~ubuntu-branches/ubuntu/raring/smplayer/raring

« back to all changes in this revision

Viewing changes to zlib/doc/algorithm.txt

  • Committer: Package Import Robot
  • Author(s): Alessio Treglia
  • Date: 2013-02-12 03:00:21 UTC
  • mfrom: (20.1.2 experimental)
  • Revision ID: package-import@ubuntu.com-20130212030021-q5mg053fru2u6zl8
Tags: 0.8.3-1
* Team upload.
* New upstream release. (Closes: #698300)

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
1. Compression algorithm (deflate)
 
2
 
 
3
The deflation algorithm used by gzip (also zip and zlib) is a variation of
 
4
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
 
5
the input data.  The second occurrence of a string is replaced by a
 
6
pointer to the previous string, in the form of a pair (distance,
 
7
length).  Distances are limited to 32K bytes, and lengths are limited
 
8
to 258 bytes. When a string does not occur anywhere in the previous
 
9
32K bytes, it is emitted as a sequence of literal bytes.  (In this
 
10
description, `string' must be taken as an arbitrary sequence of bytes,
 
11
and is not restricted to printable characters.)
 
12
 
 
13
Literals or match lengths are compressed with one Huffman tree, and
 
14
match distances are compressed with another tree. The trees are stored
 
15
in a compact form at the start of each block. The blocks can have any
 
16
size (except that the compressed data for one block must fit in
 
17
available memory). A block is terminated when deflate() determines that
 
18
it would be useful to start another block with fresh trees. (This is
 
19
somewhat similar to the behavior of LZW-based _compress_.)
 
20
 
 
21
Duplicated strings are found using a hash table. All input strings of
 
22
length 3 are inserted in the hash table. A hash index is computed for
 
23
the next 3 bytes. If the hash chain for this index is not empty, all
 
24
strings in the chain are compared with the current input string, and
 
25
the longest match is selected.
 
26
 
 
27
The hash chains are searched starting with the most recent strings, to
 
28
favor small distances and thus take advantage of the Huffman encoding.
 
29
The hash chains are singly linked. There are no deletions from the
 
30
hash chains, the algorithm simply discards matches that are too old.
 
31
 
 
32
To avoid a worst-case situation, very long hash chains are arbitrarily
 
33
truncated at a certain length, determined by a runtime option (level
 
34
parameter of deflateInit). So deflate() does not always find the longest
 
35
possible match but generally finds a match which is long enough.
 
36
 
 
37
deflate() also defers the selection of matches with a lazy evaluation
 
38
mechanism. After a match of length N has been found, deflate() searches for
 
39
a longer match at the next input byte. If a longer match is found, the
 
40
previous match is truncated to a length of one (thus producing a single
 
41
literal byte) and the process of lazy evaluation begins again. Otherwise,
 
42
the original match is kept, and the next match search is attempted only N
 
43
steps later.
 
44
 
 
45
The lazy match evaluation is also subject to a runtime parameter. If
 
46
the current match is long enough, deflate() reduces the search for a longer
 
47
match, thus speeding up the whole process. If compression ratio is more
 
48
important than speed, deflate() attempts a complete second search even if
 
49
the first match is already long enough.
 
50
 
 
51
The lazy match evaluation is not performed for the fastest compression
 
52
modes (level parameter 1 to 3). For these fast modes, new strings
 
53
are inserted in the hash table only when no match was found, or
 
54
when the match is not too long. This degrades the compression ratio
 
55
but saves time since there are both fewer insertions and fewer searches.
 
56
 
 
57
 
 
58
2. Decompression algorithm (inflate)
 
59
 
 
60
2.1 Introduction
 
61
 
 
62
The key question is how to represent a Huffman code (or any prefix code) so
 
63
that you can decode fast.  The most important characteristic is that shorter
 
64
codes are much more common than longer codes, so pay attention to decoding the
 
65
short codes fast, and let the long codes take longer to decode.
 
66
 
 
67
inflate() sets up a first level table that covers some number of bits of
 
68
input less than the length of longest code.  It gets that many bits from the
 
69
stream, and looks it up in the table.  The table will tell if the next
 
70
code is that many bits or less and how many, and if it is, it will tell
 
71
the value, else it will point to the next level table for which inflate()
 
72
grabs more bits and tries to decode a longer code.
 
73
 
 
74
How many bits to make the first lookup is a tradeoff between the time it
 
75
takes to decode and the time it takes to build the table.  If building the
 
76
table took no time (and if you had infinite memory), then there would only
 
77
be a first level table to cover all the way to the longest code.  However,
 
78
building the table ends up taking a lot longer for more bits since short
 
79
codes are replicated many times in such a table.  What inflate() does is
 
80
simply to make the number of bits in the first table a variable, and  then
 
81
to set that variable for the maximum speed.
 
82
 
 
83
For inflate, which has 286 possible codes for the literal/length tree, the size
 
84
of the first table is nine bits.  Also the distance trees have 30 possible
 
85
values, and the size of the first table is six bits.  Note that for each of
 
86
those cases, the table ended up one bit longer than the ``average'' code
 
87
length, i.e. the code length of an approximately flat code which would be a
 
88
little more than eight bits for 286 symbols and a little less than five bits
 
89
for 30 symbols.
 
90
 
 
91
 
 
92
2.2 More details on the inflate table lookup
 
93
 
 
94
Ok, you want to know what this cleverly obfuscated inflate tree actually
 
95
looks like.  You are correct that it's not a Huffman tree.  It is simply a
 
96
lookup table for the first, let's say, nine bits of a Huffman symbol.  The
 
97
symbol could be as short as one bit or as long as 15 bits.  If a particular
 
98
symbol is shorter than nine bits, then that symbol's translation is duplicated
 
99
in all those entries that start with that symbol's bits.  For example, if the
 
100
symbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a
 
101
symbol is nine bits long, it appears in the table once.
 
102
 
 
103
If the symbol is longer than nine bits, then that entry in the table points
 
104
to another similar table for the remaining bits.  Again, there are duplicated
 
105
entries as needed.  The idea is that most of the time the symbol will be short
 
106
and there will only be one table look up.  (That's whole idea behind data
 
107
compression in the first place.)  For the less frequent long symbols, there
 
108
will be two lookups.  If you had a compression method with really long
 
109
symbols, you could have as many levels of lookups as is efficient.  For
 
110
inflate, two is enough.
 
111
 
 
112
So a table entry either points to another table (in which case nine bits in
 
113
the above example are gobbled), or it contains the translation for the symbol
 
114
and the number of bits to gobble.  Then you start again with the next
 
115
ungobbled bit.
 
116
 
 
117
You may wonder: why not just have one lookup table for how ever many bits the
 
118
longest symbol is?  The reason is that if you do that, you end up spending
 
119
more time filling in duplicate symbol entries than you do actually decoding.
 
120
At least for deflate's output that generates new trees every several 10's of
 
121
kbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code
 
122
would take too long if you're only decoding several thousand symbols.  At the
 
123
other extreme, you could make a new table for every bit in the code.  In fact,
 
124
that's essentially a Huffman tree.  But then you spend too much time
 
125
traversing the tree while decoding, even for short symbols.
 
126
 
 
127
So the number of bits for the first lookup table is a trade of the time to
 
128
fill out the table vs. the time spent looking at the second level and above of
 
129
the table.
 
130
 
 
131
Here is an example, scaled down:
 
132
 
 
133
The code being decoded, with 10 symbols, from 1 to 6 bits long:
 
134
 
 
135
A: 0
 
136
B: 10
 
137
C: 1100
 
138
D: 11010
 
139
E: 11011
 
140
F: 11100
 
141
G: 11101
 
142
H: 11110
 
143
I: 111110
 
144
J: 111111
 
145
 
 
146
Let's make the first table three bits long (eight entries):
 
147
 
 
148
000: A,1
 
149
001: A,1
 
150
010: A,1
 
151
011: A,1
 
152
100: B,2
 
153
101: B,2
 
154
110: -> table X (gobble 3 bits)
 
155
111: -> table Y (gobble 3 bits)
 
156
 
 
157
Each entry is what the bits decode as and how many bits that is, i.e. how
 
158
many bits to gobble.  Or the entry points to another table, with the number of
 
159
bits to gobble implicit in the size of the table.
 
160
 
 
161
Table X is two bits long since the longest code starting with 110 is five bits
 
162
long:
 
163
 
 
164
00: C,1
 
165
01: C,1
 
166
10: D,2
 
167
11: E,2
 
168
 
 
169
Table Y is three bits long since the longest code starting with 111 is six
 
170
bits long:
 
171
 
 
172
000: F,2
 
173
001: F,2
 
174
010: G,2
 
175
011: G,2
 
176
100: H,2
 
177
101: H,2
 
178
110: I,3
 
179
111: J,3
 
180
 
 
181
So what we have here are three tables with a total of 20 entries that had to
 
182
be constructed.  That's compared to 64 entries for a single table.  Or
 
183
compared to 16 entries for a Huffman tree (six two entry tables and one four
 
184
entry table).  Assuming that the code ideally represents the probability of
 
185
the symbols, it takes on the average 1.25 lookups per symbol.  That's compared
 
186
to one lookup for the single table, or 1.66 lookups per symbol for the
 
187
Huffman tree.
 
188
 
 
189
There, I think that gives you a picture of what's going on.  For inflate, the
 
190
meaning of a particular symbol is often more than just a letter.  It can be a
 
191
byte (a "literal"), or it can be either a length or a distance which
 
192
indicates a base value and a number of bits to fetch after the code that is
 
193
added to the base value.  Or it might be the special end-of-block code.  The
 
194
data structures created in inftrees.c try to encode all that information
 
195
compactly in the tables.
 
196
 
 
197
 
 
198
Jean-loup Gailly        Mark Adler
 
199
jloup@gzip.org          madler@alumni.caltech.edu
 
200
 
 
201
 
 
202
References:
 
203
 
 
204
[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
 
205
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
 
206
pp. 337-343.
 
207
 
 
208
``DEFLATE Compressed Data Format Specification'' available in
 
209
http://tools.ietf.org/html/rfc1951