5
bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
6
bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
7
bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
8
bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
9
bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
10
bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
11
bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM
12
library internal functions
16
BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
17
BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
19
void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
20
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
21
BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
23
BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
26
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
27
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
28
void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
29
void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);
31
int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);
33
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
35
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
36
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
37
int dna,int dnb,BN_ULONG *tmp);
38
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
39
int n, int tna,int tnb, BN_ULONG *tmp);
40
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
41
int n2, BN_ULONG *tmp);
42
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
43
int n2, BN_ULONG *tmp);
45
void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
46
void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
48
void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
49
void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
50
void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);
52
BIGNUM *bn_expand(BIGNUM *a, int bits);
53
BIGNUM *bn_wexpand(BIGNUM *a, int n);
54
BIGNUM *bn_expand2(BIGNUM *a, int n);
55
void bn_fix_top(BIGNUM *a);
57
void bn_check_top(BIGNUM *a);
58
void bn_print(BIGNUM *a);
59
void bn_dump(BN_ULONG *d, int n);
60
void bn_set_max(BIGNUM *a);
61
void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
62
void bn_set_low(BIGNUM *r, BIGNUM *a, int n);
66
This page documents the internal functions used by the OpenSSL
67
B<BIGNUM> implementation. They are described here to facilitate
68
debugging and extending the library. They are I<not> to be used by
71
=head2 The BIGNUM structure
73
typedef struct bignum_st
75
int top; /* index of last used d (most significant word) */
76
BN_ULONG *d; /* pointer to an array of 'BITS2' bit chunks */
77
int max; /* size of the d array */
81
The big number is stored in B<d>, a malloc()ed array of B<BN_ULONG>s,
82
least significant first. A B<BN_ULONG> can be either 16, 32 or 64 bits
83
in size (B<BITS2>), depending on the 'number of bits' specified in
86
B<max> is the size of the B<d> array that has been allocated. B<top>
87
is the 'last' entry being used, so for a value of 4, bn.d[0]=4 and
88
bn.top=1. B<neg> is 1 if the number is negative. When a B<BIGNUM> is
89
B<0>, the B<d> field can be B<NULL> and B<top> == B<0>.
91
Various routines in this library require the use of temporary
92
B<BIGNUM> variables during their execution. Since dynamic memory
93
allocation to create B<BIGNUM>s is rather expensive when used in
94
conjunction with repeated subroutine calls, the B<BN_CTX> structure is
95
used. This structure contains B<BN_CTX_NUM> B<BIGNUM>s, see
96
L<BN_CTX_start(3)|BN_CTX_start(3)>.
98
=head2 Low-level arithmetic operations
100
These functions are implemented in C and for several platforms in
103
bn_mul_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> word
104
arrays B<rp> and B<ap>. It computes B<ap> * B<w>, places the result
105
in B<rp>, and returns the high word (carry).
107
bn_mul_add_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num>
108
word arrays B<rp> and B<ap>. It computes B<ap> * B<w> + B<rp>, places
109
the result in B<rp>, and returns the high word (carry).
111
bn_sqr_words(B<rp>, B<ap>, B<n>) operates on the B<num> word array
112
B<ap> and the 2*B<num> word array B<ap>. It computes B<ap> * B<ap>
113
word-wise, and places the low and high bytes of the result in B<rp>.
115
bn_div_words(B<h>, B<l>, B<d>) divides the two word number (B<h>,B<l>)
116
by B<d> and returns the result.
118
bn_add_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word
119
arrays B<ap>, B<bp> and B<rp>. It computes B<ap> + B<bp>, places the
120
result in B<rp>, and returns the high word (carry).
122
bn_sub_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word
123
arrays B<ap>, B<bp> and B<rp>. It computes B<ap> - B<bp>, places the
124
result in B<rp>, and returns the carry (1 if B<bp> E<gt> B<ap>, 0
127
bn_mul_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and
128
B<b> and the 8 word array B<r>. It computes B<a>*B<b> and places the
131
bn_mul_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and
132
B<b> and the 16 word array B<r>. It computes B<a>*B<b> and places the
135
bn_sqr_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and
136
B<b> and the 8 word array B<r>.
138
bn_sqr_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and
139
B<b> and the 16 word array B<r>.
141
The following functions are implemented in C:
143
bn_cmp_words(B<a>, B<b>, B<n>) operates on the B<n> word arrays B<a>
144
and B<b>. It returns 1, 0 and -1 if B<a> is greater than, equal and
147
bn_mul_normal(B<r>, B<a>, B<na>, B<b>, B<nb>) operates on the B<na>
148
word array B<a>, the B<nb> word array B<b> and the B<na>+B<nb> word
149
array B<r>. It computes B<a>*B<b> and places the result in B<r>.
151
bn_mul_low_normal(B<r>, B<a>, B<b>, B<n>) operates on the B<n> word
152
arrays B<r>, B<a> and B<b>. It computes the B<n> low words of
153
B<a>*B<b> and places the result in B<r>.
155
bn_mul_recursive(B<r>, B<a>, B<b>, B<n2>, B<dna>, B<dnb>, B<t>) operates
156
on the word arrays B<a> and B<b> of length B<n2>+B<dna> and B<n2>+B<dnb>
157
(B<dna> and B<dnb> are currently allowed to be 0 or negative) and the 2*B<n2>
158
word arrays B<r> and B<t>. B<n2> must be a power of 2. It computes
159
B<a>*B<b> and places the result in B<r>.
161
bn_mul_part_recursive(B<r>, B<a>, B<b>, B<n>, B<tna>, B<tnb>, B<tmp>)
162
operates on the word arrays B<a> and B<b> of length B<n>+B<tna> and
163
B<n>+B<tnb> and the 4*B<n> word arrays B<r> and B<tmp>.
165
bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the
166
B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a>
169
bn_mul_high(B<r>, B<a>, B<b>, B<l>, B<n2>, B<tmp>) operates on the
170
B<n2> word arrays B<r>, B<a>, B<b> and B<l> (?) and the 3*B<n2> word
173
BN_mul() calls bn_mul_normal(), or an optimized implementation if the
174
factors have the same size: bn_mul_comba8() is used if they are 8
175
words long, bn_mul_recursive() if they are larger than
176
B<BN_MULL_SIZE_NORMAL> and the size is an exact multiple of the word
177
size, and bn_mul_part_recursive() for others that are larger than
178
B<BN_MULL_SIZE_NORMAL>.
180
bn_sqr_normal(B<r>, B<a>, B<n>, B<tmp>) operates on the B<n> word array
181
B<a> and the 2*B<n> word arrays B<tmp> and B<r>.
183
The implementations use the following macros which, depending on the
184
architecture, may use "long long" C operations or inline assembler.
185
They are defined in C<bn_lcl.h>.
187
mul(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<c> and places the
188
low word of the result in B<r> and the high word in B<c>.
190
mul_add(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<r>+B<c> and
191
places the low word of the result in B<r> and the high word in B<c>.
193
sqr(B<r0>, B<r1>, B<a>) computes B<a>*B<a> and places the low word
194
of the result in B<r0> and the high word in B<r1>.
198
bn_expand() ensures that B<b> has enough space for a B<bits> bit
199
number. bn_wexpand() ensures that B<b> has enough space for an
200
B<n> word number. If the number has to be expanded, both macros
201
call bn_expand2(), which allocates a new B<d> array and copies the
202
data. They return B<NULL> on error, B<b> otherwise.
204
The bn_fix_top() macro reduces B<a-E<gt>top> to point to the most
205
significant non-zero word when B<a> has shrunk.
209
bn_check_top() verifies that C<((a)-E<gt>top E<gt>= 0 && (a)-E<gt>top
210
E<lt>= (a)-E<gt>max)>. A violation will cause the program to abort.
212
bn_print() prints B<a> to stderr. bn_dump() prints B<n> words at B<d>
213
(in reverse order, i.e. most significant word first) to stderr.
215
bn_set_max() makes B<a> a static number with a B<max> of its current size.
216
This is used by bn_set_low() and bn_set_high() to make B<r> a read-only
217
B<BIGNUM> that contains the B<n> low or high words of B<a>.
219
If B<BN_DEBUG> is not defined, bn_check_top(), bn_print(), bn_dump()
220
and bn_set_max() are defined as empty macros.