2
* Copyright (c) 2005 Martin Decky
3
* Copyright (c) 2006 Jakub Jermar
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions
10
* - Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* - Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
* - The name of the author may not be used to endorse or promote products
16
* derived from this software without specific prior written permission.
18
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
#include "_components.h"
44
component_t components[COMPONENTS];
46
char *release = STRING(RELEASE);
49
char *revision = ", revision " STRING(REVISION);
55
char *timestamp = "\nBuilt on " STRING(TIMESTAMP);
60
/** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
61
uint8_t subarchitecture;
64
* mask of the MID field inside the ICBUS_CONFIG register shifted by
65
* MID_SHIFT bits to the right
69
/** Print version information. */
70
static void version_print(void)
72
printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
73
"Copyright (c) 2006 HelenOS project\n",
74
release, revision, timestamp);
77
/* the lowest ID (read from the VER register) of some US3 CPU model */
78
#define FIRST_US3_CPU 0x14
80
/* the greatest ID (read from the VER register) of some US3 CPU model */
81
#define LAST_US3_CPU 0x19
83
/* UltraSPARC IIIi processor implementation code */
84
#define US_IIIi_CODE 0x15
87
* Sets the global variables "subarchitecture" and "mid_mask" to
90
static void detect_subarchitecture(void)
93
asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
96
if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
97
subarchitecture = SUBARCH_US3;
98
if (v == US_IIIi_CODE)
99
mid_mask = (1 << 5) - 1;
101
mid_mask = (1 << 10) - 1;
102
} else if (v < FIRST_US3_CPU) {
103
subarchitecture = SUBARCH_US;
104
mid_mask = (1 << 5) - 1;
106
printf("\nThis CPU is not supported by HelenOS.");
112
void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
114
unsigned int top = 0;
119
detect_subarchitecture();
120
init_components(components);
122
if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
123
printf("Error: unable to get start of physical memory.\n");
127
if (!ofw_memmap(&bootinfo.memmap)) {
128
printf("Error: unable to get memory map, halting.\n");
132
if (bootinfo.memmap.total == 0) {
133
printf("Error: no memory detected, halting.\n");
138
* SILO for some reason adds 0x400000 and subtracts
139
* bootinfo.physmem_start to/from silo_ramdisk_image.
140
* We just need plain physical address so we fix it up.
142
if (silo_ramdisk_image) {
143
silo_ramdisk_image += bootinfo.physmem_start;
144
silo_ramdisk_image -= 0x400000;
145
/* Install 1:1 mapping for the ramdisk. */
146
if (ofw_map((void *)((uintptr_t) silo_ramdisk_image),
147
(void *)((uintptr_t) silo_ramdisk_image),
148
silo_ramdisk_size, -1) != 0) {
149
printf("Failed to map ramdisk.\n");
154
printf("\nSystem info\n");
155
printf(" memory: %dM starting at %P\n",
156
bootinfo.memmap.total >> 20, bootinfo.physmem_start);
158
printf("\nMemory statistics\n");
159
printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
160
printf(" %P: boot info structure\n", &bootinfo);
163
* Figure out destination address for each component.
164
* In this phase, we don't copy the components yet because we want to
165
* to be careful not to overwrite anything, especially the components
166
* which haven't been copied yet.
168
bootinfo.taskmap.count = 0;
169
for (i = 0; i < COMPONENTS; i++) {
170
printf(" %P: %s image (size %d bytes)\n", components[i].start,
171
components[i].name, components[i].size);
172
top = ALIGN_UP(top, PAGE_SIZE);
174
if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
175
printf("Skipping superfluous components.\n");
178
bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
180
bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
182
strncpy(bootinfo.taskmap.tasks[
183
bootinfo.taskmap.count].name, components[i].name,
184
BOOTINFO_TASK_NAME_BUFLEN);
185
bootinfo.taskmap.count++;
187
top += components[i].size;
190
j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
192
if (silo_ramdisk_image) {
193
/* Treat the ramdisk as the last bootinfo task. */
194
if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
195
printf("Skipping ramdisk.\n");
198
top = ALIGN_UP(top, PAGE_SIZE);
199
bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
201
bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
203
bootinfo.taskmap.count++;
204
printf("\nCopying ramdisk...");
206
* Claim and map the whole ramdisk as it may exceed the area
207
* given to us by SILO.
209
(void) ofw_claim_phys(base + top, silo_ramdisk_size);
210
(void) ofw_map(bootinfo.physmem_start + base + top, base + top,
211
silo_ramdisk_size, -1);
212
memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
215
top += silo_ramdisk_size;
220
* Now we can proceed to copy the components. We do it in reverse order
221
* so that we don't overwrite anything even if the components overlap
224
printf("\nCopying bootinfo tasks\n");
225
for (i = COMPONENTS - 1; i > 0; i--, j--) {
226
printf(" %s...", components[i].name);
229
* At this point, we claim the physical memory that we are
230
* going to use. We should be safe in case of the virtual
231
* address space because the OpenFirmware, according to its
232
* SPARC binding, should restrict its use of virtual memory
233
* to addresses from [0xffd00000; 0xffefffff] and
234
* [0xfe000000; 0xfeffffff].
236
* XXX We don't map this piece of memory. We simply rely on
237
* SILO to have it done for us already in this case.
239
(void) ofw_claim_phys(bootinfo.physmem_start +
240
bootinfo.taskmap.tasks[j].addr,
241
ALIGN_UP(components[i].size, PAGE_SIZE));
243
memcpy((void *)bootinfo.taskmap.tasks[j].addr,
244
components[i].start, components[i].size);
248
printf("\nCopying kernel...");
249
(void) ofw_claim_phys(bootinfo.physmem_start + base,
250
ALIGN_UP(components[0].size, PAGE_SIZE));
251
memcpy(base, components[0].start, components[0].size);
255
* Claim and map the physical memory for the boot allocator.
256
* Initialize the boot allocator.
258
balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
259
(void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
261
(void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
262
BALLOC_MAX_SIZE, -1);
263
balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
265
printf("\nCanonizing OpenFirmware device tree...");
266
bootinfo.ofw_root = ofw_tree_build();
270
printf("\nChecking for secondary processors...");
272
printf("Error: unable to get CPU properties\n");
278
printf("\nBooting the kernel...\n");
279
jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
280
bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,