~ubuntu-branches/ubuntu/quantal/linphone/quantal

« back to all changes in this revision

Viewing changes to ffmpeg/libavcodec/jfdctfst.c

  • Committer: Bazaar Package Importer
  • Author(s): Samuel Mimram
  • Date: 2006-11-15 10:34:50 UTC
  • mfrom: (1.2.1 upstream) (2.1.8 feisty)
  • Revision ID: james.westby@ubuntu.com-20061115103450-qgafwcks2lkhctlj
* New upstream release.
* Enable video support.
* Fix mismatched #endif in mscommon.h, closes: #398307.

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/*
2
 
 * jfdctfst.c
3
 
 *
4
 
 * Copyright (C) 1994-1996, Thomas G. Lane.
5
 
 * This file is part of the Independent JPEG Group's software.
6
 
 * For conditions of distribution and use, see the accompanying README file.
7
 
 *
8
 
 * This file contains a fast, not so accurate integer implementation of the
9
 
 * forward DCT (Discrete Cosine Transform).
10
 
 *
11
 
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12
 
 * on each column.  Direct algorithms are also available, but they are
13
 
 * much more complex and seem not to be any faster when reduced to code.
14
 
 *
15
 
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
16
 
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
17
 
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
18
 
 * JPEG textbook (see REFERENCES section in file README).  The following code
19
 
 * is based directly on figure 4-8 in P&M.
20
 
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
21
 
 * possible to arrange the computation so that many of the multiplies are
22
 
 * simple scalings of the final outputs.  These multiplies can then be
23
 
 * folded into the multiplications or divisions by the JPEG quantization
24
 
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
25
 
 * to be done in the DCT itself.
26
 
 * The primary disadvantage of this method is that with fixed-point math,
27
 
 * accuracy is lost due to imprecise representation of the scaled
28
 
 * quantization values.  The smaller the quantization table entry, the less
29
 
 * precise the scaled value, so this implementation does worse with high-
30
 
 * quality-setting files than with low-quality ones.
31
 
 */
32
 
 
33
 
#include <stdlib.h>
34
 
#include <stdio.h>
35
 
#include "common.h"
36
 
#include "dsputil.h"
37
 
 
38
 
#define DCTSIZE 8
39
 
#define GLOBAL(x) x
40
 
#define RIGHT_SHIFT(x, n) ((x) >> (n))
41
 
#define SHIFT_TEMPS
42
 
 
43
 
/*
44
 
 * This module is specialized to the case DCTSIZE = 8.
45
 
 */
46
 
 
47
 
#if DCTSIZE != 8
48
 
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
49
 
#endif
50
 
 
51
 
 
52
 
/* Scaling decisions are generally the same as in the LL&M algorithm;
53
 
 * see jfdctint.c for more details.  However, we choose to descale
54
 
 * (right shift) multiplication products as soon as they are formed,
55
 
 * rather than carrying additional fractional bits into subsequent additions.
56
 
 * This compromises accuracy slightly, but it lets us save a few shifts.
57
 
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
58
 
 * everywhere except in the multiplications proper; this saves a good deal
59
 
 * of work on 16-bit-int machines.
60
 
 *
61
 
 * Again to save a few shifts, the intermediate results between pass 1 and
62
 
 * pass 2 are not upscaled, but are represented only to integral precision.
63
 
 *
64
 
 * A final compromise is to represent the multiplicative constants to only
65
 
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
66
 
 * machines, and may also reduce the cost of multiplication (since there
67
 
 * are fewer one-bits in the constants).
68
 
 */
69
 
 
70
 
#define CONST_BITS  8
71
 
 
72
 
 
73
 
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
74
 
 * causing a lot of useless floating-point operations at run time.
75
 
 * To get around this we use the following pre-calculated constants.
76
 
 * If you change CONST_BITS you may want to add appropriate values.
77
 
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
78
 
 */
79
 
 
80
 
#if CONST_BITS == 8
81
 
#define FIX_0_382683433  ((INT32)   98)         /* FIX(0.382683433) */
82
 
#define FIX_0_541196100  ((INT32)  139)         /* FIX(0.541196100) */
83
 
#define FIX_0_707106781  ((INT32)  181)         /* FIX(0.707106781) */
84
 
#define FIX_1_306562965  ((INT32)  334)         /* FIX(1.306562965) */
85
 
#else
86
 
#define FIX_0_382683433  FIX(0.382683433)
87
 
#define FIX_0_541196100  FIX(0.541196100)
88
 
#define FIX_0_707106781  FIX(0.707106781)
89
 
#define FIX_1_306562965  FIX(1.306562965)
90
 
#endif
91
 
 
92
 
 
93
 
/* We can gain a little more speed, with a further compromise in accuracy,
94
 
 * by omitting the addition in a descaling shift.  This yields an incorrectly
95
 
 * rounded result half the time...
96
 
 */
97
 
 
98
 
#ifndef USE_ACCURATE_ROUNDING
99
 
#undef DESCALE
100
 
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
101
 
#endif
102
 
 
103
 
 
104
 
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
105
 
 * descale to yield a DCTELEM result.
106
 
 */
107
 
 
108
 
#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
109
 
 
110
 
 
111
 
/*
112
 
 * Perform the forward DCT on one block of samples.
113
 
 */
114
 
 
115
 
GLOBAL(void)
116
 
jpeg_fdct_ifast (DCTELEM * data)
117
 
{
118
 
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
119
 
  DCTELEM tmp10, tmp11, tmp12, tmp13;
120
 
  DCTELEM z1, z2, z3, z4, z5, z11, z13;
121
 
  DCTELEM *dataptr;
122
 
  int ctr;
123
 
  SHIFT_TEMPS
124
 
 
125
 
  /* Pass 1: process rows. */
126
 
 
127
 
  dataptr = data;
128
 
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
129
 
    tmp0 = dataptr[0] + dataptr[7];
130
 
    tmp7 = dataptr[0] - dataptr[7];
131
 
    tmp1 = dataptr[1] + dataptr[6];
132
 
    tmp6 = dataptr[1] - dataptr[6];
133
 
    tmp2 = dataptr[2] + dataptr[5];
134
 
    tmp5 = dataptr[2] - dataptr[5];
135
 
    tmp3 = dataptr[3] + dataptr[4];
136
 
    tmp4 = dataptr[3] - dataptr[4];
137
 
    
138
 
    /* Even part */
139
 
    
140
 
    tmp10 = tmp0 + tmp3;        /* phase 2 */
141
 
    tmp13 = tmp0 - tmp3;
142
 
    tmp11 = tmp1 + tmp2;
143
 
    tmp12 = tmp1 - tmp2;
144
 
    
145
 
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
146
 
    dataptr[4] = tmp10 - tmp11;
147
 
    
148
 
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
149
 
    dataptr[2] = tmp13 + z1;    /* phase 5 */
150
 
    dataptr[6] = tmp13 - z1;
151
 
    
152
 
    /* Odd part */
153
 
 
154
 
    tmp10 = tmp4 + tmp5;        /* phase 2 */
155
 
    tmp11 = tmp5 + tmp6;
156
 
    tmp12 = tmp6 + tmp7;
157
 
 
158
 
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
159
 
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
160
 
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
161
 
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
162
 
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
163
 
 
164
 
    z11 = tmp7 + z3;            /* phase 5 */
165
 
    z13 = tmp7 - z3;
166
 
 
167
 
    dataptr[5] = z13 + z2;      /* phase 6 */
168
 
    dataptr[3] = z13 - z2;
169
 
    dataptr[1] = z11 + z4;
170
 
    dataptr[7] = z11 - z4;
171
 
 
172
 
    dataptr += DCTSIZE;         /* advance pointer to next row */
173
 
  }
174
 
 
175
 
  /* Pass 2: process columns. */
176
 
 
177
 
  dataptr = data;
178
 
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
179
 
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
180
 
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
181
 
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
182
 
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
183
 
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
184
 
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
185
 
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
186
 
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
187
 
    
188
 
    /* Even part */
189
 
    
190
 
    tmp10 = tmp0 + tmp3;        /* phase 2 */
191
 
    tmp13 = tmp0 - tmp3;
192
 
    tmp11 = tmp1 + tmp2;
193
 
    tmp12 = tmp1 - tmp2;
194
 
    
195
 
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
196
 
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
197
 
    
198
 
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
199
 
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
200
 
    dataptr[DCTSIZE*6] = tmp13 - z1;
201
 
    
202
 
    /* Odd part */
203
 
 
204
 
    tmp10 = tmp4 + tmp5;        /* phase 2 */
205
 
    tmp11 = tmp5 + tmp6;
206
 
    tmp12 = tmp6 + tmp7;
207
 
 
208
 
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
209
 
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
210
 
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
211
 
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
212
 
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
213
 
 
214
 
    z11 = tmp7 + z3;            /* phase 5 */
215
 
    z13 = tmp7 - z3;
216
 
 
217
 
    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
218
 
    dataptr[DCTSIZE*3] = z13 - z2;
219
 
    dataptr[DCTSIZE*1] = z11 + z4;
220
 
    dataptr[DCTSIZE*7] = z11 - z4;
221
 
 
222
 
    dataptr++;                  /* advance pointer to next column */
223
 
  }
224
 
}