~ubuntu-branches/ubuntu/raring/clamav/raring-updates

« back to all changes in this revision

Viewing changes to win32/3rdparty/zlib/contrib/blast/blast.c

  • Committer: Bazaar Package Importer
  • Author(s): Scott Kitterman
  • Date: 2011-06-18 11:56:34 UTC
  • mfrom: (0.35.21 sid)
  • Revision ID: james.westby@ubuntu.com-20110618115634-u2lovivet0qx34d0
Tags: 0.97.1+dfsg-1ubuntu1
* Merge from debian unstable.  Remaining changes:
  - Drop build-dep on electric-fence (in Universe)
  - Add apparmor profiles for clamd and freshclam along with maintainer
    script changes

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/* blast.c
2
 
 * Copyright (C) 2003 Mark Adler
3
 
 * For conditions of distribution and use, see copyright notice in blast.h
4
 
 * version 1.1, 16 Feb 2003
5
 
 *
6
 
 * blast.c decompresses data compressed by the PKWare Compression Library.
7
 
 * This function provides functionality similar to the explode() function of
8
 
 * the PKWare library, hence the name "blast".
9
 
 *
10
 
 * This decompressor is based on the excellent format description provided by
11
 
 * Ben Rudiak-Gould in comp.compression on August 13, 2001.  Interestingly, the
12
 
 * example Ben provided in the post is incorrect.  The distance 110001 should
13
 
 * instead be 111000.  When corrected, the example byte stream becomes:
14
 
 *
15
 
 *    00 04 82 24 25 8f 80 7f
16
 
 *
17
 
 * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
18
 
 */
19
 
 
20
 
/*
21
 
 * Change history:
22
 
 *
23
 
 * 1.0  12 Feb 2003     - First version
24
 
 * 1.1  16 Feb 2003     - Fixed distance check for > 4 GB uncompressed data
25
 
 */
26
 
 
27
 
#include <setjmp.h>             /* for setjmp(), longjmp(), and jmp_buf */
28
 
#include "blast.h"              /* prototype for blast() */
29
 
 
30
 
#define local static            /* for local function definitions */
31
 
#define MAXBITS 13              /* maximum code length */
32
 
#define MAXWIN 4096             /* maximum window size */
33
 
 
34
 
/* input and output state */
35
 
struct state {
36
 
    /* input state */
37
 
    blast_in infun;             /* input function provided by user */
38
 
    void *inhow;                /* opaque information passed to infun() */
39
 
    unsigned char *in;          /* next input location */
40
 
    unsigned left;              /* available input at in */
41
 
    int bitbuf;                 /* bit buffer */
42
 
    int bitcnt;                 /* number of bits in bit buffer */
43
 
 
44
 
    /* input limit error return state for bits() and decode() */
45
 
    jmp_buf env;
46
 
 
47
 
    /* output state */
48
 
    blast_out outfun;           /* output function provided by user */
49
 
    void *outhow;               /* opaque information passed to outfun() */
50
 
    unsigned next;              /* index of next write location in out[] */
51
 
    int first;                  /* true to check distances (for first 4K) */
52
 
    unsigned char out[MAXWIN];  /* output buffer and sliding window */
53
 
};
54
 
 
55
 
/*
56
 
 * Return need bits from the input stream.  This always leaves less than
57
 
 * eight bits in the buffer.  bits() works properly for need == 0.
58
 
 *
59
 
 * Format notes:
60
 
 *
61
 
 * - Bits are stored in bytes from the least significant bit to the most
62
 
 *   significant bit.  Therefore bits are dropped from the bottom of the bit
63
 
 *   buffer, using shift right, and new bytes are appended to the top of the
64
 
 *   bit buffer, using shift left.
65
 
 */
66
 
local int bits(struct state *s, int need)
67
 
{
68
 
    int val;            /* bit accumulator */
69
 
 
70
 
    /* load at least need bits into val */
71
 
    val = s->bitbuf;
72
 
    while (s->bitcnt < need) {
73
 
        if (s->left == 0) {
74
 
            s->left = s->infun(s->inhow, &(s->in));
75
 
            if (s->left == 0) longjmp(s->env, 1);       /* out of input */
76
 
        }
77
 
        val |= (int)(*(s->in)++) << s->bitcnt;          /* load eight bits */
78
 
        s->left--;
79
 
        s->bitcnt += 8;
80
 
    }
81
 
 
82
 
    /* drop need bits and update buffer, always zero to seven bits left */
83
 
    s->bitbuf = val >> need;
84
 
    s->bitcnt -= need;
85
 
 
86
 
    /* return need bits, zeroing the bits above that */
87
 
    return val & ((1 << need) - 1);
88
 
}
89
 
 
90
 
/*
91
 
 * Huffman code decoding tables.  count[1..MAXBITS] is the number of symbols of
92
 
 * each length, which for a canonical code are stepped through in order.
93
 
 * symbol[] are the symbol values in canonical order, where the number of
94
 
 * entries is the sum of the counts in count[].  The decoding process can be
95
 
 * seen in the function decode() below.
96
 
 */
97
 
struct huffman {
98
 
    short *count;       /* number of symbols of each length */
99
 
    short *symbol;      /* canonically ordered symbols */
100
 
};
101
 
 
102
 
/*
103
 
 * Decode a code from the stream s using huffman table h.  Return the symbol or
104
 
 * a negative value if there is an error.  If all of the lengths are zero, i.e.
105
 
 * an empty code, or if the code is incomplete and an invalid code is received,
106
 
 * then -9 is returned after reading MAXBITS bits.
107
 
 *
108
 
 * Format notes:
109
 
 *
110
 
 * - The codes as stored in the compressed data are bit-reversed relative to
111
 
 *   a simple integer ordering of codes of the same lengths.  Hence below the
112
 
 *   bits are pulled from the compressed data one at a time and used to
113
 
 *   build the code value reversed from what is in the stream in order to
114
 
 *   permit simple integer comparisons for decoding.
115
 
 *
116
 
 * - The first code for the shortest length is all ones.  Subsequent codes of
117
 
 *   the same length are simply integer decrements of the previous code.  When
118
 
 *   moving up a length, a one bit is appended to the code.  For a complete
119
 
 *   code, the last code of the longest length will be all zeros.  To support
120
 
 *   this ordering, the bits pulled during decoding are inverted to apply the
121
 
 *   more "natural" ordering starting with all zeros and incrementing.
122
 
 */
123
 
local int decode(struct state *s, struct huffman *h)
124
 
{
125
 
    int len;            /* current number of bits in code */
126
 
    int code;           /* len bits being decoded */
127
 
    int first;          /* first code of length len */
128
 
    int count;          /* number of codes of length len */
129
 
    int index;          /* index of first code of length len in symbol table */
130
 
    int bitbuf;         /* bits from stream */
131
 
    int left;           /* bits left in next or left to process */
132
 
    short *next;        /* next number of codes */
133
 
 
134
 
    bitbuf = s->bitbuf;
135
 
    left = s->bitcnt;
136
 
    code = first = index = 0;
137
 
    len = 1;
138
 
    next = h->count + 1;
139
 
    while (1) {
140
 
        while (left--) {
141
 
            code |= (bitbuf & 1) ^ 1;   /* invert code */
142
 
            bitbuf >>= 1;
143
 
            count = *next++;
144
 
            if (code < first + count) { /* if length len, return symbol */
145
 
                s->bitbuf = bitbuf;
146
 
                s->bitcnt = (s->bitcnt - len) & 7;
147
 
                return h->symbol[index + (code - first)];
148
 
            }
149
 
            index += count;             /* else update for next length */
150
 
            first += count;
151
 
            first <<= 1;
152
 
            code <<= 1;
153
 
            len++;
154
 
        }
155
 
        left = (MAXBITS+1) - len;
156
 
        if (left == 0) break;
157
 
        if (s->left == 0) {
158
 
            s->left = s->infun(s->inhow, &(s->in));
159
 
            if (s->left == 0) longjmp(s->env, 1);       /* out of input */
160
 
        }
161
 
        bitbuf = *(s->in)++;
162
 
        s->left--;
163
 
        if (left > 8) left = 8;
164
 
    }
165
 
    return -9;                          /* ran out of codes */
166
 
}
167
 
 
168
 
/*
169
 
 * Given a list of repeated code lengths rep[0..n-1], where each byte is a
170
 
 * count (high four bits + 1) and a code length (low four bits), generate the
171
 
 * list of code lengths.  This compaction reduces the size of the object code.
172
 
 * Then given the list of code lengths length[0..n-1] representing a canonical
173
 
 * Huffman code for n symbols, construct the tables required to decode those
174
 
 * codes.  Those tables are the number of codes of each length, and the symbols
175
 
 * sorted by length, retaining their original order within each length.  The
176
 
 * return value is zero for a complete code set, negative for an over-
177
 
 * subscribed code set, and positive for an incomplete code set.  The tables
178
 
 * can be used if the return value is zero or positive, but they cannot be used
179
 
 * if the return value is negative.  If the return value is zero, it is not
180
 
 * possible for decode() using that table to return an error--any stream of
181
 
 * enough bits will resolve to a symbol.  If the return value is positive, then
182
 
 * it is possible for decode() using that table to return an error for received
183
 
 * codes past the end of the incomplete lengths.
184
 
 */
185
 
local int construct(struct huffman *h, const unsigned char *rep, int n)
186
 
{
187
 
    int symbol;         /* current symbol when stepping through length[] */
188
 
    int len;            /* current length when stepping through h->count[] */
189
 
    int left;           /* number of possible codes left of current length */
190
 
    short offs[MAXBITS+1];      /* offsets in symbol table for each length */
191
 
    short length[256];  /* code lengths */
192
 
 
193
 
    /* convert compact repeat counts into symbol bit length list */
194
 
    symbol = 0;
195
 
    do {
196
 
        len = *rep++;
197
 
        left = (len >> 4) + 1;
198
 
        len &= 15;
199
 
        do {
200
 
            length[symbol++] = len;
201
 
        } while (--left);
202
 
    } while (--n);
203
 
    n = symbol;
204
 
 
205
 
    /* count number of codes of each length */
206
 
    for (len = 0; len <= MAXBITS; len++)
207
 
        h->count[len] = 0;
208
 
    for (symbol = 0; symbol < n; symbol++)
209
 
        (h->count[length[symbol]])++;   /* assumes lengths are within bounds */
210
 
    if (h->count[0] == n)               /* no codes! */
211
 
        return 0;                       /* complete, but decode() will fail */
212
 
 
213
 
    /* check for an over-subscribed or incomplete set of lengths */
214
 
    left = 1;                           /* one possible code of zero length */
215
 
    for (len = 1; len <= MAXBITS; len++) {
216
 
        left <<= 1;                     /* one more bit, double codes left */
217
 
        left -= h->count[len];          /* deduct count from possible codes */
218
 
        if (left < 0) return left;      /* over-subscribed--return negative */
219
 
    }                                   /* left > 0 means incomplete */
220
 
 
221
 
    /* generate offsets into symbol table for each length for sorting */
222
 
    offs[1] = 0;
223
 
    for (len = 1; len < MAXBITS; len++)
224
 
        offs[len + 1] = offs[len] + h->count[len];
225
 
 
226
 
    /*
227
 
     * put symbols in table sorted by length, by symbol order within each
228
 
     * length
229
 
     */
230
 
    for (symbol = 0; symbol < n; symbol++)
231
 
        if (length[symbol] != 0)
232
 
            h->symbol[offs[length[symbol]]++] = symbol;
233
 
 
234
 
    /* return zero for complete set, positive for incomplete set */
235
 
    return left;
236
 
}
237
 
 
238
 
/*
239
 
 * Decode PKWare Compression Library stream.
240
 
 *
241
 
 * Format notes:
242
 
 *
243
 
 * - First byte is 0 if literals are uncoded or 1 if they are coded.  Second
244
 
 *   byte is 4, 5, or 6 for the number of extra bits in the distance code.
245
 
 *   This is the base-2 logarithm of the dictionary size minus six.
246
 
 *
247
 
 * - Compressed data is a combination of literals and length/distance pairs
248
 
 *   terminated by an end code.  Literals are either Huffman coded or
249
 
 *   uncoded bytes.  A length/distance pair is a coded length followed by a
250
 
 *   coded distance to represent a string that occurs earlier in the
251
 
 *   uncompressed data that occurs again at the current location.
252
 
 *
253
 
 * - A bit preceding a literal or length/distance pair indicates which comes
254
 
 *   next, 0 for literals, 1 for length/distance.
255
 
 *
256
 
 * - If literals are uncoded, then the next eight bits are the literal, in the
257
 
 *   normal bit order in th stream, i.e. no bit-reversal is needed. Similarly,
258
 
 *   no bit reversal is needed for either the length extra bits or the distance
259
 
 *   extra bits.
260
 
 *
261
 
 * - Literal bytes are simply written to the output.  A length/distance pair is
262
 
 *   an instruction to copy previously uncompressed bytes to the output.  The
263
 
 *   copy is from distance bytes back in the output stream, copying for length
264
 
 *   bytes.
265
 
 *
266
 
 * - Distances pointing before the beginning of the output data are not
267
 
 *   permitted.
268
 
 *
269
 
 * - Overlapped copies, where the length is greater than the distance, are
270
 
 *   allowed and common.  For example, a distance of one and a length of 518
271
 
 *   simply copies the last byte 518 times.  A distance of four and a length of
272
 
 *   twelve copies the last four bytes three times.  A simple forward copy
273
 
 *   ignoring whether the length is greater than the distance or not implements
274
 
 *   this correctly.
275
 
 */
276
 
local int decomp(struct state *s)
277
 
{
278
 
    int lit;            /* true if literals are coded */
279
 
    int dict;           /* log2(dictionary size) - 6 */
280
 
    int symbol;         /* decoded symbol, extra bits for distance */
281
 
    int len;            /* length for copy */
282
 
    int dist;           /* distance for copy */
283
 
    int copy;           /* copy counter */
284
 
    unsigned char *from, *to;   /* copy pointers */
285
 
    static int virgin = 1;                              /* build tables once */
286
 
    static short litcnt[MAXBITS+1], litsym[256];        /* litcode memory */
287
 
    static short lencnt[MAXBITS+1], lensym[16];         /* lencode memory */
288
 
    static short distcnt[MAXBITS+1], distsym[64];       /* distcode memory */
289
 
    static struct huffman litcode = {litcnt, litsym};   /* length code */
290
 
    static struct huffman lencode = {lencnt, lensym};   /* length code */
291
 
    static struct huffman distcode = {distcnt, distsym};/* distance code */
292
 
        /* bit lengths of literal codes */
293
 
    static const unsigned char litlen[] = {
294
 
        11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
295
 
        9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
296
 
        7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
297
 
        8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
298
 
        44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
299
 
        44, 173};
300
 
        /* bit lengths of length codes 0..15 */
301
 
    static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
302
 
        /* bit lengths of distance codes 0..63 */
303
 
    static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
304
 
    static const short base[16] = {     /* base for length codes */
305
 
        3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
306
 
    static const char extra[16] = {     /* extra bits for length codes */
307
 
        0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
308
 
 
309
 
    /* set up decoding tables (once--might not be thread-safe) */
310
 
    if (virgin) {
311
 
        construct(&litcode, litlen, sizeof(litlen));
312
 
        construct(&lencode, lenlen, sizeof(lenlen));
313
 
        construct(&distcode, distlen, sizeof(distlen));
314
 
        virgin = 0;
315
 
    }
316
 
 
317
 
    /* read header */
318
 
    lit = bits(s, 8);
319
 
    if (lit > 1) return -1;
320
 
    dict = bits(s, 8);
321
 
    if (dict < 4 || dict > 6) return -2;
322
 
 
323
 
    /* decode literals and length/distance pairs */
324
 
    do {
325
 
        if (bits(s, 1)) {
326
 
            /* get length */
327
 
            symbol = decode(s, &lencode);
328
 
            len = base[symbol] + bits(s, extra[symbol]);
329
 
            if (len == 519) break;              /* end code */
330
 
 
331
 
            /* get distance */
332
 
            symbol = len == 2 ? 2 : dict;
333
 
            dist = decode(s, &distcode) << symbol;
334
 
            dist += bits(s, symbol);
335
 
            dist++;
336
 
            if (s->first && dist > s->next)
337
 
                return -3;              /* distance too far back */
338
 
 
339
 
            /* copy length bytes from distance bytes back */
340
 
            do {
341
 
                to = s->out + s->next;
342
 
                from = to - dist;
343
 
                copy = MAXWIN;
344
 
                if (s->next < dist) {
345
 
                    from += copy;
346
 
                    copy = dist;
347
 
                }
348
 
                copy -= s->next;
349
 
                if (copy > len) copy = len;
350
 
                len -= copy;
351
 
                s->next += copy;
352
 
                do {
353
 
                    *to++ = *from++;
354
 
                } while (--copy);
355
 
                if (s->next == MAXWIN) {
356
 
                    if (s->outfun(s->outhow, s->out, s->next)) return 1;
357
 
                    s->next = 0;
358
 
                    s->first = 0;
359
 
                }
360
 
            } while (len != 0);
361
 
        }
362
 
        else {
363
 
            /* get literal and write it */
364
 
            symbol = lit ? decode(s, &litcode) : bits(s, 8);
365
 
            s->out[s->next++] = symbol;
366
 
            if (s->next == MAXWIN) {
367
 
                if (s->outfun(s->outhow, s->out, s->next)) return 1;
368
 
                s->next = 0;
369
 
                s->first = 0;
370
 
            }
371
 
        }
372
 
    } while (1);
373
 
    return 0;
374
 
}
375
 
 
376
 
/* See comments in blast.h */
377
 
int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow)
378
 
{
379
 
    struct state s;             /* input/output state */
380
 
    int err;                    /* return value */
381
 
 
382
 
    /* initialize input state */
383
 
    s.infun = infun;
384
 
    s.inhow = inhow;
385
 
    s.left = 0;
386
 
    s.bitbuf = 0;
387
 
    s.bitcnt = 0;
388
 
 
389
 
    /* initialize output state */
390
 
    s.outfun = outfun;
391
 
    s.outhow = outhow;
392
 
    s.next = 0;
393
 
    s.first = 1;
394
 
 
395
 
    /* return if bits() or decode() tries to read past available input */
396
 
    if (setjmp(s.env) != 0)             /* if came back here via longjmp(), */
397
 
        err = 2;                        /*  then skip decomp(), return error */
398
 
    else
399
 
        err = decomp(&s);               /* decompress */
400
 
 
401
 
    /* write any leftover output and update the error code if needed */
402
 
    if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
403
 
        err = 1;
404
 
    return err;
405
 
}
406
 
 
407
 
#ifdef TEST
408
 
/* Example of how to use blast() */
409
 
#include <stdio.h>
410
 
#include <stdlib.h>
411
 
 
412
 
#define CHUNK 16384
413
 
 
414
 
local unsigned inf(void *how, unsigned char **buf)
415
 
{
416
 
    static unsigned char hold[CHUNK];
417
 
 
418
 
    *buf = hold;
419
 
    return fread(hold, 1, CHUNK, (FILE *)how);
420
 
}
421
 
 
422
 
local int outf(void *how, unsigned char *buf, unsigned len)
423
 
{
424
 
    return fwrite(buf, 1, len, (FILE *)how) != len;
425
 
}
426
 
 
427
 
/* Decompress a PKWare Compression Library stream from stdin to stdout */
428
 
int main(void)
429
 
{
430
 
    int ret, n;
431
 
 
432
 
    /* decompress to stdout */
433
 
    ret = blast(inf, stdin, outf, stdout);
434
 
    if (ret != 0) fprintf(stderr, "blast error: %d\n", ret);
435
 
 
436
 
    /* see if there are any leftover bytes */
437
 
    n = 0;
438
 
    while (getchar() != EOF) n++;
439
 
    if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n);
440
 
 
441
 
    /* return blast() error code */
442
 
    return ret;
443
 
}
444
 
#endif