~ubuntu-branches/ubuntu/trusty/mesa-lts-utopic/trusty-proposed

« back to all changes in this revision

Viewing changes to src/mesa/swrast/s_aaline.c

  • Committer: Package Import Robot
  • Author(s): Maarten Lankhorst
  • Date: 2015-01-06 10:38:32 UTC
  • Revision ID: package-import@ubuntu.com-20150106103832-u6rqp9wfmojb1gnu
Tags: upstream-10.3.2
ImportĀ upstreamĀ versionĀ 10.3.2

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/*
 
2
 * Mesa 3-D graphics library
 
3
 *
 
4
 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
 
5
 *
 
6
 * Permission is hereby granted, free of charge, to any person obtaining a
 
7
 * copy of this software and associated documentation files (the "Software"),
 
8
 * to deal in the Software without restriction, including without limitation
 
9
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 
10
 * and/or sell copies of the Software, and to permit persons to whom the
 
11
 * Software is furnished to do so, subject to the following conditions:
 
12
 *
 
13
 * The above copyright notice and this permission notice shall be included
 
14
 * in all copies or substantial portions of the Software.
 
15
 *
 
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 
17
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 
20
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 
21
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 
22
 * OTHER DEALINGS IN THE SOFTWARE.
 
23
 */
 
24
 
 
25
 
 
26
#include "main/glheader.h"
 
27
#include "main/imports.h"
 
28
#include "main/macros.h"
 
29
#include "main/mtypes.h"
 
30
#include "swrast/s_aaline.h"
 
31
#include "swrast/s_context.h"
 
32
#include "swrast/s_span.h"
 
33
#include "swrast/swrast.h"
 
34
 
 
35
 
 
36
#define SUB_PIXEL 4
 
37
 
 
38
 
 
39
/*
 
40
 * Info about the AA line we're rendering
 
41
 */
 
42
struct LineInfo
 
43
{
 
44
   GLfloat x0, y0;        /* start */
 
45
   GLfloat x1, y1;        /* end */
 
46
   GLfloat dx, dy;        /* direction vector */
 
47
   GLfloat len;           /* length */
 
48
   GLfloat halfWidth;     /* half of line width */
 
49
   GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
 
50
   /* for coverage computation */
 
51
   GLfloat qx0, qy0;      /* quad vertices */
 
52
   GLfloat qx1, qy1;
 
53
   GLfloat qx2, qy2;
 
54
   GLfloat qx3, qy3;
 
55
   GLfloat ex0, ey0;      /* quad edge vectors */
 
56
   GLfloat ex1, ey1;
 
57
   GLfloat ex2, ey2;
 
58
   GLfloat ex3, ey3;
 
59
 
 
60
   /* DO_Z */
 
61
   GLfloat zPlane[4];
 
62
   /* DO_RGBA - always enabled */
 
63
   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
 
64
   /* DO_ATTRIBS */
 
65
   GLfloat wPlane[4];
 
66
   GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
 
67
   GLfloat lambda[VARYING_SLOT_MAX];
 
68
   GLfloat texWidth[VARYING_SLOT_MAX];
 
69
   GLfloat texHeight[VARYING_SLOT_MAX];
 
70
 
 
71
   SWspan span;
 
72
};
 
73
 
 
74
 
 
75
 
 
76
/*
 
77
 * Compute the equation of a plane used to interpolate line fragment data
 
78
 * such as color, Z, texture coords, etc.
 
79
 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
 
80
 *        z0, and z1 are the end point values to interpolate.
 
81
 * Output:  plane - the plane equation.
 
82
 *
 
83
 * Note: we don't really have enough parameters to specify a plane.
 
84
 * We take the endpoints of the line and compute a plane such that
 
85
 * the cross product of the line vector and the plane normal is
 
86
 * parallel to the projection plane.
 
87
 */
 
88
static void
 
89
compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
 
90
              GLfloat z0, GLfloat z1, GLfloat plane[4])
 
91
{
 
92
#if 0
 
93
   /* original */
 
94
   const GLfloat px = x1 - x0;
 
95
   const GLfloat py = y1 - y0;
 
96
   const GLfloat pz = z1 - z0;
 
97
   const GLfloat qx = -py;
 
98
   const GLfloat qy = px;
 
99
   const GLfloat qz = 0;
 
100
   const GLfloat a = py * qz - pz * qy;
 
101
   const GLfloat b = pz * qx - px * qz;
 
102
   const GLfloat c = px * qy - py * qx;
 
103
   const GLfloat d = -(a * x0 + b * y0 + c * z0);
 
104
   plane[0] = a;
 
105
   plane[1] = b;
 
106
   plane[2] = c;
 
107
   plane[3] = d;
 
108
#else
 
109
   /* simplified */
 
110
   const GLfloat px = x1 - x0;
 
111
   const GLfloat py = y1 - y0;
 
112
   const GLfloat pz = z0 - z1;
 
113
   const GLfloat a = pz * px;
 
114
   const GLfloat b = pz * py;
 
115
   const GLfloat c = px * px + py * py;
 
116
   const GLfloat d = -(a * x0 + b * y0 + c * z0);
 
117
   if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
 
118
      plane[0] = 0.0;
 
119
      plane[1] = 0.0;
 
120
      plane[2] = 1.0;
 
121
      plane[3] = 0.0;
 
122
   }
 
123
   else {
 
124
      plane[0] = a;
 
125
      plane[1] = b;
 
126
      plane[2] = c;
 
127
      plane[3] = d;
 
128
   }
 
129
#endif
 
130
}
 
131
 
 
132
 
 
133
static inline void
 
134
constant_plane(GLfloat value, GLfloat plane[4])
 
135
{
 
136
   plane[0] = 0.0;
 
137
   plane[1] = 0.0;
 
138
   plane[2] = -1.0;
 
139
   plane[3] = value;
 
140
}
 
141
 
 
142
 
 
143
static inline GLfloat
 
144
solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
 
145
{
 
146
   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
 
147
   return z;
 
148
}
 
149
 
 
150
#define SOLVE_PLANE(X, Y, PLANE) \
 
151
   ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
 
152
 
 
153
 
 
154
/*
 
155
 * Return 1 / solve_plane().
 
156
 */
 
157
static inline GLfloat
 
158
solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
 
159
{
 
160
   const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
 
161
   if (denom == 0.0)
 
162
      return 0.0;
 
163
   else
 
164
      return -plane[2] / denom;
 
165
}
 
166
 
 
167
 
 
168
/*
 
169
 * Solve plane and return clamped GLchan value.
 
170
 */
 
171
static inline GLchan
 
172
solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
 
173
{
 
174
   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
 
175
#if CHAN_TYPE == GL_FLOAT
 
176
   return CLAMP(z, 0.0F, CHAN_MAXF);
 
177
#else
 
178
   if (z < 0)
 
179
      return 0;
 
180
   else if (z > CHAN_MAX)
 
181
      return CHAN_MAX;
 
182
   return (GLchan) IROUND_POS(z);
 
183
#endif
 
184
}
 
185
 
 
186
 
 
187
/*
 
188
 * Compute mipmap level of detail.
 
189
 */
 
190
static inline GLfloat
 
191
compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
 
192
               GLfloat invQ, GLfloat width, GLfloat height)
 
193
{
 
194
   GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
 
195
   GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
 
196
   GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
 
197
   GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
 
198
   GLfloat r1 = dudx * dudx + dudy * dudy;
 
199
   GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
 
200
   GLfloat rho2 = r1 + r2;
 
201
   /* return log base 2 of rho */
 
202
   if (rho2 == 0.0F)
 
203
      return 0.0;
 
204
   else
 
205
      return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
 
206
}
 
207
 
 
208
 
 
209
 
 
210
 
 
211
/*
 
212
 * Fill in the samples[] array with the (x,y) subpixel positions of
 
213
 * xSamples * ySamples sample positions.
 
214
 * Note that the four corner samples are put into the first four
 
215
 * positions of the array.  This allows us to optimize for the common
 
216
 * case of all samples being inside the polygon.
 
217
 */
 
218
static void
 
219
make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
 
220
{
 
221
   const GLfloat dx = 1.0F / (GLfloat) xSamples;
 
222
   const GLfloat dy = 1.0F / (GLfloat) ySamples;
 
223
   GLint x, y;
 
224
   GLint i;
 
225
 
 
226
   i = 4;
 
227
   for (x = 0; x < xSamples; x++) {
 
228
      for (y = 0; y < ySamples; y++) {
 
229
         GLint j;
 
230
         if (x == 0 && y == 0) {
 
231
            /* lower left */
 
232
            j = 0;
 
233
         }
 
234
         else if (x == xSamples - 1 && y == 0) {
 
235
            /* lower right */
 
236
            j = 1;
 
237
         }
 
238
         else if (x == 0 && y == ySamples - 1) {
 
239
            /* upper left */
 
240
            j = 2;
 
241
         }
 
242
         else if (x == xSamples - 1 && y == ySamples - 1) {
 
243
            /* upper right */
 
244
            j = 3;
 
245
         }
 
246
         else {
 
247
            j = i++;
 
248
         }
 
249
         samples[j][0] = x * dx + 0.5F * dx;
 
250
         samples[j][1] = y * dy + 0.5F * dy;
 
251
      }
 
252
   }
 
253
}
 
254
 
 
255
 
 
256
 
 
257
/*
 
258
 * Compute how much of the given pixel's area is inside the rectangle
 
259
 * defined by vertices v0, v1, v2, v3.
 
260
 * Vertices MUST be specified in counter-clockwise order.
 
261
 * Return:  coverage in [0, 1].
 
262
 */
 
263
static GLfloat
 
264
compute_coveragef(const struct LineInfo *info,
 
265
                  GLint winx, GLint winy)
 
266
{
 
267
   static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
 
268
   static GLboolean haveSamples = GL_FALSE;
 
269
   const GLfloat x = (GLfloat) winx;
 
270
   const GLfloat y = (GLfloat) winy;
 
271
   GLint stop = 4, i;
 
272
   GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
 
273
 
 
274
   if (!haveSamples) {
 
275
      make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
 
276
      haveSamples = GL_TRUE;
 
277
   }
 
278
 
 
279
#if 0 /*DEBUG*/
 
280
   {
 
281
      const GLfloat area = dx0 * dy1 - dx1 * dy0;
 
282
      assert(area >= 0.0);
 
283
   }
 
284
#endif
 
285
 
 
286
   for (i = 0; i < stop; i++) {
 
287
      const GLfloat sx = x + samples[i][0];
 
288
      const GLfloat sy = y + samples[i][1];
 
289
      const GLfloat fx0 = sx - info->qx0;
 
290
      const GLfloat fy0 = sy - info->qy0;
 
291
      const GLfloat fx1 = sx - info->qx1;
 
292
      const GLfloat fy1 = sy - info->qy1;
 
293
      const GLfloat fx2 = sx - info->qx2;
 
294
      const GLfloat fy2 = sy - info->qy2;
 
295
      const GLfloat fx3 = sx - info->qx3;
 
296
      const GLfloat fy3 = sy - info->qy3;
 
297
      /* cross product determines if sample is inside or outside each edge */
 
298
      GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
 
299
      GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
 
300
      GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
 
301
      GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
 
302
      /* Check if the sample is exactly on an edge.  If so, let cross be a
 
303
       * positive or negative value depending on the direction of the edge.
 
304
       */
 
305
      if (cross0 == 0.0F)
 
306
         cross0 = info->ex0 + info->ey0;
 
307
      if (cross1 == 0.0F)
 
308
         cross1 = info->ex1 + info->ey1;
 
309
      if (cross2 == 0.0F)
 
310
         cross2 = info->ex2 + info->ey2;
 
311
      if (cross3 == 0.0F)
 
312
         cross3 = info->ex3 + info->ey3;
 
313
      if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
 
314
         /* point is outside quadrilateral */
 
315
         insideCount -= 1.0F;
 
316
         stop = SUB_PIXEL * SUB_PIXEL;
 
317
      }
 
318
   }
 
319
   if (stop == 4)
 
320
      return 1.0F;
 
321
   else
 
322
      return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
 
323
}
 
324
 
 
325
 
 
326
typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
 
327
                          int ix, int iy);
 
328
                         
 
329
 
 
330
 
 
331
/*
 
332
 * Draw an AA line segment (called many times per line when stippling)
 
333
 */
 
334
static void
 
335
segment(struct gl_context *ctx,
 
336
        struct LineInfo *line,
 
337
        plot_func plot,
 
338
        GLfloat t0, GLfloat t1)
 
339
{
 
340
   const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
 
341
   const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
 
342
   /* compute the actual segment's endpoints */
 
343
   const GLfloat x0 = line->x0 + t0 * line->dx;
 
344
   const GLfloat y0 = line->y0 + t0 * line->dy;
 
345
   const GLfloat x1 = line->x0 + t1 * line->dx;
 
346
   const GLfloat y1 = line->y0 + t1 * line->dy;
 
347
 
 
348
   /* compute vertices of the line-aligned quadrilateral */
 
349
   line->qx0 = x0 - line->yAdj;
 
350
   line->qy0 = y0 + line->xAdj;
 
351
   line->qx1 = x0 + line->yAdj;
 
352
   line->qy1 = y0 - line->xAdj;
 
353
   line->qx2 = x1 + line->yAdj;
 
354
   line->qy2 = y1 - line->xAdj;
 
355
   line->qx3 = x1 - line->yAdj;
 
356
   line->qy3 = y1 + line->xAdj;
 
357
   /* compute the quad's edge vectors (for coverage calc) */
 
358
   line->ex0 = line->qx1 - line->qx0;
 
359
   line->ey0 = line->qy1 - line->qy0;
 
360
   line->ex1 = line->qx2 - line->qx1;
 
361
   line->ey1 = line->qy2 - line->qy1;
 
362
   line->ex2 = line->qx3 - line->qx2;
 
363
   line->ey2 = line->qy3 - line->qy2;
 
364
   line->ex3 = line->qx0 - line->qx3;
 
365
   line->ey3 = line->qy0 - line->qy3;
 
366
 
 
367
   if (absDx > absDy) {
 
368
      /* X-major line */
 
369
      GLfloat dydx = line->dy / line->dx;
 
370
      GLfloat xLeft, xRight, yBot, yTop;
 
371
      GLint ix, ixRight;
 
372
      if (x0 < x1) {
 
373
         xLeft = x0 - line->halfWidth;
 
374
         xRight = x1 + line->halfWidth;
 
375
         if (line->dy >= 0.0) {
 
376
            yBot = y0 - 3.0F * line->halfWidth;
 
377
            yTop = y0 + line->halfWidth;
 
378
         }
 
379
         else {
 
380
            yBot = y0 - line->halfWidth;
 
381
            yTop = y0 + 3.0F * line->halfWidth;
 
382
         }
 
383
      }
 
384
      else {
 
385
         xLeft = x1 - line->halfWidth;
 
386
         xRight = x0 + line->halfWidth;
 
387
         if (line->dy <= 0.0) {
 
388
            yBot = y1 - 3.0F * line->halfWidth;
 
389
            yTop = y1 + line->halfWidth;
 
390
         }
 
391
         else {
 
392
            yBot = y1 - line->halfWidth;
 
393
            yTop = y1 + 3.0F * line->halfWidth;
 
394
         }
 
395
      }
 
396
 
 
397
      /* scan along the line, left-to-right */
 
398
      ixRight = (GLint) (xRight + 1.0F);
 
399
 
 
400
      /*printf("avg span height: %g\n", yTop - yBot);*/
 
401
      for (ix = (GLint) xLeft; ix < ixRight; ix++) {
 
402
         const GLint iyBot = (GLint) yBot;
 
403
         const GLint iyTop = (GLint) (yTop + 1.0F);
 
404
         GLint iy;
 
405
         /* scan across the line, bottom-to-top */
 
406
         for (iy = iyBot; iy < iyTop; iy++) {
 
407
            (*plot)(ctx, line, ix, iy);
 
408
         }
 
409
         yBot += dydx;
 
410
         yTop += dydx;
 
411
      }
 
412
   }
 
413
   else {
 
414
      /* Y-major line */
 
415
      GLfloat dxdy = line->dx / line->dy;
 
416
      GLfloat yBot, yTop, xLeft, xRight;
 
417
      GLint iy, iyTop;
 
418
      if (y0 < y1) {
 
419
         yBot = y0 - line->halfWidth;
 
420
         yTop = y1 + line->halfWidth;
 
421
         if (line->dx >= 0.0) {
 
422
            xLeft = x0 - 3.0F * line->halfWidth;
 
423
            xRight = x0 + line->halfWidth;
 
424
         }
 
425
         else {
 
426
            xLeft = x0 - line->halfWidth;
 
427
            xRight = x0 + 3.0F * line->halfWidth;
 
428
         }
 
429
      }
 
430
      else {
 
431
         yBot = y1 - line->halfWidth;
 
432
         yTop = y0 + line->halfWidth;
 
433
         if (line->dx <= 0.0) {
 
434
            xLeft = x1 - 3.0F * line->halfWidth;
 
435
            xRight = x1 + line->halfWidth;
 
436
         }
 
437
         else {
 
438
            xLeft = x1 - line->halfWidth;
 
439
            xRight = x1 + 3.0F * line->halfWidth;
 
440
         }
 
441
      }
 
442
 
 
443
      /* scan along the line, bottom-to-top */
 
444
      iyTop = (GLint) (yTop + 1.0F);
 
445
 
 
446
      /*printf("avg span width: %g\n", xRight - xLeft);*/
 
447
      for (iy = (GLint) yBot; iy < iyTop; iy++) {
 
448
         const GLint ixLeft = (GLint) xLeft;
 
449
         const GLint ixRight = (GLint) (xRight + 1.0F);
 
450
         GLint ix;
 
451
         /* scan across the line, left-to-right */
 
452
         for (ix = ixLeft; ix < ixRight; ix++) {
 
453
            (*plot)(ctx, line, ix, iy);
 
454
         }
 
455
         xLeft += dxdy;
 
456
         xRight += dxdy;
 
457
      }
 
458
   }
 
459
}
 
460
 
 
461
 
 
462
#define NAME(x) aa_rgba_##x
 
463
#define DO_Z
 
464
#include "s_aalinetemp.h"
 
465
 
 
466
 
 
467
#define NAME(x)  aa_general_rgba_##x
 
468
#define DO_Z
 
469
#define DO_ATTRIBS
 
470
#include "s_aalinetemp.h"
 
471
 
 
472
 
 
473
 
 
474
void
 
475
_swrast_choose_aa_line_function(struct gl_context *ctx)
 
476
{
 
477
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
 
478
 
 
479
   ASSERT(ctx->Line.SmoothFlag);
 
480
 
 
481
   if (ctx->Texture._EnabledCoordUnits != 0
 
482
       || _swrast_use_fragment_program(ctx)
 
483
       || (ctx->Light.Enabled &&
 
484
           ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
 
485
       || ctx->Fog.ColorSumEnabled
 
486
       || swrast->_FogEnabled) {
 
487
      swrast->Line = aa_general_rgba_line;
 
488
   }
 
489
   else {
 
490
      swrast->Line = aa_rgba_line;
 
491
   }
 
492
}