN(2472, 1),
254
 
                        0,
255
 
                },
256
 
 
257
 
                {
258
 
                        /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
259
 
                        /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
260
 
                        /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
261
 
                        /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
262
 
                },
263
 
 
264
 
                {
265
 
                        /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
266
 
                        /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
267
 
                        /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
268
 
                },
269
 
 
270
 
                {
271
 
                        /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
272
 
                        /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
273
 
                        /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
274
 
                        0
275
 
                },
276
 
 
277
 
                {
278
 
                        /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
279
 
                        /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
280
 
                        /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
281
 
                        0
282
 
                },
283
 
 
284
 
                {
285
 
                        /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
286
 
                        /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
287
 
                        /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
288
 
                        /* Data[11].ctlEdges[3].bChannel */
289
 
                        FREQ2FBIN(2462, 1),
290
 
                }
291
 
         },
292
 
        .ctlPowerData_2G = {
293
 
                 { { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
294
 
                 { { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
295
 
                 { { {60, 1}, {60, 0}, {60, 0}, {60, 1} } },
296
 
 
297
 
                 { { {60, 1}, {60, 0}, {0, 0}, {0, 0} } },
298
 
                 { { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
299
 
                 { { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
300
 
 
301
 
                 { { {60, 0}, {60, 1}, {60, 1}, {60, 0} } },
302
 
                 { { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
303
 
                 { { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
304
 
 
305
 
                 { { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
306
 
                 { { {60, 0}, {60, 1}, {60, 1}, {60, 1} } },
307
 
         },
308
 
        .modalHeader5G = {
309
 
                /* 4 idle,t1,t2,b (4 bits per setting) */
310
 
                .antCtrlCommon = LE32(0x110),
311
 
                /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
312
 
                .antCtrlCommon2 = LE32(0x22222),
313
 
                 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
314
 
                .antCtrlChain = {
315
 
                        LE16(0x000), LE16(0x000), LE16(0x000),
316
 
                },
317
 
                 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
318
 
                .xatten1DB = {0, 0, 0},
319
 
 
320
 
                /*
321
 
                 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
322
 
                 * for merlin (0xa20c/b20c 16:12
323
 
                 */
324
 
                .xatten1Margin = {0, 0, 0},
325
 
                .tempSlope = 68,
326
 
                .voltSlope = 0,
327
 
                /* spurChans spur channels in usual fbin coding format */
328
 
                .spurChans = {0, 0, 0, 0, 0},
329
 
                /* noiseFloorThreshCh Check if the register is per chain */
330
 
                .noiseFloorThreshCh = {-1, 0, 0},
331
 
                .ob = {3, 3, 3}, /* 3 chain */
332
 
                .db_stage2 = {3, 3, 3}, /* 3 chain */
333
 
                .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
334
 
                .db_stage4 = {3, 3, 3},  /* don't exist for 2G */
335
 
                .xpaBiasLvl = 0,
336
 
                .txFrameToDataStart = 0x0e,
337
 
                .txFrameToPaOn = 0x0e,
338
 
                .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
339
 
                .antennaGain = 0,
340
 
                .switchSettling = 0x2d,
341
 
                .adcDesiredSize = -30,
342
 
                .txEndToXpaOff = 0,
343
 
                .txEndToRxOn = 0x2,
344
 
                .txFrameToXpaOn = 0xe,
345
 
                .thresh62 = 28,
346
 
                .papdRateMaskHt20 = LE32(0xf0e0e0),
347
 
                .papdRateMaskHt40 = LE32(0xf0e0e0),
348
 
                .futureModal = {
349
 
                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
350
 
                        0, 0, 0, 0, 0, 0, 0, 0
351
 
                },
352
 
         },
353
 
        .calFreqPier5G = {
354
 
                FREQ2FBIN(5180, 0),
355
 
                FREQ2FBIN(5220, 0),
356
 
                FREQ2FBIN(5320, 0),
357
 
                FREQ2FBIN(5400, 0),
358
 
                FREQ2FBIN(5500, 0),
359
 
                FREQ2FBIN(5600, 0),
360
 
                FREQ2FBIN(5725, 0),
361
 
                FREQ2FBIN(5825, 0)
362
 
        },
363
 
        .calPierData5G = {
364
 
                        {
365
 
                                {0, 0, 0, 0, 0},
366
 
                                {0, 0, 0, 0, 0},
367
 
                                {0, 0, 0, 0, 0},
368
 
                                {0, 0, 0, 0, 0},
369
 
                                {0, 0, 0, 0, 0},
370
 
                                {0, 0, 0, 0, 0},
371
 
                                {0, 0, 0, 0, 0},
372
 
                                {0, 0, 0, 0, 0},
373
 
                        },
374
 
                        {
375
 
                                {0, 0, 0, 0, 0},
376
 
                                {0, 0, 0, 0, 0},
377
 
                                {0, 0, 0, 0, 0},
378
 
                                {0, 0, 0, 0, 0},
379
 
                                {0, 0, 0, 0, 0},
380
 
                                {0, 0, 0, 0, 0},
381
 
                                {0, 0, 0, 0, 0},
382
 
                                {0, 0, 0, 0, 0},
383
 
                        },
384
 
                        {
385
 
                                {0, 0, 0, 0, 0},
386
 
                                {0, 0, 0, 0, 0},
387
 
                                {0, 0, 0, 0, 0},
388
 
                                {0, 0, 0, 0, 0},
389
 
                                {0, 0, 0, 0, 0},
390
 
                                {0, 0, 0, 0, 0},
391
 
                                {0, 0, 0, 0, 0},
392
 
                                {0, 0, 0, 0, 0},
393
 
                        },
394
 
 
395
 
        },
396
 
        .calTarget_freqbin_5G = {
397
 
                FREQ2FBIN(5180, 0),
398
 
                FREQ2FBIN(5220, 0),
399
 
                FREQ2FBIN(5320, 0),
400
 
                FREQ2FBIN(5400, 0),
401
 
                FREQ2FBIN(5500, 0),
402
 
                FREQ2FBIN(5600, 0),
403
 
                FREQ2FBIN(5725, 0),
404
 
                FREQ2FBIN(5825, 0)
405
 
        },
406
 
        .calTarget_freqbin_5GHT20 = {
407
 
                FREQ2FBIN(5180, 0),
408
 
                FREQ2FBIN(5240, 0),
409
 
                FREQ2FBIN(5320, 0),
410
 
                FREQ2FBIN(5500, 0),
411
 
                FREQ2FBIN(5700, 0),
412
 
                FREQ2FBIN(5745, 0),
413
 
                FREQ2FBIN(5725, 0),
414
 
                FREQ2FBIN(5825, 0)
415
 
        },
416
 
        .calTarget_freqbin_5GHT40 = {
417
 
                FREQ2FBIN(5180, 0),
418
 
                FREQ2FBIN(5240, 0),
419
 
                FREQ2FBIN(5320, 0),
420
 
                FREQ2FBIN(5500, 0),
421
 
                FREQ2FBIN(5700, 0),
422
 
                FREQ2FBIN(5745, 0),
423
 
                FREQ2FBIN(5725, 0),
424
 
                FREQ2FBIN(5825, 0)
425
 
         },
426
 
        .calTargetPower5G = {
427
 
                /* 6-24,36,48,54 */
428
 
                { {20, 20, 20, 10} },
429
 
                { {20, 20, 20, 10} },
430
 
                { {20, 20, 20, 10} },
431
 
                { {20, 20, 20, 10} },
432
 
                { {20, 20, 20, 10} },
433
 
                { {20, 20, 20, 10} },
434
 
                { {20, 20, 20, 10} },
435
 
                { {20, 20, 20, 10} },
436
 
         },
437
 
        .calTargetPower5GHT20 = {
438
 
                /*
439
 
                 * 0_8_16,1-3_9-11_17-19,
440
 
                 * 4,5,6,7,12,13,14,15,20,21,22,23
441
 
                 */
442
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
449
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
450
 
         },
451
 
        .calTargetPower5GHT40 =  {
452
 
                /*
453
 
                 * 0_8_16,1-3_9-11_17-19,
454
 
                 * 4,5,6,7,12,13,14,15,20,21,22,23
455
 
                 */
456
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
463
 
                { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
464
 
         },
465
 
        .ctlIndex_5G =  {
466
 
                0x10, 0x16, 0x18, 0x40, 0x46,
467
 
                0x48, 0x30, 0x36, 0x38
468
 
        },
469
 
        .ctl_freqbin_5G =  {
470
 
                {
471
 
                        /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
472
 
                        /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
473
 
                        /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
474
 
                        /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
475
 
                        /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
476
 
                        /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
477
 
                        /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
478
 
                        /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
479
 
                },
480
 
                {
481
 
                        /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
482
 
                        /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
483
 
                        /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
484
 
                        /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
485
 
                        /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
486
 
                        /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
487
 
                        /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
488
 
                        /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
489
 
                },
490
 
 
491
 
                {
492
 
                        /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
493
 
                        /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
494
 
                        /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
495
 
                        /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
496
 
                        /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
497
 
                        /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
498
 
                        /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
499
 
                        /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
500
 
                },
501
 
 
502
 
                {
503
 
                        /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
504
 
                        /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
505
 
                        /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
506
 
                        /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
507
 
                        /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
508
 
                        /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
509
 
                        /* Data[3].ctlEdges[6].bChannel */ 0xFF,
510
 
                        /* Data[3].ctlEdges[7].bChannel */ 0xFF,
511
 
                },
512
 
 
513
 
                {
514
 
                        /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
515
 
                        /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
516
 
                        /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
517
 
                        /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
518
 
                        /* Data[4].ctlEdges[4].bChannel */ 0xFF,
519
 
                        /* Data[4].ctlEdges[5].bChannel */ 0xFF,
520
 
                        /* Data[4].ctlEdges[6].bChannel */ 0xFF,
521
 
                        /* Data[4].ctlEdges[7].bChannel */ 0xFF,
522
 
                },
523
 
 
524
 
                {
525
 
                        /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
526
 
                        /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
527
 
                        /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
528
 
                        /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
529
 
                        /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
530
 
                        /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
531
 
                        /* Data[5].ctlEdges[6].bChannel */ 0xFF,
532
 
                        /* Data[5].ctlEdges[7].bChannel */ 0xFF
533
 
                },
534
 
 
535
 
                {
536
 
                        /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
537
 
                        /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
538
 
                        /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
539
 
                        /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
540
 
                        /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
541
 
                        /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
542
 
                        /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
543
 
                        /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
544
 
                },
545
 
 
546
 
                {
547
 
                        /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
548
 
                        /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
549
 
                        /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
550
 
                        /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
551
 
                        /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
552
 
                        /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
553
 
                        /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
554
 
                        /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
555
 
                },
556
 
 
557
 
                {
558
 
                        /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
559
 
                        /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
560
 
                        /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
561
 
                        /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
562
 
                        /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
563
 
                        /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
564
 
                        /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
565
 
                        /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
566
 
                }
567
 
         },
568
 
        .ctlPowerData_5G = {
569
 
                {
570
 
                        {
571
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 1},
572
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 0},
573
 
                        }
574
 
                },
575
 
                {
576
 
                        {
577
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 1},
578
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 0},
579
 
                        }
580
 
                },
581
 
                {
582
 
                        {
583
 
                                {60, 0}, {60, 1}, {60, 0}, {60, 1},
584
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 1},
585
 
                        }
586
 
                },
587
 
                {
588
 
                        {
589
 
                                {60, 0}, {60, 1}, {60, 1}, {60, 0},
590
 
                                {60, 1}, {60, 0}, {60, 0}, {60, 0},
591
 
                        }
592
 
                },
593
 
                {
594
 
                        {
595
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 0},
596
 
                                {60, 0}, {60, 0}, {60, 0}, {60, 0},
597
 
                        }
598
 
                },
599
 
                {
600
 
                        {
601
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 1},
602
 
                                {60, 1}, {60, 0}, {60, 0}, {60, 0},
603
 
                        }
604
 
                },
605
 
                {
606
 
                        {
607
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 1},
608
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 1},
609
 
                        }
610
 
                },
611
 
                {
612
 
                        {
613
 
                                {60, 1}, {60, 1}, {60, 0}, {60, 1},
614
 
                                {60, 1}, {60, 1}, {60, 1}, {60, 0},
615
 
                        }
616
 
                },
617
 
                {
618
 
                        {
619
 
                                {60, 1}, {60, 0}, {60, 1}, {60, 1},
620
 
                                {60, 1}, {60, 1}, {60, 0}, {60, 1},
621
 
                        }
622
 
                },
623
 
         }
624
 
};
625
 
 
626
 
static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
627
 
{
628
 
        if (fbin == AR9300_BCHAN_UNUSED)
629
 
                return fbin;
630
 
 
631
 
        return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
632
 
}
633
 
 
634
 
static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
635
 
{
636
 
        return 0;
637
 
}
638
 
 
639
 
static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
640
 
                                      enum eeprom_param param)
641
 
{
642
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
643
 
        struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
644
 
 
645
 
        switch (param) {
646
 
        case EEP_MAC_LSW:
647
 
                return eep->macAddr[0] << 8 | eep->macAddr[1];
648
 
        case EEP_MAC_MID:
649
 
                return eep->macAddr[2] << 8 | eep->macAddr[3];
650
 
        case EEP_MAC_MSW:
651
 
                return eep->macAddr[4] << 8 | eep->macAddr[5];
652
 
        case EEP_REG_0:
653
 
                return le16_to_cpu(pBase->regDmn[0]);
654
 
        case EEP_REG_1:
655
 
                return le16_to_cpu(pBase->regDmn[1]);
656
 
        case EEP_OP_CAP:
657
 
                return pBase->deviceCap;
658
 
        case EEP_OP_MODE:
659
 
                return pBase->opCapFlags.opFlags;
660
 
        case EEP_RF_SILENT:
661
 
                return pBase->rfSilent;
662
 
        case EEP_TX_MASK:
663
 
                return (pBase->txrxMask >> 4) & 0xf;
664
 
        case EEP_RX_MASK:
665
 
                return pBase->txrxMask & 0xf;
666
 
        case EEP_DRIVE_STRENGTH:
667
 
#define AR9300_EEP_BASE_DRIV_STRENGTH   0x1
668
 
                return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
669
 
        case EEP_INTERNAL_REGULATOR:
670
 
                /* Bit 4 is internal regulator flag */
671
 
                return (pBase->featureEnable & 0x10) >> 4;
672
 
        case EEP_SWREG:
673
 
                return le32_to_cpu(pBase->swreg);
674
 
        case EEP_PAPRD:
675
 
                return !!(pBase->featureEnable & BIT(5));
676
 
        default:
677
 
                return 0;
678
 
        }
679
 
}
680
 
 
681
 
static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
682
 
                                    u8 *buffer)
683
 
{
684
 
        u16 val;
685
 
 
686
 
        if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
687
 
                return false;
688
 
 
689
 
        *buffer = (val >> (8 * (address % 2))) & 0xff;
690
 
        return true;
691
 
}
692
 
 
693
 
static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
694
 
                                    u8 *buffer)
695
 
{
696
 
        u16 val;
697
 
 
698
 
        if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
699
 
                return false;
700
 
 
701
 
        buffer[0] = val >> 8;
702
 
        buffer[1] = val & 0xff;
703
 
 
704
 
        return true;
705
 
}
706
 
 
707
 
static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
708
 
                               int count)
709
 
{
710
 
        struct ath_common *common = ath9k_hw_common(ah);
711
 
        int i;
712
 
 
713
 
        if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
714
 
                ath_print(common, ATH_DBG_EEPROM,
715
 
                          "eeprom address not in range\n");
716
 
                return false;
717
 
        }
718
 
 
719
 
        /*
720
 
         * Since we're reading the bytes in reverse order from a little-endian
721
 
         * word stream, an even address means we only use the lower half of
722
 
         * the 16-bit word at that address
723
 
         */
724
 
        if (address % 2 == 0) {
725
 
                if (!ar9300_eeprom_read_byte(common, address--, buffer++))
726
 
                        goto error;
727
 
 
728
 
                count--;
729
 
        }
730
 
 
731
 
        for (i = 0; i < count / 2; i++) {
732
 
                if (!ar9300_eeprom_read_word(common, address, buffer))
733
 
                        goto error;
734
 
 
735
 
                address -= 2;
736
 
                buffer += 2;
737
 
        }
738
 
 
739
 
        if (count % 2)
740
 
                if (!ar9300_eeprom_read_byte(common, address, buffer))
741
 
                        goto error;
742
 
 
743
 
        return true;
744
 
 
745
 
error:
746
 
        ath_print(common, ATH_DBG_EEPROM,
747
 
                  "unable to read eeprom region at offset %d\n", address);
748
 
        return false;
749
 
}
750
 
 
751
 
static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
752
 
                                   int *length, int *major, int *minor)
753
 
{
754
 
        unsigned long value[4];
755
 
 
756
 
        value[0] = best[0];
757
 
        value[1] = best[1];
758
 
        value[2] = best[2];
759
 
        value[3] = best[3];
760
 
        *code = ((value[0] >> 5) & 0x0007);
761
 
        *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
762
 
        *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
763
 
        *major = (value[2] & 0x000f);
764
 
        *minor = (value[3] & 0x00ff);
765
 
}
766
 
 
767
 
static u16 ar9300_comp_cksum(u8 *data, int dsize)
768
 
{
769
 
        int it, checksum = 0;
770
 
 
771
 
        for (it = 0; it < dsize; it++) {
772
 
                checksum += data[it];
773
 
                checksum &= 0xffff;
774
 
        }
775
 
 
776
 
        return checksum;
777
 
}
778
 
 
779
 
static bool ar9300_uncompress_block(struct ath_hw *ah,
780
 
                                    u8 *mptr,
781
 
                                    int mdataSize,
782
 
                                    u8 *block,
783
 
                                    int size)
784
 
{
785
 
        int it;
786
 
        int spot;
787
 
        int offset;
788
 
        int length;
789
 
        struct ath_common *common = ath9k_hw_common(ah);
790
 
 
791
 
        spot = 0;
792
 
 
793
 
        for (it = 0; it < size; it += (length+2)) {
794
 
                offset = block[it];
795
 
                offset &= 0xff;
796
 
                spot += offset;
797
 
                length = block[it+1];
798
 
                length &= 0xff;
799
 
 
800
 
                if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
801
 
                        ath_print(common, ATH_DBG_EEPROM,
802
 
                                  "Restore at %d: spot=%d "
803
 
                                  "offset=%d length=%d\n",
804
 
                                   it, spot, offset, length);
805
 
                        memcpy(&mptr[spot], &block[it+2], length);
806
 
                        spot += length;
807
 
                } else if (length > 0) {
808
 
                        ath_print(common, ATH_DBG_EEPROM,
809
 
                                  "Bad restore at %d: spot=%d "
810
 
                                  "offset=%d length=%d\n",
811
 
                                  it, spot, offset, length);
812
 
                        return false;
813
 
                }
814
 
        }
815
 
        return true;
816
 
}
817
 
 
818
 
static int ar9300_compress_decision(struct ath_hw *ah,
819
 
                                    int it,
820
 
                                    int code,
821
 
                                    int reference,
822
 
                                    u8 *mptr,
823
 
                                    u8 *word, int length, int mdata_size)
824
 
{
825
 
        struct ath_common *common = ath9k_hw_common(ah);
826
 
        u8 *dptr;
827
 
 
828
 
        switch (code) {
829
 
        case _CompressNone:
830
 
                if (length != mdata_size) {
831
 
                        ath_print(common, ATH_DBG_EEPROM,
832
 
                                  "EEPROM structure size mismatch"
833
 
                                  "memory=%d eeprom=%d\n", mdata_size, length);
834
 
                        return -1;
835
 
                }
836
 
                memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
837
 
                ath_print(common, ATH_DBG_EEPROM, "restored eeprom %d:"
838
 
                          " uncompressed, length %d\n", it, length);
839
 
                break;
840
 
        case _CompressBlock:
841
 
                if (reference == 0) {
842
 
                        dptr = mptr;
843
 
                } else {
844
 
                        if (reference != 2) {
845
 
                                ath_print(common, ATH_DBG_EEPROM,
846
 
                                          "cant find reference eeprom"
847
 
                                          "struct %d\n", reference);
848
 
                                return -1;
849
 
                        }
850
 
                        memcpy(mptr, &ar9300_default, mdata_size);
851
 
                }
852
 
                ath_print(common, ATH_DBG_EEPROM,
853
 
                          "restore eeprom %d: block, reference %d,"
854
 
                          " length %d\n", it, reference, length);
855
 
                ar9300_uncompress_block(ah, mptr, mdata_size,
856
 
                                        (u8 *) (word + COMP_HDR_LEN), length);
857
 
                break;
858
 
        default:
859
 
                ath_print(common, ATH_DBG_EEPROM, "unknown compression"
860
 
                          " code %d\n", code);
861
 
                return -1;
862
 
        }
863
 
        return 0;
864
 
}
865
 
 
866
 
/*
867
 
 * Read the configuration data from the eeprom.
868
 
 * The data can be put in any specified memory buffer.
869
 
 *
870
 
 * Returns -1 on error.
871
 
 * Returns address of next memory location on success.
872
 
 */
873
 
static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
874
 
                                          u8 *mptr, int mdata_size)
875
 
{
876
 
#define MDEFAULT 15
877
 
#define MSTATE 100
878
 
        int cptr;
879
 
        u8 *word;
880
 
        int code;
881
 
        int reference, length, major, minor;
882
 
        int osize;
883
 
        int it;
884
 
        u16 checksum, mchecksum;
885
 
        struct ath_common *common = ath9k_hw_common(ah);
886
 
 
887
 
        word = kzalloc(2048, GFP_KERNEL);
888
 
        if (!word)
889
 
                return -1;
890
 
 
891
 
        memcpy(mptr, &ar9300_default, mdata_size);
892
 
 
893
 
        cptr = AR9300_BASE_ADDR;
894
 
        for (it = 0; it < MSTATE; it++) {
895
 
                if (!ar9300_read_eeprom(ah, cptr, word, COMP_HDR_LEN))
896
 
                        goto fail;
897
 
 
898
 
                if ((word[0] == 0 && word[1] == 0 && word[2] == 0 &&
899
 
                     word[3] == 0) || (word[0] == 0xff && word[1] == 0xff
900
 
                                       && word[2] == 0xff && word[3] == 0xff))
901
 
                        break;
902
 
 
903
 
                ar9300_comp_hdr_unpack(word, &code, &reference,
904
 
                                       &length, &major, &minor);
905
 
                ath_print(common, ATH_DBG_EEPROM,
906
 
                          "Found block at %x: code=%d ref=%d"
907
 
                          "length=%d major=%d minor=%d\n", cptr, code,
908
 
                          reference, length, major, minor);
909
 
                if (length >= 1024) {
910
 
                        ath_print(common, ATH_DBG_EEPROM,
911
 
                                  "Skipping bad header\n");
912
 
                        cptr -= COMP_HDR_LEN;
913
 
                        continue;
914
 
                }
915
 
 
916
 
                osize = length;
917
 
                ar9300_read_eeprom(ah, cptr, word,
918
 
                                   COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
919
 
                checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
920
 
                mchecksum = word[COMP_HDR_LEN + osize] |
921
 
                    (word[COMP_HDR_LEN + osize + 1] << 8);
922
 
                ath_print(common, ATH_DBG_EEPROM,
923
 
                          "checksum %x %x\n", checksum, mchecksum);
924
 
                if (checksum == mchecksum) {
925
 
                        ar9300_compress_decision(ah, it, code, reference, mptr,
926
 
                                                 word, length, mdata_size);
927
 
                } else {
928
 
                        ath_print(common, ATH_DBG_EEPROM,
929
 
                                  "skipping block with bad checksum\n");
930
 
                }
931
 
                cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
932
 
        }
933
 
 
934
 
        kfree(word);
935
 
        return cptr;
936
 
 
937
 
fail:
938
 
        kfree(word);
939
 
        return -1;
940
 
}
941
 
 
942
 
/*
943
 
 * Restore the configuration structure by reading the eeprom.
944
 
 * This function destroys any existing in-memory structure
945
 
 * content.
946
 
 */
947
 
static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
948
 
{
949
 
        u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
950
 
 
951
 
        if (ar9300_eeprom_restore_internal(ah, mptr,
952
 
                        sizeof(struct ar9300_eeprom)) < 0)
953
 
                return false;
954
 
 
955
 
        return true;
956
 
}
957
 
 
958
 
/* XXX: review hardware docs */
959
 
static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
960
 
{
961
 
        return ah->eeprom.ar9300_eep.eepromVersion;
962
 
}
963
 
 
964
 
/* XXX: could be read from the eepromVersion, not sure yet */
965
 
static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
966
 
{
967
 
        return 0;
968
 
}
969
 
 
970
 
static u8 ath9k_hw_ar9300_get_num_ant_config(struct ath_hw *ah,
971
 
                                             enum ieee80211_band freq_band)
972
 
{
973
 
        return 1;
974
 
}
975
 
 
976
 
static u32 ath9k_hw_ar9300_get_eeprom_antenna_cfg(struct ath_hw *ah,
977
 
                                                  struct ath9k_channel *chan)
978
 
{
979
 
        return -EINVAL;
980
 
}
981
 
 
982
 
static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
983
 
{
984
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
985
 
 
986
 
        if (is2ghz)
987
 
                return eep->modalHeader2G.xpaBiasLvl;
988
 
        else
989
 
                return eep->modalHeader5G.xpaBiasLvl;
990
 
}
991
 
 
992
 
static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
993
 
{
994
 
        int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
995
 
        REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, (bias & 0x3));
996
 
        REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_SPARE,
997
 
                      ((bias >> 2) & 0x3));
998
 
}
999
 
 
1000
 
static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
1001
 
{
1002
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1003
 
        __le32 val;
1004
 
 
1005
 
        if (is2ghz)
1006
 
                val = eep->modalHeader2G.antCtrlCommon;
1007
 
        else
1008
 
                val = eep->modalHeader5G.antCtrlCommon;
1009
 
        return le32_to_cpu(val);
1010
 
}
1011
 
 
1012
 
static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
1013
 
{
1014
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1015
 
        __le32 val;
1016
 
 
1017
 
        if (is2ghz)
1018
 
                val = eep->modalHeader2G.antCtrlCommon2;
1019
 
        else
1020
 
                val = eep->modalHeader5G.antCtrlCommon2;
1021
 
        return le32_to_cpu(val);
1022
 
}
1023
 
 
1024
 
static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
1025
 
                                        int chain,
1026
 
                                        bool is2ghz)
1027
 
{
1028
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1029
 
        __le16 val = 0;
1030
 
 
1031
 
        if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
1032
 
                if (is2ghz)
1033
 
                        val = eep->modalHeader2G.antCtrlChain[chain];
1034
 
                else
1035
 
                        val = eep->modalHeader5G.antCtrlChain[chain];
1036
 
        }
1037
 
 
1038
 
        return le16_to_cpu(val);
1039
 
}
1040
 
 
1041
 
static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
1042
 
{
1043
 
        u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
1044
 
        REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
1045
 
 
1046
 
        value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
1047
 
        REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
1048
 
 
1049
 
        value = ar9003_hw_ant_ctrl_chain_get(ah, 0, is2ghz);
1050
 
        REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
1051
 
 
1052
 
        value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
1053
 
        REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
1054
 
 
1055
 
        value = ar9003_hw_ant_ctrl_chain_get(ah, 2, is2ghz);
1056
 
        REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
1057
 
}
1058
 
 
1059
 
static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
1060
 
{
1061
 
        int drive_strength;
1062
 
        unsigned long reg;
1063
 
 
1064
 
        drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
1065
 
 
1066
 
        if (!drive_strength)
1067
 
                return;
1068
 
 
1069
 
        reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
1070
 
        reg &= ~0x00ffffc0;
1071
 
        reg |= 0x5 << 21;
1072
 
        reg |= 0x5 << 18;
1073
 
        reg |= 0x5 << 15;
1074
 
        reg |= 0x5 << 12;
1075
 
        reg |= 0x5 << 9;
1076
 
        reg |= 0x5 << 6;
1077
 
        REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
1078
 
 
1079
 
        reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
1080
 
        reg &= ~0xffffffe0;
1081
 
        reg |= 0x5 << 29;
1082
 
        reg |= 0x5 << 26;
1083
 
        reg |= 0x5 << 23;
1084
 
        reg |= 0x5 << 20;
1085
 
        reg |= 0x5 << 17;
1086
 
        reg |= 0x5 << 14;
1087
 
        reg |= 0x5 << 11;
1088
 
        reg |= 0x5 << 8;
1089
 
        reg |= 0x5 << 5;
1090
 
        REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
1091
 
 
1092
 
        reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
1093
 
        reg &= ~0xff800000;
1094
 
        reg |= 0x5 << 29;
1095
 
        reg |= 0x5 << 26;
1096
 
        reg |= 0x5 << 23;
1097
 
        REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
1098
 
}
1099
 
 
1100
 
static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
1101
 
{
1102
 
        int internal_regulator =
1103
 
                ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
1104
 
 
1105
 
        if (internal_regulator) {
1106
 
                /* Internal regulator is ON. Write swreg register. */
1107
 
                int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
1108
 
                REG_WRITE(ah, AR_RTC_REG_CONTROL1,
1109
 
                REG_READ(ah, AR_RTC_REG_CONTROL1) &
1110
 
                         (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
1111
 
                REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
1112
 
                /* Set REG_CONTROL1.SWREG_PROGRAM */
1113
 
                REG_WRITE(ah, AR_RTC_REG_CONTROL1,
1114
 
                          REG_READ(ah,
1115
 
                                   AR_RTC_REG_CONTROL1) |
1116
 
                                   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
1117
 
        } else {
1118
 
                REG_WRITE(ah, AR_RTC_SLEEP_CLK,
1119
 
                          (REG_READ(ah,
1120
 
                                    AR_RTC_SLEEP_CLK) |
1121
 
                                    AR_RTC_FORCE_SWREG_PRD));
1122
 
        }
1123
 
}
1124
 
 
1125
 
static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
1126
 
                                             struct ath9k_channel *chan)
1127
 
{
1128
 
        ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
1129
 
        ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
1130
 
        ar9003_hw_drive_strength_apply(ah);
1131
 
        ar9003_hw_internal_regulator_apply(ah);
1132
 
}
1133
 
 
1134
 
static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
1135
 
                                      struct ath9k_channel *chan)
1136
 
{
1137
 
}
1138
 
 
1139
 
/*
1140
 
 * Returns the interpolated y value corresponding to the specified x value
1141
 
 * from the np ordered pairs of data (px,py).
1142
 
 * The pairs do not have to be in any order.
1143
 
 * If the specified x value is less than any of the px,
1144
 
 * the returned y value is equal to the py for the lowest px.
1145
 
 * If the specified x value is greater than any of the px,
1146
 
 * the returned y value is equal to the py for the highest px.
1147
 
 */
1148
 
static int ar9003_hw_power_interpolate(int32_t x,
1149
 
                                       int32_t *px, int32_t *py, u_int16_t np)
1150
 
{
1151
 
        int ip = 0;
1152
 
        int lx = 0, ly = 0, lhave = 0;
1153
 
        int hx = 0, hy = 0, hhave = 0;
1154
 
        int dx = 0;
1155
 
        int y = 0;
1156
 
 
1157
 
        lhave = 0;
1158
 
        hhave = 0;
1159
 
 
1160
 
        /* identify best lower and higher x calibration measurement */
1161
 
        for (ip = 0; ip < np; ip++) {
1162
 
                dx = x - px[ip];
1163
 
 
1164
 
                /* this measurement is higher than our desired x */
1165
 
                if (dx <= 0) {
1166
 
                        if (!hhave || dx > (x - hx)) {
1167
 
                                /* new best higher x measurement */
1168
 
                                hx = px[ip];
1169
 
                                hy = py[ip];
1170
 
                                hhave = 1;
1171
 
                        }
1172
 
                }
1173
 
                /* this measurement is lower than our desired x */
1174
 
                if (dx >= 0) {
1175
 
                        if (!lhave || dx < (x - lx)) {
1176
 
                                /* new best lower x measurement */
1177
 
                                lx = px[ip];
1178
 
                                ly = py[ip];
1179
 
                                lhave = 1;
1180
 
                        }
1181
 
                }
1182
 
        }
1183
 
 
1184
 
        /* the low x is good */
1185
 
        if (lhave) {
1186
 
                /* so is the high x */
1187
 
                if (hhave) {
1188
 
                        /* they're the same, so just pick one */
1189
 
                        if (hx == lx)
1190
 
                                y = ly;
1191
 
                        else    /* interpolate  */
1192
 
                                y = ly + (((x - lx) * (hy - ly)) / (hx - lx));
1193
 
                } else          /* only low is good, use it */
1194
 
                        y = ly;
1195
 
        } else if (hhave)       /* only high is good, use it */
1196
 
                y = hy;
1197
 
        else /* nothing is good,this should never happen unless np=0, ???? */
1198
 
                y = -(1 << 30);
1199
 
        return y;
1200
 
}
1201
 
 
1202
 
static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
1203
 
                                       u16 rateIndex, u16 freq, bool is2GHz)
1204
 
{
1205
 
        u16 numPiers, i;
1206
 
        s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
1207
 
        s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
1208
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1209
 
        struct cal_tgt_pow_legacy *pEepromTargetPwr;
1210
 
        u8 *pFreqBin;
1211
 
 
1212
 
        if (is2GHz) {
1213
 
                numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
1214
 
                pEepromTargetPwr = eep->calTargetPower2G;
1215
 
                pFreqBin = eep->calTarget_freqbin_2G;
1216
 
        } else {
1217
 
                numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
1218
 
                pEepromTargetPwr = eep->calTargetPower5G;
1219
 
                pFreqBin = eep->calTarget_freqbin_5G;
1220
 
        }
1221
 
 
1222
 
        /*
1223
 
         * create array of channels and targetpower from
1224
 
         * targetpower piers stored on eeprom
1225
 
         */
1226
 
        for (i = 0; i < numPiers; i++) {
1227
 
                freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
1228
 
                targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
1229
 
        }
1230
 
 
1231
 
        /* interpolate to get target power for given frequency */
1232
 
        return (u8) ar9003_hw_power_interpolate((s32) freq,
1233
 
                                                 freqArray,
1234
 
                                                 targetPowerArray, numPiers);
1235
 
}
1236
 
 
1237
 
static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
1238
 
                                            u16 rateIndex,
1239
 
                                            u16 freq, bool is2GHz)
1240
 
{
1241
 
        u16 numPiers, i;
1242
 
        s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
1243
 
        s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
1244
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1245
 
        struct cal_tgt_pow_ht *pEepromTargetPwr;
1246
 
        u8 *pFreqBin;
1247
 
 
1248
 
        if (is2GHz) {
1249
 
                numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
1250
 
                pEepromTargetPwr = eep->calTargetPower2GHT20;
1251
 
                pFreqBin = eep->calTarget_freqbin_2GHT20;
1252
 
        } else {
1253
 
                numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
1254
 
                pEepromTargetPwr = eep->calTargetPower5GHT20;
1255
 
                pFreqBin = eep->calTarget_freqbin_5GHT20;
1256
 
        }
1257
 
 
1258
 
        /*
1259
 
         * create array of channels and targetpower
1260
 
         * from targetpower piers stored on eeprom
1261
 
         */
1262
 
        for (i = 0; i < numPiers; i++) {
1263
 
                freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
1264
 
                targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
1265
 
        }
1266
 
 
1267
 
        /* interpolate to get target power for given frequency */
1268
 
        return (u8) ar9003_hw_power_interpolate((s32) freq,
1269
 
                                                 freqArray,
1270
 
                                                 targetPowerArray, numPiers);
1271
 
}
1272
 
 
1273
 
static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
1274
 
                                            u16 rateIndex,
1275
 
                                            u16 freq, bool is2GHz)
1276
 
{
1277
 
        u16 numPiers, i;
1278
 
        s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
1279
 
        s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
1280
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1281
 
        struct cal_tgt_pow_ht *pEepromTargetPwr;
1282
 
        u8 *pFreqBin;
1283
 
 
1284
 
        if (is2GHz) {
1285
 
                numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
1286
 
                pEepromTargetPwr = eep->calTargetPower2GHT40;
1287
 
                pFreqBin = eep->calTarget_freqbin_2GHT40;
1288
 
        } else {
1289
 
                numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
1290
 
                pEepromTargetPwr = eep->calTargetPower5GHT40;
1291
 
                pFreqBin = eep->calTarget_freqbin_5GHT40;
1292
 
        }
1293
 
 
1294
 
        /*
1295
 
         * create array of channels and targetpower from
1296
 
         * targetpower piers stored on eeprom
1297
 
         */
1298
 
        for (i = 0; i < numPiers; i++) {
1299
 
                freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
1300
 
                targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
1301
 
        }
1302
 
 
1303
 
        /* interpolate to get target power for given frequency */
1304
 
        return (u8) ar9003_hw_power_interpolate((s32) freq,
1305
 
                                                 freqArray,
1306
 
                                                 targetPowerArray, numPiers);
1307
 
}
1308
 
 
1309
 
static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
1310
 
                                           u16 rateIndex, u16 freq)
1311
 
{
1312
 
        u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
1313
 
        s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
1314
 
        s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
1315
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1316
 
        struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
1317
 
        u8 *pFreqBin = eep->calTarget_freqbin_Cck;
1318
 
 
1319
 
        /*
1320
 
         * create array of channels and targetpower from
1321
 
         * targetpower piers stored on eeprom
1322
 
         */
1323
 
        for (i = 0; i < numPiers; i++) {
1324
 
                freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
1325
 
                targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
1326
 
        }
1327
 
 
1328
 
        /* interpolate to get target power for given frequency */
1329
 
        return (u8) ar9003_hw_power_interpolate((s32) freq,
1330
 
                                                 freqArray,
1331
 
                                                 targetPowerArray, numPiers);
1332
 
}
1333
 
 
1334
 
/* Set tx power registers to array of values passed in */
1335
 
static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
1336
 
{
1337
 
#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
1338
 
        /* make sure forced gain is not set */
1339
 
        REG_WRITE(ah, 0xa458, 0);
1340
 
 
1341
 
        /* Write the OFDM power per rate set */
1342
 
 
1343
 
        /* 6 (LSB), 9, 12, 18 (MSB) */
1344
 
        REG_WRITE(ah, 0xa3c0,
1345
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
1346
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
1347
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
1348
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
1349
 
 
1350
 
        /* 24 (LSB), 36, 48, 54 (MSB) */
1351
 
        REG_WRITE(ah, 0xa3c4,
1352
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
1353
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
1354
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
1355
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
1356
 
 
1357
 
        /* Write the CCK power per rate set */
1358
 
 
1359
 
        /* 1L (LSB), reserved, 2L, 2S (MSB) */
1360
 
        REG_WRITE(ah, 0xa3c8,
1361
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
1362
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
1363
 
                  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
1364
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
1365
 
 
1366
 
        /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
1367
 
        REG_WRITE(ah, 0xa3cc,
1368
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
1369
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
1370
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
1371
 
                  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
1372
 
            );
1373
 
 
1374
 
        /* Write the HT20 power per rate set */
1375
 
 
1376
 
        /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
1377
 
        REG_WRITE(ah, 0xa3d0,
1378
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
1379
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
1380
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
1381
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
1382
 
            );
1383
 
 
1384
 
        /* 6 (LSB), 7, 12, 13 (MSB) */
1385
 
        REG_WRITE(ah, 0xa3d4,
1386
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
1387
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
1388
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
1389
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
1390
 
            );
1391
 
 
1392
 
        /* 14 (LSB), 15, 20, 21 */
1393
 
        REG_WRITE(ah, 0xa3e4,
1394
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
1395
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
1396
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
1397
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
1398
 
            );
1399
 
 
1400
 
        /* Mixed HT20 and HT40 rates */
1401
 
 
1402
 
        /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
1403
 
        REG_WRITE(ah, 0xa3e8,
1404
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
1405
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
1406
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
1407
 
                  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
1408
 
            );
1409
 
 
1410
 
        /*
1411
 
         * Write the HT40 power per rate set
1412
 
         * correct PAR difference between HT40 and HT20/LEGACY
1413
 
         * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
1414
 
         */
1415
 
        REG_WRITE(ah, 0xa3d8,
1416
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
1417
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
1418
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
1419
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
1420
 
            );
1421
 
 
1422
 
        /* 6 (LSB), 7, 12, 13 (MSB) */
1423
 
        REG_WRITE(ah, 0xa3dc,
1424
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
1425
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
1426
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
1427
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
1428
 
            );
1429
 
 
1430
 
        /* 14 (LSB), 15, 20, 21 */
1431
 
        REG_WRITE(ah, 0xa3ec,
1432
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
1433
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
1434
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
1435
 
                  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
1436
 
            );
1437
 
 
1438
 
        return 0;
1439
 
#undef POW_SM
1440
 
}
1441
 
 
1442
 
static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
1443
 
                                              u8 *targetPowerValT2)
1444
 
{
1445
 
        /* XXX: hard code for now, need to get from eeprom struct */
1446
 
        u8 ht40PowerIncForPdadc = 0;
1447
 
        bool is2GHz = false;
1448
 
        unsigned int i = 0;
1449
 
        struct ath_common *common = ath9k_hw_common(ah);
1450
 
 
1451
 
        if (freq < 4000)
1452
 
                is2GHz = true;
1453
 
 
1454
 
        targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
1455
 
            ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
1456
 
                                         is2GHz);
1457
 
        targetPowerValT2[ALL_TARGET_LEGACY_36] =
1458
 
            ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
1459
 
                                         is2GHz);
1460
 
        targetPowerValT2[ALL_TARGET_LEGACY_48] =
1461
 
            ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
1462
 
                                         is2GHz);
1463
 
        targetPowerValT2[ALL_TARGET_LEGACY_54] =
1464
 
            ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
1465
 
                                         is2GHz);
1466
 
        targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
1467
 
            ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
1468
 
                                             freq);
1469
 
        targetPowerValT2[ALL_TARGET_LEGACY_5S] =
1470
 
            ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
1471
 
        targetPowerValT2[ALL_TARGET_LEGACY_11L] =
1472
 
            ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
1473
 
        targetPowerValT2[ALL_TARGET_LEGACY_11S] =
1474
 
            ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
1475
 
        targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
1476
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
1477
 
                                              is2GHz);
1478
 
        targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
1479
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
1480
 
                                              freq, is2GHz);
1481
 
        targetPowerValT2[ALL_TARGET_HT20_4] =
1482
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
1483
 
                                              is2GHz);
1484
 
        targetPowerValT2[ALL_TARGET_HT20_5] =
1485
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
1486
 
                                              is2GHz);
1487
 
        targetPowerValT2[ALL_TARGET_HT20_6] =
1488
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
1489
 
                                              is2GHz);
1490
 
        targetPowerValT2[ALL_TARGET_HT20_7] =
1491
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
1492
 
                                              is2GHz);
1493
 
        targetPowerValT2[ALL_TARGET_HT20_12] =
1494
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
1495
 
                                              is2GHz);
1496
 
        targetPowerValT2[ALL_TARGET_HT20_13] =
1497
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
1498
 
                                              is2GHz);
1499
 
        targetPowerValT2[ALL_TARGET_HT20_14] =
1500
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
1501
 
                                              is2GHz);
1502
 
        targetPowerValT2[ALL_TARGET_HT20_15] =
1503
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
1504
 
                                              is2GHz);
1505
 
        targetPowerValT2[ALL_TARGET_HT20_20] =
1506
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
1507
 
                                              is2GHz);
1508
 
        targetPowerValT2[ALL_TARGET_HT20_21] =
1509
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
1510
 
                                              is2GHz);
1511
 
        targetPowerValT2[ALL_TARGET_HT20_22] =
1512
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
1513
 
                                              is2GHz);
1514
 
        targetPowerValT2[ALL_TARGET_HT20_23] =
1515
 
            ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
1516
 
                                              is2GHz);
1517
 
        targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
1518
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
1519
 
                                              is2GHz) + ht40PowerIncForPdadc;
1520
 
        targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
1521
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
1522
 
                                              freq,
1523
 
                                              is2GHz) + ht40PowerIncForPdadc;
1524
 
        targetPowerValT2[ALL_TARGET_HT40_4] =
1525
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
1526
 
                                              is2GHz) + ht40PowerIncForPdadc;
1527
 
        targetPowerValT2[ALL_TARGET_HT40_5] =
1528
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
1529
 
                                              is2GHz) + ht40PowerIncForPdadc;
1530
 
        targetPowerValT2[ALL_TARGET_HT40_6] =
1531
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
1532
 
                                              is2GHz) + ht40PowerIncForPdadc;
1533
 
        targetPowerValT2[ALL_TARGET_HT40_7] =
1534
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
1535
 
                                              is2GHz) + ht40PowerIncForPdadc;
1536
 
        targetPowerValT2[ALL_TARGET_HT40_12] =
1537
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
1538
 
                                              is2GHz) + ht40PowerIncForPdadc;
1539
 
        targetPowerValT2[ALL_TARGET_HT40_13] =
1540
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
1541
 
                                              is2GHz) + ht40PowerIncForPdadc;
1542
 
        targetPowerValT2[ALL_TARGET_HT40_14] =
1543
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
1544
 
                                              is2GHz) + ht40PowerIncForPdadc;
1545
 
        targetPowerValT2[ALL_TARGET_HT40_15] =
1546
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
1547
 
                                              is2GHz) + ht40PowerIncForPdadc;
1548
 
        targetPowerValT2[ALL_TARGET_HT40_20] =
1549
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
1550
 
                                              is2GHz) + ht40PowerIncForPdadc;
1551
 
        targetPowerValT2[ALL_TARGET_HT40_21] =
1552
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
1553
 
                                              is2GHz) + ht40PowerIncForPdadc;
1554
 
        targetPowerValT2[ALL_TARGET_HT40_22] =
1555
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
1556
 
                                              is2GHz) + ht40PowerIncForPdadc;
1557
 
        targetPowerValT2[ALL_TARGET_HT40_23] =
1558
 
            ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
1559
 
                                              is2GHz) + ht40PowerIncForPdadc;
1560
 
 
1561
 
        while (i < ar9300RateSize) {
1562
 
                ath_print(common, ATH_DBG_EEPROM,
1563
 
                          "TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
1564
 
                i++;
1565
 
 
1566
 
                ath_print(common, ATH_DBG_EEPROM,
1567
 
                          "TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
1568
 
                i++;
1569
 
 
1570
 
                ath_print(common, ATH_DBG_EEPROM,
1571
 
                          "TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
1572
 
                i++;
1573
 
 
1574
 
                ath_print(common, ATH_DBG_EEPROM,
1575
 
                          "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
1576
 
                i++;
1577
 
        }
1578
 
}
1579
 
 
1580
 
static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
1581
 
                                  int mode,
1582
 
                                  int ipier,
1583
 
                                  int ichain,
1584
 
                                  int *pfrequency,
1585
 
                                  int *pcorrection,
1586
 
                                  int *ptemperature, int *pvoltage)
1587
 
{
1588
 
        u8 *pCalPier;
1589
 
        struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
1590
 
        int is2GHz;
1591
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1592
 
        struct ath_common *common = ath9k_hw_common(ah);
1593
 
 
1594
 
        if (ichain >= AR9300_MAX_CHAINS) {
1595
 
                ath_print(common, ATH_DBG_EEPROM,
1596
 
                          "Invalid chain index, must be less than %d\n",
1597
 
                          AR9300_MAX_CHAINS);
1598
 
                return -1;
1599
 
        }
1600
 
 
1601
 
        if (mode) {             /* 5GHz */
1602
 
                if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
1603
 
                        ath_print(common, ATH_DBG_EEPROM,
1604
 
                                  "Invalid 5GHz cal pier index, must "
1605
 
                                  "be less than %d\n",
1606
 
                                  AR9300_NUM_5G_CAL_PIERS);
1607
 
                        return -1;
1608
 
                }
1609
 
                pCalPier = &(eep->calFreqPier5G[ipier]);
1610
 
                pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
1611
 
                is2GHz = 0;
1612
 
        } else {
1613
 
                if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
1614
 
                        ath_print(common, ATH_DBG_EEPROM,
1615
 
                                  "Invalid 2GHz cal pier index, must "
1616
 
                                  "be less than %d\n", AR9300_NUM_2G_CAL_PIERS);
1617
 
                        return -1;
1618
 
                }
1619
 
 
1620
 
                pCalPier = &(eep->calFreqPier2G[ipier]);
1621
 
                pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
1622
 
                is2GHz = 1;
1623
 
        }
1624
 
 
1625
 
        *pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
1626
 
        *pcorrection = pCalPierStruct->refPower;
1627
 
        *ptemperature = pCalPierStruct->tempMeas;
1628
 
        *pvoltage = pCalPierStruct->voltMeas;
1629
 
 
1630
 
        return 0;
1631
 
}
1632
 
 
1633
 
static int ar9003_hw_power_control_override(struct ath_hw *ah,
1634
 
                                            int frequency,
1635
 
                                            int *correction,
1636
 
                                            int *voltage, int *temperature)
1637
 
{
1638
 
        int tempSlope = 0;
1639
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
1640
 
 
1641
 
        REG_RMW(ah, AR_PHY_TPC_11_B0,
1642
 
                (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
1643
 
                AR_PHY_TPC_OLPC_GAIN_DELTA);
1644
 
        REG_RMW(ah, AR_PHY_TPC_11_B1,
1645
 
                (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
1646
 
                AR_PHY_TPC_OLPC_GAIN_DELTA);
1647
 
        REG_RMW(ah, AR_PHY_TPC_11_B2,
1648
 
                (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
1649
 
                AR_PHY_TPC_OLPC_GAIN_DELTA);
1650
 
 
1651
 
        /* enable open loop power control on chip */
1652
 
        REG_RMW(ah, AR_PHY_TPC_6_B0,
1653
 
                (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
1654
 
                AR_PHY_TPC_6_ERROR_EST_MODE);
1655
 
        REG_RMW(ah, AR_PHY_TPC_6_B1,
1656
 
                (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
1657
 
                AR_PHY_TPC_6_ERROR_EST_MODE);
1658
 
        REG_RMW(ah, AR_PHY_TPC_6_B2,
1659
 
                (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
1660
 
                AR_PHY_TPC_6_ERROR_EST_MODE);
1661
 
 
1662
 
        /*
1663
 
         * enable temperature compensation
1664
 
         * Need to use register names
1665
 
         */
1666
 
        if (frequency < 4000)
1667
 
                tempSlope = eep->modalHeader2G.tempSlope;
1668
 
        else
1669
 
                tempSlope = eep->modalHeader5G.tempSlope;
1670
 
 
1671
 
        REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
1672
 
        REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
1673
 
                      temperature[0]);
1674
 
 
1675
 
        return 0;
1676
 
}
1677
 
 
1678
 
/* Apply the recorded correction values. */
1679
 
static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
1680
 
{
1681
 
        int ichain, ipier, npier;
1682
 
        int mode;
1683
 
        int lfrequency[AR9300_MAX_CHAINS],
1684
 
            lcorrection[AR9300_MAX_CHAINS],
1685
 
            ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
1686
 
        int hfrequency[AR9300_MAX_CHAINS],
1687
 
            hcorrection[AR9300_MAX_CHAINS],
1688
 
            htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
1689
 
        int fdiff;
1690
 
        int correction[AR9300_MAX_CHAINS],
1691
 
            voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
1692
 
        int pfrequency, pcorrection, ptemperature, pvoltage;
1693
 
        struct ath_common *common = ath9k_hw_common(ah);
1694
 
 
1695
 
        mode = (frequency >= 4000);
1696
 
        if (mode)
1697
 
                npier = AR9300_NUM_5G_CAL_PIERS;
1698
 
        else
1699
 
                npier = AR9300_NUM_2G_CAL_PIERS;
1700
 
 
1701
 
        for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
1702
 
                lfrequency[ichain] = 0;
1703
 
                hfrequency[ichain] = 100000;
1704
 
        }
1705
 
        /* identify best lower and higher frequency calibration measurement */
1706
 
        for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
1707
 
                for (ipier = 0; ipier < npier; ipier++) {
1708
 
                        if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
1709
 
                                                    &pfrequency, &pcorrection,
1710
 
                                                    &ptemperature, &pvoltage)) {
1711
 
                                fdiff = frequency - pfrequency;
1712
 
 
1713
 
                                /*
1714
 
                                 * this measurement is higher than
1715
 
                                 * our desired frequency
1716
 
                                 */
1717
 
                                if (fdiff <= 0) {
1718
 
                                        if (hfrequency[ichain] <= 0 ||
1719
 
                                            hfrequency[ichain] >= 100000 ||
1720
 
                                            fdiff >
1721
 
                                            (frequency - hfrequency[ichain])) {
1722
 
                                                /*
1723
 
                                                 * new best higher
1724
 
                                                 * frequency measurement
1725
 
                                                 */
1726
 
                                                hfrequency[ichain] = pfrequency;
1727
 
                                                hcorrection[ichain] =
1728
 
                                                    pcorrection;
1729
 
                                                htemperature[ichain] =
1730
 
                                                    ptemperature;
1731
 
                                                hvoltage[ichain] = pvoltage;
1732
 
                                        }
1733
 
                                }
1734
 
                                if (fdiff >= 0) {
1735
 
                                        if (lfrequency[ichain] <= 0
1736
 
                                            || fdiff <
1737
 
                                            (frequency - lfrequency[ichain])) {
1738
 
                                                /*
1739
 
                                                 * new best lower
1740
 
                                                 * frequency measurement
1741
 
                                                 */
1742
 
                                                lfrequency[ichain] = pfrequency;
1743
 
                                                lcorrection[ichain] =
1744
 
                                                    pcorrection;
1745
 
                                                ltemperature[ichain] =
1746
 
                                                    ptemperature;
1747
 
                                                lvoltage[ichain] = pvoltage;
1748
 
                                        }
1749
 
                                }
1750
 
                        }
1751
 
                }
1752
 
        }
1753
 
 
1754
 
        /* interpolate  */
1755
 
        for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
1756
 
                ath_print(common, ATH_DBG_EEPROM,
1757
 
                          "ch=%d f=%d low=%d %d h=%d %d\n",
1758
 
                          ichain, frequency, lfrequency[ichain],
1759
 
                          lcorrection[ichain], hfrequency[ichain],
1760
 
                          hcorrection[ichain]);
1761
 
                /* they're the same, so just pick one */
1762
 
                if (hfrequency[ichain] == lfrequency[ichain]) {
1763
 
                        correction[ichain] = lcorrection[ichain];
1764
 
                        voltage[ichain] = lvoltage[ichain];
1765
 
                        temperature[ichain] = ltemperature[ichain];
1766
 
                }
1767
 
                /* the low frequency is good */
1768
 
                else if (frequency - lfrequency[ichain] < 1000) {
1769
 
                        /* so is the high frequency, interpolate */
1770
 
                        if (hfrequency[ichain] - frequency < 1000) {
1771
 
 
1772
 
                                correction[ichain] = lcorrection[ichain] +
1773
 
                                    (((frequency - lfrequency[ichain]) *
1774
 
                                      (hcorrection[ichain] -
1775
 
                                       lcorrection[ichain])) /
1776
 
                                     (hfrequency[ichain] - lfrequency[ichain]));
1777
 
 
1778
 
                                temperature[ichain] = ltemperature[ichain] +
1779
 
                                    (((frequency - lfrequency[ichain]) *
1780
 
                                      (htemperature[ichain] -
1781
 
                                       ltemperature[ichain])) /
1782
 
                                     (hfrequency[ichain] - lfrequency[ichain]));
1783
 
 
1784
 
                                voltage[ichain] =
1785
 
                                    lvoltage[ichain] +
1786
 
                                    (((frequency -
1787
 
                                       lfrequency[ichain]) * (hvoltage[ichain] -
1788
 
                                                              lvoltage[ichain]))
1789
 
                                     / (hfrequency[ichain] -
1790
 
                                        lfrequency[ichain]));
1791
 
                        }
1792
 
                        /* only low is good, use it */
1793
 
                        else {
1794
 
                                correction[ichain] = lcorrection[ichain];
1795
 
                                temperature[ichain] = ltemperature[ichain];
1796
 
                                voltage[ichain] = lvoltage[ichain];
1797
 
                        }
1798
 
                }
1799
 
                /* only high is good, use it */
1800
 
                else if (hfrequency[ichain] - frequency < 1000) {
1801
 
                        correction[ichain] = hcorrection[ichain];
1802
 
                        temperature[ichain] = htemperature[ichain];
1803
 
                        voltage[ichain] = hvoltage[ichain];
1804
 
                } else {        /* nothing is good, presume 0???? */
1805
 
                        correction[ichain] = 0;
1806
 
                        temperature[ichain] = 0;
1807
 
                        voltage[ichain] = 0;
1808
 
                }
1809
 
        }
1810
 
 
1811
 
        ar9003_hw_power_control_override(ah, frequency, correction, voltage,
1812
 
                                         temperature);
1813
 
 
1814
 
        ath_print(common, ATH_DBG_EEPROM,
1815
 
                  "for frequency=%d, calibration correction = %d %d %d\n",
1816
 
                  frequency, correction[0], correction[1], correction[2]);
1817
 
 
1818
 
        return 0;
1819
 
}
1820
 
 
1821
 
static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
1822
 
                                           int idx,
1823
 
                                           int edge,
1824
 
                                           bool is2GHz)
1825
 
{
1826
 
        struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
1827
 
        struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
1828
 
 
1829
 
        if (is2GHz)
1830
 
                return ctl_2g[idx].ctlEdges[edge].tPower;
1831
 
        else
1832
 
                return ctl_5g[idx].ctlEdges[edge].tPower;
1833
 
}
1834
 
 
1835
 
static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
1836
 
                                             int idx,
1837
 
                                             unsigned int edge,
1838
 
                                             u16 freq,
1839
 
                                             bool is2GHz)
1840
 
{
1841
 
        struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
1842
 
        struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
1843
 
 
1844
 
        u8 *ctl_freqbin = is2GHz ?
1845
 
                &eep->ctl_freqbin_2G[idx][0] :
1846
 
                &eep->ctl_freqbin_5G[idx][0];
1847
 
 
1848
 
        if (is2GHz) {
1849
 
                if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
1850
 
                    ctl_2g[idx].ctlEdges[edge - 1].flag)
1851
 
                        return ctl_2g[idx].ctlEdges[edge - 1].tPower;
1852
 
        } else {
1853
 
                if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
1854
 
                    ctl_5g[idx].ctlEdges[edge - 1].flag)
1855
 
                        return ctl_5g[idx].ctlEdges[edge - 1].tPower;
1856
 
        }
1857
 
 
1858
 
        return AR9300_MAX_RATE_POWER;
1859
 
}
1860
 
 
1861
 
/*
1862
 
 * Find the maximum conformance test limit for the given channel and CTL info
1863
 
 */
1864
 
static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
1865
 
                                        u16 freq, int idx, bool is2GHz)
1866
 
{
1867
 
        u16 twiceMaxEdgePower = AR9300_MAX_RATE_POWER;
1868
 
        u8 *ctl_freqbin = is2GHz ?
1869
 
                &eep->ctl_freqbin_2G[idx][0] :
1870
 
                &eep->ctl_freqbin_5G[idx][0];
1871
 
        u16 num_edges = is2GHz ?
1872
 
                AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
1873
 
        unsigned int edge;
1874
 
 
1875
 
        /* Get the edge power */
1876
 
        for (edge = 0;
1877
 
             (edge < num_edges) && (ctl_freqbin[edge] != AR9300_BCHAN_UNUSED);
1878
 
             edge++) {
1879
 
                /*
1880
 
                 * If there's an exact channel match or an inband flag set
1881
 
                 * on the lower channel use the given rdEdgePower
1882
 
                 */
1883
 
                if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
1884
 
                        twiceMaxEdgePower =
1885
 
                                ar9003_hw_get_direct_edge_power(eep, idx,
1886
 
                                                                edge, is2GHz);
1887
 
                        break;
1888
 
                } else if ((edge > 0) &&
1889
 
                           (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
1890
 
                                                      is2GHz))) {
1891
 
                        twiceMaxEdgePower =
1892
 
                                ar9003_hw_get_indirect_edge_power(eep, idx,
1893
 
                                                                  edge, freq,
1894
 
                                                                  is2GHz);
1895
 
                        /*
1896
 
                         * Leave loop - no more affecting edges possible in
1897
 
                         * this monotonic increasing list
1898
 
                         */
1899
 
                        break;
1900
 
                }
1901
 
        }
1902
 
        return twiceMaxEdgePower;
1903
 
}
1904
 
 
1905
 
static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
1906
 
                                               struct ath9k_channel *chan,
1907
 
                                               u8 *pPwrArray, u16 cfgCtl,
1908
 
                                               u8 twiceAntennaReduction,
1909
 
                                               u8 twiceMaxRegulatoryPower,
1910
 
                                               u16 powerLimit)
1911
 
{
1912
 
        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1913
 
        struct ath_common *common = ath9k_hw_common(ah);
1914
 
        struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
1915
 
        u16 twiceMaxEdgePower = AR9300_MAX_RATE_POWER;
1916
 
        static const u16 tpScaleReductionTable[5] = {
1917
 
                0, 3, 6, 9, AR9300_MAX_RATE_POWER
1918
 
        };
1919
 
        int i;
1920
 
        int16_t  twiceLargestAntenna;
1921
 
        u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1922
 
        u16 ctlModesFor11a[] = {
1923
 
                CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1924
 
        };
1925
 
        u16 ctlModesFor11g[] = {
1926
 
                CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
1927
 
                CTL_11G_EXT, CTL_2GHT40
1928
 
        };
1929
 
        u16 numCtlModes, *pCtlMode, ctlMode, freq;
1930
 
        struct chan_centers centers;
1931
 
        u8 *ctlIndex;
1932
 
        u8 ctlNum;
1933
 
        u16 twiceMinEdgePower;
1934
 
        bool is2ghz = IS_CHAN_2GHZ(chan);
1935
 
 
1936
 
        ath9k_hw_get_channel_centers(ah, chan, &centers);
1937
 
 
1938
 
        /* Compute TxPower reduction due to Antenna Gain */
1939
 
        if (is2ghz)
1940
 
                twiceLargestAntenna = pEepData->modalHeader2G.antennaGain;
1941
 
        else
1942
 
                twiceLargestAntenna = pEepData->modalHeader5G.antennaGain;
1943
 
 
1944
 
        twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) -
1945
 
                                twiceLargestAntenna, 0);
1946
 
 
1947
 
        /*
1948
 
         * scaledPower is the minimum of the user input power level
1949
 
         * and the regulatory allowed power level
1950
 
         */
1951
 
        maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1952
 
 
1953
 
        if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
1954
 
                maxRegAllowedPower -=
1955
 
                        (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
1956
 
        }
1957
 
 
1958
 
        scaledPower = min(powerLimit, maxRegAllowedPower);
1959
 
 
1960
 
        /*
1961
 
         * Reduce scaled Power by number of chains active to get
1962
 
         * to per chain tx power level
1963
 
         */
1964
 
        switch (ar5416_get_ntxchains(ah->txchainmask)) {
1965
 
        case 1:
1966
 
                break;
1967
 
        case 2:
1968
 
                scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1969
 
                break;
1970
 
        case 3:
1971
 
                scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1972
 
                break;
1973
 
        }
1974
 
 
1975
 
        scaledPower = max((u16)0, scaledPower);
1976
 
 
1977
 
        /*
1978
 
         * Get target powers from EEPROM - our baseline for TX Power
1979
 
         */
1980
 
        if (is2ghz) {
1981
 
                /* Setup for CTL modes */
1982
 
                /* CTL_11B, CTL_11G, CTL_2GHT20 */
1983
 
                numCtlModes =
1984
 
                        ARRAY_SIZE(ctlModesFor11g) -
1985
 
                                   SUB_NUM_CTL_MODES_AT_2G_40;
1986
 
                pCtlMode = ctlModesFor11g;
1987
 
                if (IS_CHAN_HT40(chan))
1988
 
                        /* All 2G CTL's */
1989
 
                        numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1990
 
        } else {
1991
 
                /* Setup for CTL modes */
1992
 
                /* CTL_11A, CTL_5GHT20 */
1993
 
                numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1994
 
                                         SUB_NUM_CTL_MODES_AT_5G_40;
1995
 
                pCtlMode = ctlModesFor11a;
1996
 
                if (IS_CHAN_HT40(chan))
1997
 
                        /* All 5G CTL's */
1998
 
                        numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1999
 
        }
2000
 
 
2001
 
        /*
2002
 
         * For MIMO, need to apply regulatory caps individually across
2003
 
         * dynamically running modes: CCK, OFDM, HT20, HT40
2004
 
         *
2005
 
         * The outer loop walks through each possible applicable runtime mode.
2006
 
         * The inner loop walks through each ctlIndex entry in EEPROM.
2007
 
         * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
2008
 
         */
2009
 
        for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
2010
 
                bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
2011
 
                        (pCtlMode[ctlMode] == CTL_2GHT40);
2012
 
                if (isHt40CtlMode)
2013
 
                        freq = centers.synth_center;
2014
 
                else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
2015
 
                        freq = centers.ext_center;
2016
 
                else
2017
 
                        freq = centers.ctl_center;
2018
 
 
2019
 
                ath_print(common, ATH_DBG_REGULATORY,
2020
 
                          "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
2021
 
                          "EXT_ADDITIVE %d\n",
2022
 
                          ctlMode, numCtlModes, isHt40CtlMode,
2023
 
                          (pCtlMode[ctlMode] & EXT_ADDITIVE));
2024
 
 
2025
 
                /* walk through each CTL index stored in EEPROM */
2026
 
                if (is2ghz) {
2027
 
                        ctlIndex = pEepData->ctlIndex_2G;
2028
 
                        ctlNum = AR9300_NUM_CTLS_2G;
2029
 
                } else {
2030
 
                        ctlIndex = pEepData->ctlIndex_5G;
2031
 
                        ctlNum = AR9300_NUM_CTLS_5G;
2032
 
                }
2033
 
 
2034
 
                for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
2035
 
                        ath_print(common, ATH_DBG_REGULATORY,
2036
 
                                  "LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
2037
 
                                  "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
2038
 
                                  "chan %dn",
2039
 
                                  i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
2040
 
                                  chan->channel);
2041
 
 
2042
 
                                /*
2043
 
                                 * compare test group from regulatory
2044
 
                                 * channel list with test mode from pCtlMode
2045
 
                                 * list
2046
 
                                 */
2047
 
                                if ((((cfgCtl & ~CTL_MODE_M) |
2048
 
                                       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2049
 
                                        ctlIndex[i]) ||
2050
 
                                    (((cfgCtl & ~CTL_MODE_M) |
2051
 
                                       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2052
 
                                     ((ctlIndex[i] & CTL_MODE_M) |
2053
 
                                       SD_NO_CTL))) {
2054
 
                                        twiceMinEdgePower =
2055
 
                                          ar9003_hw_get_max_edge_power(pEepData,
2056
 
                                                                       freq, i,
2057
 
                                                                       is2ghz);
2058
 
 
2059
 
                                        if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
2060
 
                                                /*
2061
 
                                                 * Find the minimum of all CTL
2062
 
                                                 * edge powers that apply to
2063
 
                                                 * this channel
2064
 
                                                 */
2065
 
                                                twiceMaxEdgePower =
2066
 
                                                        min(twiceMaxEdgePower,
2067
 
                                                            twiceMinEdgePower);
2068
 
                                                else {
2069
 
                                                        /* specific */
2070
 
                                                        twiceMaxEdgePower =
2071
 
                                                          twiceMinEdgePower;
2072
 
                                                        break;
2073
 
                                                }
2074
 
                                }
2075
 
                        }
2076
 
 
2077
 
                        minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
2078
 
 
2079
 
                        ath_print(common, ATH_DBG_REGULATORY,
2080
 
                                  "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d "
2081
 
                                  "sP %d minCtlPwr %d\n",
2082
 
                                  ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
2083
 
                                  scaledPower, minCtlPower);
2084
 
 
2085
 
                        /* Apply ctl mode to correct target power set */
2086
 
                        switch (pCtlMode[ctlMode]) {
2087
 
                        case CTL_11B:
2088
 
                                for (i = ALL_TARGET_LEGACY_1L_5L;
2089
 
                                     i <= ALL_TARGET_LEGACY_11S; i++)
2090
 
                                        pPwrArray[i] =
2091
 
                                          (u8)min((u16)pPwrArray[i],
2092
 
                                                  minCtlPower);
2093
 
                                break;
2094
 
                        case CTL_11A:
2095
 
                        case CTL_11G:
2096
 
                                for (i = ALL_TARGET_LEGACY_6_24;
2097
 
                                     i <= ALL_TARGET_LEGACY_54; i++)
2098
 
                                        pPwrArray[i] =
2099
 
                                          (u8)min((u16)pPwrArray[i],
2100
 
                                                  minCtlPower);
2101
 
                                break;
2102
 
                        case CTL_5GHT20:
2103
 
                        case CTL_2GHT20:
2104
 
                                for (i = ALL_TARGET_HT20_0_8_16;
2105
 
                                     i <= ALL_TARGET_HT20_21; i++)
2106
 
                                        pPwrArray[i] =
2107
 
                                          (u8)min((u16)pPwrArray[i],
2108
 
                                                  minCtlPower);
2109
 
                                pPwrArray[ALL_TARGET_HT20_22] =
2110
 
                                  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
2111
 
                                          minCtlPower);
2112
 
                                pPwrArray[ALL_TARGET_HT20_23] =
2113
 
                                  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
2114
 
                                           minCtlPower);
2115
 
                                break;
2116
 
                        case CTL_5GHT40:
2117
 
                        case CTL_2GHT40:
2118
 
                                for (i = ALL_TARGET_HT40_0_8_16;
2119
 
                                     i <= ALL_TARGET_HT40_23; i++)
2120
 
                                        pPwrArray[i] =
2121
 
                                          (u8)min((u16)pPwrArray[i],
2122
 
                                                  minCtlPower);
2123
 
                                break;
2124
 
                        default:
2125
 
                            break;
2126
 
                        }
2127
 
        } /* end ctl mode checking */
2128
 
}
2129
 
 
2130
 
static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
2131
 
                                        struct ath9k_channel *chan, u16 cfgCtl,
2132
 
                                        u8 twiceAntennaReduction,
2133
 
                                        u8 twiceMaxRegulatoryPower,
2134
 
                                        u8 powerLimit)
2135
 
{
2136
 
        struct ath_common *common = ath9k_hw_common(ah);
2137
 
        u8 targetPowerValT2[ar9300RateSize];
2138
 
        unsigned int i = 0;
2139
 
 
2140
 
        ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
2141
 
        ar9003_hw_set_power_per_rate_table(ah, chan,
2142
 
                                           targetPowerValT2, cfgCtl,
2143
 
                                           twiceAntennaReduction,
2144
 
                                           twiceMaxRegulatoryPower,
2145
 
                                           powerLimit);
2146
 
 
2147
 
        while (i < ar9300RateSize) {
2148
 
                ath_print(common, ATH_DBG_EEPROM,
2149
 
                          "TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
2150
 
                i++;
2151
 
                ath_print(common, ATH_DBG_EEPROM,
2152
 
                          "TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
2153
 
                i++;
2154
 
                ath_print(common, ATH_DBG_EEPROM,
2155
 
                          "TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
2156
 
                i++;
2157
 
                ath_print(common, ATH_DBG_EEPROM,
2158
 
                          "TPC[%02d] 0x%08x\n\n", i, targetPowerValT2[i]);
2159
 
                i++;
2160
 
        }
2161
 
 
2162
 
        /* Write target power array to registers */
2163
 
        ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
2164
 
 
2165
 
        /*
2166
 
         * This is the TX power we send back to driver core,
2167
 
         * and it can use to pass to userspace to display our
2168
 
         * currently configured TX power setting.
2169
 
         *
2170
 
         * Since power is rate dependent, use one of the indices
2171
 
         * from the AR9300_Rates enum to select an entry from
2172
 
         * targetPowerValT2[] to report. Currently returns the
2173
 
         * power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
2174
 
         * as CCK power is less interesting (?).
2175
 
         */
2176
 
        i = ALL_TARGET_LEGACY_6_24; /* legacy */
2177
 
        if (IS_CHAN_HT40(chan))
2178
 
                i = ALL_TARGET_HT40_0_8_16; /* ht40 */
2179
 
        else if (IS_CHAN_HT20(chan))
2180
 
                i = ALL_TARGET_HT20_0_8_16; /* ht20 */
2181
 
 
2182
 
        ah->txpower_limit = targetPowerValT2[i];
2183
 
 
2184
 
        ar9003_hw_calibration_apply(ah, chan->channel);
2185
 
}
2186
 
 
2187
 
static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
2188
 
                                            u16 i, bool is2GHz)
2189
 
{
2190
 
        return AR_NO_SPUR;
2191
 
}
2192
 
 
2193
 
s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
2194
 
{
2195
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2196
 
 
2197
 
        return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
2198
 
}
2199
 
 
2200
 
s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
2201
 
{
2202
 
        struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2203
 
 
2204
 
        return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
2205
 
}
2206
 
 
2207
 
const struct eeprom_ops eep_ar9300_ops = {
2208
 
        .check_eeprom = ath9k_hw_ar9300_check_eeprom,
2209
 
        .get_eeprom = ath9k_hw_ar9300_get_eeprom,
2210
 
        .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
2211
 
        .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
2212
 
        .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
2213
 
        .get_num_ant_config = ath9k_hw_ar9300_get_num_ant_config,
2214
 
        .get_eeprom_antenna_cfg = ath9k_hw_ar9300_get_eeprom_antenna_cfg,
2215
 
        .set_board_values = ath9k_hw_ar9300_set_board_values,
2216
 
        .set_addac = ath9k_hw_ar9300_set_addac,
2217
 
        .set_txpower = ath9k_hw_ar9300_set_txpower,
2218
 
        .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
2219
 
};