~ubuntu-branches/ubuntu/raring/ipxe/raring

« back to all changes in this revision

Viewing changes to src/drivers/net/e1000/e1000_82541.c

  • Committer: Package Import Robot
  • Author(s): James Page
  • Date: 2012-11-14 15:47:31 UTC
  • mfrom: (1.1.3)
  • Revision ID: package-import@ubuntu.com-20121114154731-jhuy5d1h2jw75qe9
Tags: 1.0.0+git-4.d6b0b76-0ubuntu1
* New upstream snapshot:
  - d/p/iscsi*.patch: Dropped - included in snapshot.
  - Refreshed all other patches.
* d/p/enable-https.patch: Enable HTTPS support (LP: #1025239).

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/*******************************************************************************
2
 
 
3
 
  Intel PRO/1000 Linux driver
4
 
  Copyright(c) 1999 - 2008 Intel Corporation.
5
 
 
6
 
  This program is free software; you can redistribute it and/or modify it
7
 
  under the terms and conditions of the GNU General Public License,
8
 
  version 2, as published by the Free Software Foundation.
9
 
 
10
 
  This program is distributed in the hope it will be useful, but WITHOUT
11
 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
 
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13
 
  more details.
14
 
 
15
 
  You should have received a copy of the GNU General Public License along with
16
 
  this program; if not, write to the Free Software Foundation, Inc.,
17
 
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
 
 
19
 
  The full GNU General Public License is included in this distribution in
20
 
  the file called "COPYING".
21
 
 
22
 
  Contact Information:
23
 
  Linux NICS <linux.nics@intel.com>
24
 
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25
 
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
 
 
27
 
*******************************************************************************/
28
 
 
29
 
FILE_LICENCE ( GPL2_OR_LATER );
30
 
 
31
 
/*
32
 
 * 82541EI Gigabit Ethernet Controller
33
 
 * 82541ER Gigabit Ethernet Controller
34
 
 * 82541GI Gigabit Ethernet Controller
35
 
 * 82541PI Gigabit Ethernet Controller
36
 
 * 82547EI Gigabit Ethernet Controller
37
 
 * 82547GI Gigabit Ethernet Controller
38
 
 */
39
 
 
40
 
#include "e1000_api.h"
41
 
 
42
 
static s32  e1000_init_phy_params_82541(struct e1000_hw *hw);
43
 
static s32  e1000_init_nvm_params_82541(struct e1000_hw *hw);
44
 
static s32  e1000_init_mac_params_82541(struct e1000_hw *hw);
45
 
static s32  e1000_reset_hw_82541(struct e1000_hw *hw);
46
 
static s32  e1000_init_hw_82541(struct e1000_hw *hw);
47
 
static s32  e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
48
 
                                         u16 *duplex);
49
 
static s32  e1000_phy_hw_reset_82541(struct e1000_hw *hw);
50
 
static s32  e1000_setup_copper_link_82541(struct e1000_hw *hw);
51
 
static s32  e1000_check_for_link_82541(struct e1000_hw *hw);
52
 
#if 0
53
 
static s32  e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
54
 
#endif
55
 
static s32  e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
56
 
                                          bool active);
57
 
static s32  e1000_setup_led_82541(struct e1000_hw *hw);
58
 
static s32  e1000_cleanup_led_82541(struct e1000_hw *hw);
59
 
static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
60
 
#if 0
61
 
static s32  e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
62
 
                                                     bool link_up);
63
 
#endif
64
 
static s32  e1000_phy_init_script_82541(struct e1000_hw *hw);
65
 
static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
66
 
 
67
 
#if 0
68
 
static const u16 e1000_igp_cable_length_table[] =
69
 
    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
70
 
      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
71
 
      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
72
 
      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
73
 
      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
74
 
      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
75
 
      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
76
 
      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
77
 
#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
78
 
                (sizeof(e1000_igp_cable_length_table) / \
79
 
                 sizeof(e1000_igp_cable_length_table[0]))
80
 
#endif
81
 
/**
82
 
 *  e1000_init_phy_params_82541 - Init PHY func ptrs.
83
 
 *  @hw: pointer to the HW structure
84
 
 **/
85
 
static s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
86
 
{
87
 
        struct e1000_phy_info *phy = &hw->phy;
88
 
        s32 ret_val = E1000_SUCCESS;
89
 
 
90
 
        DEBUGFUNC("e1000_init_phy_params_82541");
91
 
 
92
 
        phy->addr                      = 1;
93
 
        phy->autoneg_mask              = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94
 
        phy->reset_delay_us            = 10000;
95
 
        phy->type                      = e1000_phy_igp;
96
 
 
97
 
        /* Function Pointers */
98
 
        phy->ops.check_polarity        = e1000_check_polarity_igp;
99
 
#if 0
100
 
        phy->ops.force_speed_duplex    = e1000_phy_force_speed_duplex_igp;
101
 
#endif
102
 
#if 0
103
 
        phy->ops.get_cable_length      = e1000_get_cable_length_igp_82541;
104
 
#endif
105
 
        phy->ops.get_cfg_done          = e1000_get_cfg_done_generic;
106
 
        phy->ops.get_info              = e1000_get_phy_info_igp;
107
 
        phy->ops.read_reg              = e1000_read_phy_reg_igp;
108
 
        phy->ops.reset                 = e1000_phy_hw_reset_82541;
109
 
        phy->ops.set_d3_lplu_state     = e1000_set_d3_lplu_state_82541;
110
 
        phy->ops.write_reg             = e1000_write_phy_reg_igp;
111
 
        phy->ops.power_up              = e1000_power_up_phy_copper;
112
 
        phy->ops.power_down            = e1000_power_down_phy_copper_82541;
113
 
 
114
 
        ret_val = e1000_get_phy_id(hw);
115
 
        if (ret_val)
116
 
                goto out;
117
 
 
118
 
        /* Verify phy id */
119
 
        if (phy->id != IGP01E1000_I_PHY_ID) {
120
 
                ret_val = -E1000_ERR_PHY;
121
 
                goto out;
122
 
        }
123
 
 
124
 
out:
125
 
        return ret_val;
126
 
}
127
 
 
128
 
/**
129
 
 *  e1000_init_nvm_params_82541 - Init NVM func ptrs.
130
 
 *  @hw: pointer to the HW structure
131
 
 **/
132
 
static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
133
 
{
134
 
        struct   e1000_nvm_info *nvm = &hw->nvm;
135
 
        s32  ret_val = E1000_SUCCESS;
136
 
        u32 eecd = E1000_READ_REG(hw, E1000_EECD);
137
 
        u16 size;
138
 
 
139
 
        DEBUGFUNC("e1000_init_nvm_params_82541");
140
 
 
141
 
        switch (nvm->override) {
142
 
        case e1000_nvm_override_spi_large:
143
 
                nvm->type = e1000_nvm_eeprom_spi;
144
 
                eecd |= E1000_EECD_ADDR_BITS;
145
 
                break;
146
 
        case e1000_nvm_override_spi_small:
147
 
                nvm->type = e1000_nvm_eeprom_spi;
148
 
                eecd &= ~E1000_EECD_ADDR_BITS;
149
 
                break;
150
 
        case e1000_nvm_override_microwire_large:
151
 
                nvm->type = e1000_nvm_eeprom_microwire;
152
 
                eecd |= E1000_EECD_SIZE;
153
 
                break;
154
 
        case e1000_nvm_override_microwire_small:
155
 
                nvm->type = e1000_nvm_eeprom_microwire;
156
 
                eecd &= ~E1000_EECD_SIZE;
157
 
                break;
158
 
        default:
159
 
                nvm->type = eecd & E1000_EECD_TYPE
160
 
                            ? e1000_nvm_eeprom_spi
161
 
                            : e1000_nvm_eeprom_microwire;
162
 
                break;
163
 
        }
164
 
 
165
 
        if (nvm->type == e1000_nvm_eeprom_spi) {
166
 
                nvm->address_bits       = (eecd & E1000_EECD_ADDR_BITS)
167
 
                                          ? 16 : 8;
168
 
                nvm->delay_usec         = 1;
169
 
                nvm->opcode_bits        = 8;
170
 
                nvm->page_size          = (eecd & E1000_EECD_ADDR_BITS)
171
 
                                          ? 32 : 8;
172
 
 
173
 
                /* Function Pointers */
174
 
                nvm->ops.acquire        = e1000_acquire_nvm_generic;
175
 
                nvm->ops.read           = e1000_read_nvm_spi;
176
 
                nvm->ops.release        = e1000_release_nvm_generic;
177
 
                nvm->ops.update         = e1000_update_nvm_checksum_generic;
178
 
                nvm->ops.valid_led_default = e1000_valid_led_default_generic;
179
 
                nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
180
 
                nvm->ops.write          = e1000_write_nvm_spi;
181
 
 
182
 
                /*
183
 
                 * nvm->word_size must be discovered after the pointers
184
 
                 * are set so we can verify the size from the nvm image
185
 
                 * itself.  Temporarily set it to a dummy value so the
186
 
                 * read will work.
187
 
                 */
188
 
                nvm->word_size = 64;
189
 
                ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size);
190
 
                if (ret_val)
191
 
                        goto out;
192
 
                size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
193
 
                /*
194
 
                 * if size != 0, it can be added to a constant and become
195
 
                 * the left-shift value to set the word_size.  Otherwise,
196
 
                 * word_size stays at 64.
197
 
                 */
198
 
                if (size) {
199
 
                        size += NVM_WORD_SIZE_BASE_SHIFT_82541;
200
 
                        nvm->word_size = 1 << size;
201
 
                }
202
 
        } else {
203
 
                nvm->address_bits       = (eecd & E1000_EECD_ADDR_BITS)
204
 
                                          ? 8 : 6;
205
 
                nvm->delay_usec         = 50;
206
 
                nvm->opcode_bits        = 3;
207
 
                nvm->word_size          = (eecd & E1000_EECD_ADDR_BITS)
208
 
                                          ? 256 : 64;
209
 
 
210
 
                /* Function Pointers */
211
 
                nvm->ops.acquire        = e1000_acquire_nvm_generic;
212
 
                nvm->ops.read           = e1000_read_nvm_microwire;
213
 
                nvm->ops.release        = e1000_release_nvm_generic;
214
 
                nvm->ops.update         = e1000_update_nvm_checksum_generic;
215
 
                nvm->ops.valid_led_default = e1000_valid_led_default_generic;
216
 
                nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
217
 
                nvm->ops.write          = e1000_write_nvm_microwire;
218
 
        }
219
 
 
220
 
out:
221
 
        return ret_val;
222
 
}
223
 
 
224
 
/**
225
 
 *  e1000_init_mac_params_82541 - Init MAC func ptrs.
226
 
 *  @hw: pointer to the HW structure
227
 
 **/
228
 
static s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
229
 
{
230
 
        struct e1000_mac_info *mac = &hw->mac;
231
 
 
232
 
        DEBUGFUNC("e1000_init_mac_params_82541");
233
 
 
234
 
        /* Set media type */
235
 
        hw->phy.media_type = e1000_media_type_copper;
236
 
        /* Set mta register count */
237
 
        mac->mta_reg_count = 128;
238
 
        /* Set rar entry count */
239
 
        mac->rar_entry_count = E1000_RAR_ENTRIES;
240
 
        /* Set if part includes ASF firmware */
241
 
        mac->asf_firmware_present = true;
242
 
 
243
 
        /* Function Pointers */
244
 
 
245
 
        /* bus type/speed/width */
246
 
        mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
247
 
        /* function id */
248
 
        mac->ops.set_lan_id = e1000_set_lan_id_single_port;
249
 
        /* reset */
250
 
        mac->ops.reset_hw = e1000_reset_hw_82541;
251
 
        /* hw initialization */
252
 
        mac->ops.init_hw = e1000_init_hw_82541;
253
 
        /* link setup */
254
 
        mac->ops.setup_link = e1000_setup_link_generic;
255
 
        /* physical interface link setup */
256
 
        mac->ops.setup_physical_interface = e1000_setup_copper_link_82541;
257
 
        /* check for link */
258
 
        mac->ops.check_for_link = e1000_check_for_link_82541;
259
 
        /* link info */
260
 
        mac->ops.get_link_up_info = e1000_get_link_up_info_82541;
261
 
        /* multicast address update */
262
 
        mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
263
 
        /* writing VFTA */
264
 
        mac->ops.write_vfta = e1000_write_vfta_generic;
265
 
        /* clearing VFTA */
266
 
        mac->ops.clear_vfta = e1000_clear_vfta_generic;
267
 
        /* setting MTA */
268
 
        mac->ops.mta_set = e1000_mta_set_generic;
269
 
        /* ID LED init */
270
 
        mac->ops.id_led_init = e1000_id_led_init_generic;
271
 
        /* setup LED */
272
 
        mac->ops.setup_led = e1000_setup_led_82541;
273
 
        /* cleanup LED */
274
 
        mac->ops.cleanup_led = e1000_cleanup_led_82541;
275
 
        /* turn on/off LED */
276
 
        mac->ops.led_on = e1000_led_on_generic;
277
 
        mac->ops.led_off = e1000_led_off_generic;
278
 
        /* clear hardware counters */
279
 
        mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
280
 
 
281
 
        return E1000_SUCCESS;
282
 
}
283
 
 
284
 
/**
285
 
 *  e1000_init_function_pointers_82541 - Init func ptrs.
286
 
 *  @hw: pointer to the HW structure
287
 
 *
288
 
 *  Called to initialize all function pointers and parameters.
289
 
 **/
290
 
void e1000_init_function_pointers_82541(struct e1000_hw *hw)
291
 
{
292
 
        DEBUGFUNC("e1000_init_function_pointers_82541");
293
 
 
294
 
        hw->mac.ops.init_params = e1000_init_mac_params_82541;
295
 
        hw->nvm.ops.init_params = e1000_init_nvm_params_82541;
296
 
        hw->phy.ops.init_params = e1000_init_phy_params_82541;
297
 
}
298
 
 
299
 
/**
300
 
 *  e1000_reset_hw_82541 - Reset hardware
301
 
 *  @hw: pointer to the HW structure
302
 
 *
303
 
 *  This resets the hardware into a known state.
304
 
 **/
305
 
static s32 e1000_reset_hw_82541(struct e1000_hw *hw)
306
 
{
307
 
        u32 ledctl, ctrl, manc;
308
 
 
309
 
        DEBUGFUNC("e1000_reset_hw_82541");
310
 
 
311
 
        DEBUGOUT("Masking off all interrupts\n");
312
 
        E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
313
 
 
314
 
        E1000_WRITE_REG(hw, E1000_RCTL, 0);
315
 
        E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
316
 
        E1000_WRITE_FLUSH(hw);
317
 
 
318
 
        /*
319
 
         * Delay to allow any outstanding PCI transactions to complete
320
 
         * before resetting the device.
321
 
         */
322
 
        msec_delay(10);
323
 
 
324
 
        ctrl = E1000_READ_REG(hw, E1000_CTRL);
325
 
 
326
 
        /* Must reset the Phy before resetting the MAC */
327
 
        if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
328
 
                E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
329
 
                msec_delay(5);
330
 
        }
331
 
 
332
 
        DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
333
 
        switch (hw->mac.type) {
334
 
        case e1000_82541:
335
 
        case e1000_82541_rev_2:
336
 
                /*
337
 
                 * These controllers can't ack the 64-bit write when
338
 
                 * issuing the reset, so we use IO-mapping as a
339
 
                 * workaround to issue the reset.
340
 
                 */
341
 
                E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
342
 
                break;
343
 
        default:
344
 
                E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
345
 
                break;
346
 
        }
347
 
 
348
 
        /* Wait for NVM reload */
349
 
        msec_delay(20);
350
 
 
351
 
        /* Disable HW ARPs on ASF enabled adapters */
352
 
        manc = E1000_READ_REG(hw, E1000_MANC);
353
 
        manc &= ~E1000_MANC_ARP_EN;
354
 
        E1000_WRITE_REG(hw, E1000_MANC, manc);
355
 
 
356
 
        if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
357
 
                e1000_phy_init_script_82541(hw);
358
 
 
359
 
                /* Configure activity LED after Phy reset */
360
 
                ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
361
 
                ledctl &= IGP_ACTIVITY_LED_MASK;
362
 
                ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
363
 
                E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
364
 
        }
365
 
 
366
 
        /* Once again, mask the interrupts */
367
 
        DEBUGOUT("Masking off all interrupts\n");
368
 
        E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
369
 
 
370
 
        /* Clear any pending interrupt events. */
371
 
        E1000_READ_REG(hw, E1000_ICR);
372
 
 
373
 
        return E1000_SUCCESS;
374
 
}
375
 
 
376
 
/**
377
 
 *  e1000_init_hw_82541 - Initialize hardware
378
 
 *  @hw: pointer to the HW structure
379
 
 *
380
 
 *  This inits the hardware readying it for operation.
381
 
 **/
382
 
static s32 e1000_init_hw_82541(struct e1000_hw *hw)
383
 
{
384
 
        struct e1000_mac_info *mac = &hw->mac;
385
 
        struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
386
 
        u32 i, txdctl;
387
 
        s32 ret_val;
388
 
 
389
 
        DEBUGFUNC("e1000_init_hw_82541");
390
 
 
391
 
        /* Initialize identification LED */
392
 
        ret_val = mac->ops.id_led_init(hw);
393
 
        if (ret_val) {
394
 
                DEBUGOUT("Error initializing identification LED\n");
395
 
                /* This is not fatal and we should not stop init due to this */
396
 
        }
397
 
 
398
 
        /* Storing the Speed Power Down  value for later use */
399
 
        ret_val = hw->phy.ops.read_reg(hw,
400
 
                                       IGP01E1000_GMII_FIFO,
401
 
                                       &dev_spec->spd_default);
402
 
        if (ret_val)
403
 
                goto out;
404
 
 
405
 
        /* Disabling VLAN filtering */
406
 
        DEBUGOUT("Initializing the IEEE VLAN\n");
407
 
        mac->ops.clear_vfta(hw);
408
 
 
409
 
        /* Setup the receive address. */
410
 
        e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
411
 
 
412
 
        /* Zero out the Multicast HASH table */
413
 
        DEBUGOUT("Zeroing the MTA\n");
414
 
        for (i = 0; i < mac->mta_reg_count; i++) {
415
 
                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
416
 
                /*
417
 
                 * Avoid back to back register writes by adding the register
418
 
                 * read (flush).  This is to protect against some strange
419
 
                 * bridge configurations that may issue Memory Write Block
420
 
                 * (MWB) to our register space.
421
 
                 */
422
 
                E1000_WRITE_FLUSH(hw);
423
 
        }
424
 
 
425
 
        /* Setup link and flow control */
426
 
        ret_val = mac->ops.setup_link(hw);
427
 
 
428
 
        txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
429
 
        txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
430
 
                 E1000_TXDCTL_FULL_TX_DESC_WB;
431
 
        E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
432
 
 
433
 
        /*
434
 
         * Clear all of the statistics registers (clear on read).  It is
435
 
         * important that we do this after we have tried to establish link
436
 
         * because the symbol error count will increment wildly if there
437
 
         * is no link.
438
 
         */
439
 
        e1000_clear_hw_cntrs_82541(hw);
440
 
 
441
 
out:
442
 
        return ret_val;
443
 
}
444
 
 
445
 
/**
446
 
 * e1000_get_link_up_info_82541 - Report speed and duplex
447
 
 * @hw: pointer to the HW structure
448
 
 * @speed: pointer to speed buffer
449
 
 * @duplex: pointer to duplex buffer
450
 
 *
451
 
 * Retrieve the current speed and duplex configuration.
452
 
 **/
453
 
static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
454
 
                                        u16 *duplex)
455
 
{
456
 
        struct e1000_phy_info *phy = &hw->phy;
457
 
        s32 ret_val;
458
 
        u16 data;
459
 
 
460
 
        DEBUGFUNC("e1000_get_link_up_info_82541");
461
 
 
462
 
        ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
463
 
        if (ret_val)
464
 
                goto out;
465
 
 
466
 
        if (!phy->speed_downgraded)
467
 
                goto out;
468
 
 
469
 
        /*
470
 
         * IGP01 PHY may advertise full duplex operation after speed
471
 
         * downgrade even if it is operating at half duplex.
472
 
         * Here we set the duplex settings to match the duplex in the
473
 
         * link partner's capabilities.
474
 
         */
475
 
        ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data);
476
 
        if (ret_val)
477
 
                goto out;
478
 
 
479
 
        if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
480
 
                *duplex = HALF_DUPLEX;
481
 
        } else {
482
 
                ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data);
483
 
                if (ret_val)
484
 
                        goto out;
485
 
 
486
 
                if (*speed == SPEED_100) {
487
 
                        if (!(data & NWAY_LPAR_100TX_FD_CAPS))
488
 
                                *duplex = HALF_DUPLEX;
489
 
                } else if (*speed == SPEED_10) {
490
 
                        if (!(data & NWAY_LPAR_10T_FD_CAPS))
491
 
                                *duplex = HALF_DUPLEX;
492
 
                }
493
 
        }
494
 
 
495
 
out:
496
 
        return ret_val;
497
 
}
498
 
 
499
 
/**
500
 
 *  e1000_phy_hw_reset_82541 - PHY hardware reset
501
 
 *  @hw: pointer to the HW structure
502
 
 *
503
 
 *  Verify the reset block is not blocking us from resetting.  Acquire
504
 
 *  semaphore (if necessary) and read/set/write the device control reset
505
 
 *  bit in the PHY.  Wait the appropriate delay time for the device to
506
 
 *  reset and release the semaphore (if necessary).
507
 
 **/
508
 
static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
509
 
{
510
 
        s32 ret_val;
511
 
        u32 ledctl;
512
 
 
513
 
        DEBUGFUNC("e1000_phy_hw_reset_82541");
514
 
 
515
 
        ret_val = e1000_phy_hw_reset_generic(hw);
516
 
        if (ret_val)
517
 
                goto out;
518
 
 
519
 
        e1000_phy_init_script_82541(hw);
520
 
 
521
 
        if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
522
 
                /* Configure activity LED after PHY reset */
523
 
                ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
524
 
                ledctl &= IGP_ACTIVITY_LED_MASK;
525
 
                ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
526
 
                E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
527
 
        }
528
 
 
529
 
out:
530
 
        return ret_val;
531
 
}
532
 
 
533
 
/**
534
 
 *  e1000_setup_copper_link_82541 - Configure copper link settings
535
 
 *  @hw: pointer to the HW structure
536
 
 *
537
 
 *  Calls the appropriate function to configure the link for auto-neg or forced
538
 
 *  speed and duplex.  Then we check for link, once link is established calls
539
 
 *  to configure collision distance and flow control are called.  If link is
540
 
 *  not established, we return -E1000_ERR_PHY (-2).
541
 
 **/
542
 
static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
543
 
{
544
 
        struct e1000_phy_info *phy = &hw->phy;
545
 
        struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
546
 
        s32  ret_val;
547
 
        u32 ctrl, ledctl;
548
 
 
549
 
        DEBUGFUNC("e1000_setup_copper_link_82541");
550
 
 
551
 
        ctrl = E1000_READ_REG(hw, E1000_CTRL);
552
 
        ctrl |= E1000_CTRL_SLU;
553
 
        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
554
 
        E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
555
 
 
556
 
        hw->phy.reset_disable = false;
557
 
 
558
 
        /* Earlier revs of the IGP phy require us to force MDI. */
559
 
        if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
560
 
                dev_spec->dsp_config = e1000_dsp_config_disabled;
561
 
                phy->mdix = 1;
562
 
        } else {
563
 
                dev_spec->dsp_config = e1000_dsp_config_enabled;
564
 
        }
565
 
 
566
 
        ret_val = e1000_copper_link_setup_igp(hw);
567
 
        if (ret_val)
568
 
                goto out;
569
 
 
570
 
        if (hw->mac.autoneg) {
571
 
                if (dev_spec->ffe_config == e1000_ffe_config_active)
572
 
                        dev_spec->ffe_config = e1000_ffe_config_enabled;
573
 
        }
574
 
 
575
 
        /* Configure activity LED after Phy reset */
576
 
        ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
577
 
        ledctl &= IGP_ACTIVITY_LED_MASK;
578
 
        ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
579
 
        E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
580
 
 
581
 
        ret_val = e1000_setup_copper_link_generic(hw);
582
 
 
583
 
out:
584
 
        return ret_val;
585
 
}
586
 
 
587
 
/**
588
 
 *  e1000_check_for_link_82541 - Check/Store link connection
589
 
 *  @hw: pointer to the HW structure
590
 
 *
591
 
 *  This checks the link condition of the adapter and stores the
592
 
 *  results in the hw->mac structure.
593
 
 **/
594
 
static s32 e1000_check_for_link_82541(struct e1000_hw *hw)
595
 
{
596
 
        struct e1000_mac_info *mac = &hw->mac;
597
 
        s32 ret_val;
598
 
        bool link;
599
 
 
600
 
        DEBUGFUNC("e1000_check_for_link_82541");
601
 
 
602
 
        /*
603
 
         * We only want to go out to the PHY registers to see if Auto-Neg
604
 
         * has completed and/or if our link status has changed.  The
605
 
         * get_link_status flag is set upon receiving a Link Status
606
 
         * Change or Rx Sequence Error interrupt.
607
 
         */
608
 
        if (!mac->get_link_status) {
609
 
                ret_val = E1000_SUCCESS;
610
 
                goto out;
611
 
        }
612
 
 
613
 
        /*
614
 
         * First we want to see if the MII Status Register reports
615
 
         * link.  If so, then we want to get the current speed/duplex
616
 
         * of the PHY.
617
 
         */
618
 
        ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
619
 
        if (ret_val)
620
 
                goto out;
621
 
 
622
 
        if (!link) {
623
 
                ret_val = -E1000_ERR_CONFIG;
624
 
#if 0
625
 
                ret_val = e1000_config_dsp_after_link_change_82541(hw, false);
626
 
#endif
627
 
                goto out; /* No link detected */
628
 
        }
629
 
 
630
 
        mac->get_link_status = false;
631
 
 
632
 
        /*
633
 
         * Check if there was DownShift, must be checked
634
 
         * immediately after link-up
635
 
         */
636
 
        e1000_check_downshift_generic(hw);
637
 
 
638
 
        /*
639
 
         * If we are forcing speed/duplex, then we simply return since
640
 
         * we have already determined whether we have link or not.
641
 
         */
642
 
        if (!mac->autoneg) {
643
 
                ret_val = -E1000_ERR_CONFIG;
644
 
                goto out;
645
 
        }
646
 
 
647
 
#if 0
648
 
        ret_val = e1000_config_dsp_after_link_change_82541(hw, true);
649
 
#endif
650
 
 
651
 
        /*
652
 
         * Auto-Neg is enabled.  Auto Speed Detection takes care
653
 
         * of MAC speed/duplex configuration.  So we only need to
654
 
         * configure Collision Distance in the MAC.
655
 
         */
656
 
        e1000_config_collision_dist_generic(hw);
657
 
 
658
 
        /*
659
 
         * Configure Flow Control now that Auto-Neg has completed.
660
 
         * First, we need to restore the desired flow control
661
 
         * settings because we may have had to re-autoneg with a
662
 
         * different link partner.
663
 
         */
664
 
        ret_val = e1000_config_fc_after_link_up_generic(hw);
665
 
        if (ret_val) {
666
 
                DEBUGOUT("Error configuring flow control\n");
667
 
        }
668
 
 
669
 
out:
670
 
        return ret_val;
671
 
}
672
 
 
673
 
#if 0
674
 
/**
675
 
 *  e1000_config_dsp_after_link_change_82541 - Config DSP after link
676
 
 *  @hw: pointer to the HW structure
677
 
 *  @link_up: boolean flag for link up status
678
 
 *
679
 
 *  Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
680
 
 *  at any other case.
681
 
 *
682
 
 *  82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
683
 
 *  gigabit link is achieved to improve link quality.
684
 
 **/
685
 
static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
686
 
                                                    bool link_up)
687
 
{
688
 
        struct e1000_phy_info *phy = &hw->phy;
689
 
        struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
690
 
        s32 ret_val;
691
 
        u32 idle_errs = 0;
692
 
        u16 phy_data, phy_saved_data, speed, duplex, i;
693
 
        u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
694
 
        u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
695
 
                                                   {IGP01E1000_PHY_AGC_PARAM_A,
696
 
                                                    IGP01E1000_PHY_AGC_PARAM_B,
697
 
                                                    IGP01E1000_PHY_AGC_PARAM_C,
698
 
                                                    IGP01E1000_PHY_AGC_PARAM_D};
699
 
 
700
 
        DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
701
 
 
702
 
        if (link_up) {
703
 
                ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
704
 
                if (ret_val) {
705
 
                        DEBUGOUT("Error getting link speed and duplex\n");
706
 
                        goto out;
707
 
                }
708
 
 
709
 
                if (speed != SPEED_1000) {
710
 
                        ret_val = E1000_SUCCESS;
711
 
                        goto out;
712
 
                }
713
 
 
714
 
#if 0
715
 
                ret_val = phy->ops.get_cable_length(hw);
716
 
#endif
717
 
                ret_val = -E1000_ERR_CONFIG;
718
 
                if (ret_val)
719
 
                        goto out;
720
 
 
721
 
                if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
722
 
                    phy->min_cable_length >= 50) {
723
 
 
724
 
                        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
725
 
                                ret_val = phy->ops.read_reg(hw,
726
 
                                                            dsp_reg_array[i],
727
 
                                                            &phy_data);
728
 
                                if (ret_val)
729
 
                                        goto out;
730
 
 
731
 
                                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
732
 
 
733
 
                                ret_val = phy->ops.write_reg(hw,
734
 
                                                             dsp_reg_array[i],
735
 
                                                             phy_data);
736
 
                                if (ret_val)
737
 
                                        goto out;
738
 
                        }
739
 
                        dev_spec->dsp_config = e1000_dsp_config_activated;
740
 
                }
741
 
 
742
 
                if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
743
 
                    (phy->min_cable_length >= 50)) {
744
 
                        ret_val = E1000_SUCCESS;
745
 
                        goto out;
746
 
                }
747
 
 
748
 
                /* clear previous idle error counts */
749
 
                ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
750
 
                if (ret_val)
751
 
                        goto out;
752
 
 
753
 
                for (i = 0; i < ffe_idle_err_timeout; i++) {
754
 
                        usec_delay(1000);
755
 
                        ret_val = phy->ops.read_reg(hw,
756
 
                                                    PHY_1000T_STATUS,
757
 
                                                    &phy_data);
758
 
                        if (ret_val)
759
 
                                goto out;
760
 
 
761
 
                        idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
762
 
                        if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
763
 
                                dev_spec->ffe_config = e1000_ffe_config_active;
764
 
 
765
 
                                ret_val = phy->ops.write_reg(hw,
766
 
                                                  IGP01E1000_PHY_DSP_FFE,
767
 
                                                  IGP01E1000_PHY_DSP_FFE_CM_CP);
768
 
                                if (ret_val)
769
 
                                        goto out;
770
 
                                break;
771
 
                        }
772
 
 
773
 
                        if (idle_errs)
774
 
                                ffe_idle_err_timeout =
775
 
                                                 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
776
 
                }
777
 
        } else {
778
 
                if (dev_spec->dsp_config == e1000_dsp_config_activated) {
779
 
                        /*
780
 
                         * Save off the current value of register 0x2F5B
781
 
                         * to be restored at the end of the routines.
782
 
                         */
783
 
                        ret_val = phy->ops.read_reg(hw,
784
 
                                                    0x2F5B,
785
 
                                                    &phy_saved_data);
786
 
                        if (ret_val)
787
 
                                goto out;
788
 
 
789
 
                        /* Disable the PHY transmitter */
790
 
                        ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
791
 
                        if (ret_val)
792
 
                                goto out;
793
 
 
794
 
                        msec_delay_irq(20);
795
 
 
796
 
                        ret_val = phy->ops.write_reg(hw,
797
 
                                                     0x0000,
798
 
                                                     IGP01E1000_IEEE_FORCE_GIG);
799
 
                        if (ret_val)
800
 
                                goto out;
801
 
                        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
802
 
                                ret_val = phy->ops.read_reg(hw,
803
 
                                                            dsp_reg_array[i],
804
 
                                                            &phy_data);
805
 
                                if (ret_val)
806
 
                                        goto out;
807
 
 
808
 
                                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
809
 
                                phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
810
 
 
811
 
                                ret_val = phy->ops.write_reg(hw,
812
 
                                                             dsp_reg_array[i],
813
 
                                                             phy_data);
814
 
                                if (ret_val)
815
 
                                        goto out;
816
 
                        }
817
 
 
818
 
                        ret_val = phy->ops.write_reg(hw,
819
 
                                               0x0000,
820
 
                                               IGP01E1000_IEEE_RESTART_AUTONEG);
821
 
                        if (ret_val)
822
 
                                goto out;
823
 
 
824
 
                        msec_delay_irq(20);
825
 
 
826
 
                        /* Now enable the transmitter */
827
 
                        ret_val = phy->ops.write_reg(hw,
828
 
                                                     0x2F5B,
829
 
                                                     phy_saved_data);
830
 
                        if (ret_val)
831
 
                                goto out;
832
 
 
833
 
                        dev_spec->dsp_config = e1000_dsp_config_enabled;
834
 
                }
835
 
 
836
 
                if (dev_spec->ffe_config != e1000_ffe_config_active) {
837
 
                        ret_val = E1000_SUCCESS;
838
 
                        goto out;
839
 
                }
840
 
 
841
 
                /*
842
 
                 * Save off the current value of register 0x2F5B
843
 
                 * to be restored at the end of the routines.
844
 
                 */
845
 
                ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data);
846
 
                if (ret_val)
847
 
                        goto out;
848
 
 
849
 
                /* Disable the PHY transmitter */
850
 
                ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
851
 
                if (ret_val)
852
 
                        goto out;
853
 
 
854
 
                msec_delay_irq(20);
855
 
 
856
 
                ret_val = phy->ops.write_reg(hw,
857
 
                                             0x0000,
858
 
                                             IGP01E1000_IEEE_FORCE_GIG);
859
 
                if (ret_val)
860
 
                        goto out;
861
 
 
862
 
                ret_val = phy->ops.write_reg(hw,
863
 
                                             IGP01E1000_PHY_DSP_FFE,
864
 
                                             IGP01E1000_PHY_DSP_FFE_DEFAULT);
865
 
                if (ret_val)
866
 
                        goto out;
867
 
 
868
 
                ret_val = phy->ops.write_reg(hw,
869
 
                                             0x0000,
870
 
                                             IGP01E1000_IEEE_RESTART_AUTONEG);
871
 
                if (ret_val)
872
 
                        goto out;
873
 
 
874
 
                msec_delay_irq(20);
875
 
 
876
 
                /* Now enable the transmitter */
877
 
                ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data);
878
 
 
879
 
                if (ret_val)
880
 
                        goto out;
881
 
 
882
 
                dev_spec->ffe_config = e1000_ffe_config_enabled;
883
 
        }
884
 
 
885
 
out:
886
 
        return ret_val;
887
 
}
888
 
#endif
889
 
 
890
 
#if 0
891
 
/**
892
 
 *  e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
893
 
 *  @hw: pointer to the HW structure
894
 
 *
895
 
 *  The automatic gain control (agc) normalizes the amplitude of the
896
 
 *  received signal, adjusting for the attenuation produced by the
897
 
 *  cable.  By reading the AGC registers, which represent the
898
 
 *  combination of coarse and fine gain value, the value can be put
899
 
 *  into a lookup table to obtain the approximate cable length
900
 
 *  for each channel.
901
 
 **/
902
 
static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
903
 
{
904
 
        struct e1000_phy_info *phy = &hw->phy;
905
 
        s32 ret_val = E1000_SUCCESS;
906
 
        u16 i, data;
907
 
        u16 cur_agc_value, agc_value = 0;
908
 
        u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
909
 
        u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
910
 
                                                         {IGP01E1000_PHY_AGC_A,
911
 
                                                          IGP01E1000_PHY_AGC_B,
912
 
                                                          IGP01E1000_PHY_AGC_C,
913
 
                                                          IGP01E1000_PHY_AGC_D};
914
 
 
915
 
        DEBUGFUNC("e1000_get_cable_length_igp_82541");
916
 
 
917
 
        /* Read the AGC registers for all channels */
918
 
        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
919
 
                ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data);
920
 
                if (ret_val)
921
 
                        goto out;
922
 
 
923
 
                cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
924
 
 
925
 
                /* Bounds checking */
926
 
                if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
927
 
                    (cur_agc_value == 0)) {
928
 
                        ret_val = -E1000_ERR_PHY;
929
 
                        goto out;
930
 
                }
931
 
 
932
 
                agc_value += cur_agc_value;
933
 
 
934
 
                if (min_agc_value > cur_agc_value)
935
 
                        min_agc_value = cur_agc_value;
936
 
        }
937
 
 
938
 
        /* Remove the minimal AGC result for length < 50m */
939
 
        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
940
 
                agc_value -= min_agc_value;
941
 
                /* Average the three remaining channels for the length. */
942
 
                agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
943
 
        } else {
944
 
                /* Average the channels for the length. */
945
 
                agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
946
 
        }
947
 
 
948
 
        phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
949
 
                                 IGP01E1000_AGC_RANGE)
950
 
                                ? (e1000_igp_cable_length_table[agc_value] -
951
 
                                   IGP01E1000_AGC_RANGE)
952
 
                                : 0;
953
 
        phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
954
 
                                IGP01E1000_AGC_RANGE;
955
 
 
956
 
        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
957
 
 
958
 
out:
959
 
        return ret_val;
960
 
}
961
 
#endif
962
 
 
963
 
/**
964
 
 *  e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
965
 
 *  @hw: pointer to the HW structure
966
 
 *  @active: boolean used to enable/disable lplu
967
 
 *
968
 
 *  Success returns 0, Failure returns 1
969
 
 *
970
 
 *  The low power link up (lplu) state is set to the power management level D3
971
 
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
972
 
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
973
 
 *  is used during Dx states where the power conservation is most important.
974
 
 *  During driver activity, SmartSpeed should be enabled so performance is
975
 
 *  maintained.
976
 
 **/
977
 
static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
978
 
{
979
 
        struct e1000_phy_info *phy = &hw->phy;
980
 
        s32 ret_val;
981
 
        u16 data;
982
 
 
983
 
        DEBUGFUNC("e1000_set_d3_lplu_state_82541");
984
 
 
985
 
        switch (hw->mac.type) {
986
 
        case e1000_82541_rev_2:
987
 
        case e1000_82547_rev_2:
988
 
                break;
989
 
        default:
990
 
                ret_val = e1000_set_d3_lplu_state_generic(hw, active);
991
 
                goto out;
992
 
                break;
993
 
        }
994
 
 
995
 
        ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data);
996
 
        if (ret_val)
997
 
                goto out;
998
 
 
999
 
        if (!active) {
1000
 
                data &= ~IGP01E1000_GMII_FLEX_SPD;
1001
 
                ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
1002
 
                if (ret_val)
1003
 
                        goto out;
1004
 
 
1005
 
                /*
1006
 
                 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1007
 
                 * during Dx states where the power conservation is most
1008
 
                 * important.  During driver activity we should enable
1009
 
                 * SmartSpeed, so performance is maintained.
1010
 
                 */
1011
 
                if (phy->smart_speed == e1000_smart_speed_on) {
1012
 
                        ret_val = phy->ops.read_reg(hw,
1013
 
                                                    IGP01E1000_PHY_PORT_CONFIG,
1014
 
                                                    &data);
1015
 
                        if (ret_val)
1016
 
                                goto out;
1017
 
 
1018
 
                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1019
 
                        ret_val = phy->ops.write_reg(hw,
1020
 
                                                     IGP01E1000_PHY_PORT_CONFIG,
1021
 
                                                     data);
1022
 
                        if (ret_val)
1023
 
                                goto out;
1024
 
                } else if (phy->smart_speed == e1000_smart_speed_off) {
1025
 
                        ret_val = phy->ops.read_reg(hw,
1026
 
                                                    IGP01E1000_PHY_PORT_CONFIG,
1027
 
                                                    &data);
1028
 
                        if (ret_val)
1029
 
                                goto out;
1030
 
 
1031
 
                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1032
 
                        ret_val = phy->ops.write_reg(hw,
1033
 
                                                     IGP01E1000_PHY_PORT_CONFIG,
1034
 
                                                     data);
1035
 
                        if (ret_val)
1036
 
                                goto out;
1037
 
                }
1038
 
        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1039
 
                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1040
 
                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1041
 
                data |= IGP01E1000_GMII_FLEX_SPD;
1042
 
                ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
1043
 
                if (ret_val)
1044
 
                        goto out;
1045
 
 
1046
 
                /* When LPLU is enabled, we should disable SmartSpeed */
1047
 
                ret_val = phy->ops.read_reg(hw,
1048
 
                                            IGP01E1000_PHY_PORT_CONFIG,
1049
 
                                            &data);
1050
 
                if (ret_val)
1051
 
                        goto out;
1052
 
 
1053
 
                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1054
 
                ret_val = phy->ops.write_reg(hw,
1055
 
                                             IGP01E1000_PHY_PORT_CONFIG,
1056
 
                                             data);
1057
 
        }
1058
 
 
1059
 
out:
1060
 
        return ret_val;
1061
 
}
1062
 
 
1063
 
/**
1064
 
 *  e1000_setup_led_82541 - Configures SW controllable LED
1065
 
 *  @hw: pointer to the HW structure
1066
 
 *
1067
 
 *  This prepares the SW controllable LED for use and saves the current state
1068
 
 *  of the LED so it can be later restored.
1069
 
 **/
1070
 
static s32 e1000_setup_led_82541(struct e1000_hw *hw __unused)
1071
 
{
1072
 
#if 0
1073
 
        struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
1074
 
        s32 ret_val;
1075
 
 
1076
 
        DEBUGFUNC("e1000_setup_led_82541");
1077
 
 
1078
 
        ret_val = hw->phy.ops.read_reg(hw,
1079
 
                                       IGP01E1000_GMII_FIFO,
1080
 
                                       &dev_spec->spd_default);
1081
 
        if (ret_val)
1082
 
                goto out;
1083
 
 
1084
 
        ret_val = hw->phy.ops.write_reg(hw,
1085
 
                                        IGP01E1000_GMII_FIFO,
1086
 
                                        (u16)(dev_spec->spd_default &
1087
 
                                                ~IGP01E1000_GMII_SPD));
1088
 
        if (ret_val)
1089
 
                goto out;
1090
 
 
1091
 
        E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1092
 
 
1093
 
out:
1094
 
        return ret_val;
1095
 
#endif
1096
 
        return 0;
1097
 
}
1098
 
 
1099
 
/**
1100
 
 *  e1000_cleanup_led_82541 - Set LED config to default operation
1101
 
 *  @hw: pointer to the HW structure
1102
 
 *
1103
 
 *  Remove the current LED configuration and set the LED configuration
1104
 
 *  to the default value, saved from the EEPROM.
1105
 
 **/
1106
 
static s32 e1000_cleanup_led_82541(struct e1000_hw *hw __unused)
1107
 
{
1108
 
#if 0
1109
 
        struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
1110
 
        s32 ret_val;
1111
 
 
1112
 
        DEBUGFUNC("e1000_cleanup_led_82541");
1113
 
 
1114
 
        ret_val = hw->phy.ops.write_reg(hw,
1115
 
                                        IGP01E1000_GMII_FIFO,
1116
 
                                        dev_spec->spd_default);
1117
 
        if (ret_val)
1118
 
                goto out;
1119
 
 
1120
 
        E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1121
 
 
1122
 
out:
1123
 
        return ret_val;
1124
 
#endif
1125
 
        return 0;
1126
 
}
1127
 
 
1128
 
/**
1129
 
 *  e1000_phy_init_script_82541 - Initialize GbE PHY
1130
 
 *  @hw: pointer to the HW structure
1131
 
 *
1132
 
 *  Initializes the IGP PHY.
1133
 
 **/
1134
 
static s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
1135
 
{
1136
 
        struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
1137
 
        u32 ret_val;
1138
 
        u16 phy_saved_data;
1139
 
 
1140
 
        DEBUGFUNC("e1000_phy_init_script_82541");
1141
 
 
1142
 
        if (!dev_spec->phy_init_script) {
1143
 
                ret_val = E1000_SUCCESS;
1144
 
                goto out;
1145
 
        }
1146
 
 
1147
 
        /* Delay after phy reset to enable NVM configuration to load */
1148
 
        msec_delay(20);
1149
 
 
1150
 
        /*
1151
 
         * Save off the current value of register 0x2F5B to be restored at
1152
 
         * the end of this routine.
1153
 
         */
1154
 
        ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data);
1155
 
 
1156
 
        /* Disabled the PHY transmitter */
1157
 
        hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003);
1158
 
 
1159
 
        msec_delay(20);
1160
 
 
1161
 
        hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
1162
 
 
1163
 
        msec_delay(5);
1164
 
 
1165
 
        switch (hw->mac.type) {
1166
 
        case e1000_82541:
1167
 
        case e1000_82547:
1168
 
                hw->phy.ops.write_reg(hw, 0x1F95, 0x0001);
1169
 
 
1170
 
                hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21);
1171
 
 
1172
 
                hw->phy.ops.write_reg(hw, 0x1F79, 0x0018);
1173
 
 
1174
 
                hw->phy.ops.write_reg(hw, 0x1F30, 0x1600);
1175
 
 
1176
 
                hw->phy.ops.write_reg(hw, 0x1F31, 0x0014);
1177
 
 
1178
 
                hw->phy.ops.write_reg(hw, 0x1F32, 0x161C);
1179
 
 
1180
 
                hw->phy.ops.write_reg(hw, 0x1F94, 0x0003);
1181
 
 
1182
 
                hw->phy.ops.write_reg(hw, 0x1F96, 0x003F);
1183
 
 
1184
 
                hw->phy.ops.write_reg(hw, 0x2010, 0x0008);
1185
 
                break;
1186
 
        case e1000_82541_rev_2:
1187
 
        case e1000_82547_rev_2:
1188
 
                hw->phy.ops.write_reg(hw, 0x1F73, 0x0099);
1189
 
                break;
1190
 
        default:
1191
 
                break;
1192
 
        }
1193
 
 
1194
 
        hw->phy.ops.write_reg(hw, 0x0000, 0x3300);
1195
 
 
1196
 
        msec_delay(20);
1197
 
 
1198
 
        /* Now enable the transmitter */
1199
 
        hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data);
1200
 
 
1201
 
        if (hw->mac.type == e1000_82547) {
1202
 
                u16 fused, fine, coarse;
1203
 
 
1204
 
                /* Move to analog registers page */
1205
 
                hw->phy.ops.read_reg(hw,
1206
 
                                  IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
1207
 
                                  &fused);
1208
 
 
1209
 
                if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
1210
 
                        hw->phy.ops.read_reg(hw,
1211
 
                                          IGP01E1000_ANALOG_FUSE_STATUS,
1212
 
                                          &fused);
1213
 
 
1214
 
                        fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
1215
 
                        coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
1216
 
 
1217
 
                        if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
1218
 
                                coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
1219
 
                                fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
1220
 
                        } else if (coarse ==
1221
 
                                   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
1222
 
                                fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
1223
 
 
1224
 
                        fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
1225
 
                                (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
1226
 
                                (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
1227
 
 
1228
 
                        hw->phy.ops.write_reg(hw,
1229
 
                                           IGP01E1000_ANALOG_FUSE_CONTROL,
1230
 
                                           fused);
1231
 
                        hw->phy.ops.write_reg(hw,
1232
 
                                      IGP01E1000_ANALOG_FUSE_BYPASS,
1233
 
                                      IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
1234
 
                }
1235
 
        }
1236
 
 
1237
 
out:
1238
 
        return ret_val;
1239
 
}
1240
 
 
1241
 
/**
1242
 
 * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
1243
 
 * @hw: pointer to the HW structure
1244
 
 *
1245
 
 * In the case of a PHY power down to save power, or to turn off link during a
1246
 
 * driver unload, or wake on lan is not enabled, remove the link.
1247
 
 **/
1248
 
static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
1249
 
{
1250
 
        /* If the management interface is not enabled, then power down */
1251
 
        if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
1252
 
                e1000_power_down_phy_copper(hw);
1253
 
 
1254
 
        return;
1255
 
}
1256
 
 
1257
 
/**
1258
 
 *  e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
1259
 
 *  @hw: pointer to the HW structure
1260
 
 *
1261
 
 *  Clears the hardware counters by reading the counter registers.
1262
 
 **/
1263
 
static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
1264
 
{
1265
 
        DEBUGFUNC("e1000_clear_hw_cntrs_82541");
1266
 
 
1267
 
        e1000_clear_hw_cntrs_base_generic(hw);
1268
 
 
1269
 
#if 0
1270
 
        E1000_READ_REG(hw, E1000_PRC64);
1271
 
        E1000_READ_REG(hw, E1000_PRC127);
1272
 
        E1000_READ_REG(hw, E1000_PRC255);
1273
 
        E1000_READ_REG(hw, E1000_PRC511);
1274
 
        E1000_READ_REG(hw, E1000_PRC1023);
1275
 
        E1000_READ_REG(hw, E1000_PRC1522);
1276
 
        E1000_READ_REG(hw, E1000_PTC64);
1277
 
        E1000_READ_REG(hw, E1000_PTC127);
1278
 
        E1000_READ_REG(hw, E1000_PTC255);
1279
 
        E1000_READ_REG(hw, E1000_PTC511);
1280
 
        E1000_READ_REG(hw, E1000_PTC1023);
1281
 
        E1000_READ_REG(hw, E1000_PTC1522);
1282
 
 
1283
 
        E1000_READ_REG(hw, E1000_ALGNERRC);
1284
 
        E1000_READ_REG(hw, E1000_RXERRC);
1285
 
        E1000_READ_REG(hw, E1000_TNCRS);
1286
 
        E1000_READ_REG(hw, E1000_CEXTERR);
1287
 
        E1000_READ_REG(hw, E1000_TSCTC);
1288
 
        E1000_READ_REG(hw, E1000_TSCTFC);
1289
 
 
1290
 
        E1000_READ_REG(hw, E1000_MGTPRC);
1291
 
        E1000_READ_REG(hw, E1000_MGTPDC);
1292
 
        E1000_READ_REG(hw, E1000_MGTPTC);
1293
 
#endif
1294
 
}
1295
 
 
1296
 
static struct pci_device_id e1000_82541_nics[] = {
1297
 
     PCI_ROM(0x8086, 0x1013, "E1000_DEV_ID_82541EI", "E1000_DEV_ID_82541EI", e1000_82541),
1298
 
     PCI_ROM(0x8086, 0x1014, "E1000_DEV_ID_82541ER_LOM", "E1000_DEV_ID_82541ER_LOM", e1000_82541),
1299
 
     PCI_ROM(0x8086, 0x1018, "E1000_DEV_ID_82541EI_MOBILE", "E1000_DEV_ID_82541EI_MOBILE", e1000_82541),
1300
 
     PCI_ROM(0x8086, 0x1019, "E1000_DEV_ID_82547EI", "E1000_DEV_ID_82547EI", e1000_82547),
1301
 
     PCI_ROM(0x8086, 0x101A, "E1000_DEV_ID_82547EI_MOBILE", "E1000_DEV_ID_82547EI_MOBILE", e1000_82547),
1302
 
     PCI_ROM(0x8086, 0x1075, "E1000_DEV_ID_82547GI", "E1000_DEV_ID_82547GI", e1000_82547_rev_2),
1303
 
     PCI_ROM(0x8086, 0x1076, "E1000_DEV_ID_82541GI", "E1000_DEV_ID_82541GI", e1000_82541_rev_2),
1304
 
     PCI_ROM(0x8086, 0x1077, "E1000_DEV_ID_82541GI_MOBILE", "E1000_DEV_ID_82541GI_MOBILE", e1000_82541_rev_2),
1305
 
     PCI_ROM(0x8086, 0x1078, "E1000_DEV_ID_82541ER", "E1000_DEV_ID_82541ER", e1000_82541_rev_2),
1306
 
     PCI_ROM(0x8086, 0x107C, "E1000_DEV_ID_82541GI_LF", "E1000_DEV_ID_82541GI_LF", e1000_82541_rev_2),
1307
 
};
1308
 
 
1309
 
struct pci_driver e1000_82541_driver __pci_driver = {
1310
 
        .ids = e1000_82541_nics,
1311
 
        .id_count = (sizeof (e1000_82541_nics) / sizeof (e1000_82541_nics[0])),
1312
 
        .probe = e1000_probe,
1313
 
        .remove = e1000_remove,
1314
 
};