2
* Monkey's Audio lossless audio decoder
3
* Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4
* based upon libdemac from Dave Chapman.
6
* This file is part of FFmpeg.
8
* FFmpeg is free software; you can redistribute it and/or
9
* modify it under the terms of the GNU Lesser General Public
10
* License as published by the Free Software Foundation; either
11
* version 2.1 of the License, or (at your option) any later version.
13
* FFmpeg is distributed in the hope that it will be useful,
14
* but WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16
* Lesser General Public License for more details.
18
* You should have received a copy of the GNU Lesser General Public
19
* License along with FFmpeg; if not, write to the Free Software
20
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23
#define ALT_BITSTREAM_READER_LE
26
#include "bitstream.h"
27
#include "bytestream.h"
31
* Monkey's Audio lossless audio decoder
34
#define BLOCKS_PER_LOOP 4608
35
#define MAX_CHANNELS 2
36
#define MAX_BYTESPERSAMPLE 3
38
#define APE_FRAMECODE_MONO_SILENCE 1
39
#define APE_FRAMECODE_STEREO_SILENCE 3
40
#define APE_FRAMECODE_PSEUDO_STEREO 4
42
#define HISTORY_SIZE 512
43
#define PREDICTOR_ORDER 8
44
/** Total size of all predictor histories */
45
#define PREDICTOR_SIZE 50
47
#define YDELAYA (18 + PREDICTOR_ORDER*4)
48
#define YDELAYB (18 + PREDICTOR_ORDER*3)
49
#define XDELAYA (18 + PREDICTOR_ORDER*2)
50
#define XDELAYB (18 + PREDICTOR_ORDER)
52
#define YADAPTCOEFFSA 18
53
#define XADAPTCOEFFSA 14
54
#define YADAPTCOEFFSB 10
55
#define XADAPTCOEFFSB 5
58
* Possible compression levels
61
enum APECompressionLevel {
62
COMPRESSION_LEVEL_FAST = 1000,
63
COMPRESSION_LEVEL_NORMAL = 2000,
64
COMPRESSION_LEVEL_HIGH = 3000,
65
COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
66
COMPRESSION_LEVEL_INSANE = 5000
70
#define APE_FILTER_LEVELS 3
72
/** Filter orders depending on compression level */
73
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
81
/** Filter fraction bits depending on compression level */
82
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
91
/** Filters applied to the decoded data */
92
typedef struct APEFilter {
93
int16_t *coeffs; ///< actual coefficients used in filtering
94
int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
95
int16_t *historybuffer; ///< filter memory
96
int16_t *delay; ///< filtered values
101
typedef struct APERice {
106
typedef struct APERangecoder {
107
uint32_t low; ///< low end of interval
108
uint32_t range; ///< length of interval
109
uint32_t help; ///< bytes_to_follow resp. intermediate value
110
unsigned int buffer; ///< buffer for input/output
113
/** Filter histories */
114
typedef struct APEPredictor {
122
int32_t coeffsA[2][4]; ///< adaption coefficients
123
int32_t coeffsB[2][5]; ///< adaption coefficients
124
int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
127
/** Decoder context */
128
typedef struct APEContext {
129
AVCodecContext *avctx;
132
int samples; ///< samples left to decode in current frame
134
int fileversion; ///< codec version, very important in decoding process
135
int compression_level; ///< compression levels
136
int fset; ///< which filter set to use (calculated from compression level)
137
int flags; ///< global decoder flags
139
uint32_t CRC; ///< frame CRC
140
int frameflags; ///< frame flags
141
int currentframeblocks; ///< samples (per channel) in current frame
142
int blocksdecoded; ///< count of decoded samples in current frame
143
APEPredictor predictor; ///< predictor used for final reconstruction
145
int32_t decoded0[BLOCKS_PER_LOOP]; ///< decoded data for the first channel
146
int32_t decoded1[BLOCKS_PER_LOOP]; ///< decoded data for the second channel
148
int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
150
APERangecoder rc; ///< rangecoder used to decode actual values
151
APERice riceX; ///< rice code parameters for the second channel
152
APERice riceY; ///< rice code parameters for the first channel
153
APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
155
uint8_t *data; ///< current frame data
156
uint8_t *data_end; ///< frame data end
157
const uint8_t *ptr; ///< current position in frame data
158
const uint8_t *last_ptr; ///< position where last 4608-sample block ended
164
static inline void vector_add(int16_t * v1, int16_t * v2, int order)
171
static inline void vector_sub(int16_t * v1, int16_t * v2, int order)
178
static inline int32_t scalarproduct(int16_t * v1, int16_t * v2, int order)
183
res += *v1++ * *v2++;
188
static av_cold int ape_decode_init(AVCodecContext * avctx)
190
APEContext *s = avctx->priv_data;
193
if (avctx->extradata_size != 6) {
194
av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
197
if (avctx->bits_per_sample != 16) {
198
av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n");
201
if (avctx->channels > 2) {
202
av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
206
s->channels = avctx->channels;
207
s->fileversion = AV_RL16(avctx->extradata);
208
s->compression_level = AV_RL16(avctx->extradata + 2);
209
s->flags = AV_RL16(avctx->extradata + 4);
211
av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n", s->compression_level, s->flags);
212
if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) {
213
av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", s->compression_level);
216
s->fset = s->compression_level / 1000 - 1;
217
for (i = 0; i < APE_FILTER_LEVELS; i++) {
218
if (!ape_filter_orders[s->fset][i])
220
s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4);
223
dsputil_init(&s->dsp, avctx);
227
static av_cold int ape_decode_close(AVCodecContext * avctx)
229
APEContext *s = avctx->priv_data;
232
for (i = 0; i < APE_FILTER_LEVELS; i++)
233
av_freep(&s->filterbuf[i]);
239
* @defgroup rangecoder APE range decoder
244
#define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
245
#define SHIFT_BITS (CODE_BITS - 9)
246
#define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
247
#define BOTTOM_VALUE (TOP_VALUE >> 8)
249
/** Start the decoder */
250
static inline void range_start_decoding(APEContext * ctx)
252
ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
253
ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
254
ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
257
/** Perform normalization */
258
static inline void range_dec_normalize(APEContext * ctx)
260
while (ctx->rc.range <= BOTTOM_VALUE) {
261
ctx->rc.buffer <<= 8;
262
if(ctx->ptr < ctx->data_end)
263
ctx->rc.buffer += *ctx->ptr;
265
ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
271
* Calculate culmulative frequency for next symbol. Does NO update!
272
* @param tot_f is the total frequency or (code_value)1<<shift
273
* @return the culmulative frequency
275
static inline int range_decode_culfreq(APEContext * ctx, int tot_f)
277
range_dec_normalize(ctx);
278
ctx->rc.help = ctx->rc.range / tot_f;
279
return ctx->rc.low / ctx->rc.help;
283
* Decode value with given size in bits
284
* @param shift number of bits to decode
286
static inline int range_decode_culshift(APEContext * ctx, int shift)
288
range_dec_normalize(ctx);
289
ctx->rc.help = ctx->rc.range >> shift;
290
return ctx->rc.low / ctx->rc.help;
295
* Update decoding state
296
* @param sy_f the interval length (frequency of the symbol)
297
* @param lt_f the lower end (frequency sum of < symbols)
299
static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f)
301
ctx->rc.low -= ctx->rc.help * lt_f;
302
ctx->rc.range = ctx->rc.help * sy_f;
305
/** Decode n bits (n <= 16) without modelling */
306
static inline int range_decode_bits(APEContext * ctx, int n)
308
int sym = range_decode_culshift(ctx, n);
309
range_decode_update(ctx, 1, sym);
314
#define MODEL_ELEMENTS 64
317
* Fixed probabilities for symbols in Monkey Audio version 3.97
319
static const uint16_t counts_3970[22] = {
320
0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
321
62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
322
65450, 65469, 65480, 65487, 65491, 65493,
326
* Probability ranges for symbols in Monkey Audio version 3.97
328
static const uint16_t counts_diff_3970[21] = {
329
14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
330
1104, 677, 415, 248, 150, 89, 54, 31,
335
* Fixed probabilities for symbols in Monkey Audio version 3.98
337
static const uint16_t counts_3980[22] = {
338
0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
339
64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
340
65485, 65488, 65490, 65491, 65492, 65493,
344
* Probability ranges for symbols in Monkey Audio version 3.98
346
static const uint16_t counts_diff_3980[21] = {
347
19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
348
261, 119, 65, 31, 19, 10, 6, 3,
354
* @param counts probability range start position
355
* @param count_diffs probability range widths
357
static inline int range_get_symbol(APEContext * ctx,
358
const uint16_t counts[],
359
const uint16_t counts_diff[])
363
cf = range_decode_culshift(ctx, 16);
366
symbol= cf - 65535 + 63;
367
range_decode_update(ctx, 1, cf);
372
/* figure out the symbol inefficiently; a binary search would be much better */
373
for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
375
range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
379
/** @} */ // group rangecoder
381
static inline void update_rice(APERice *rice, int x)
383
rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
387
else if (rice->ksum < (1 << (rice->k + 4)))
389
else if (rice->ksum >= (1 << (rice->k + 5)))
393
static inline int ape_decode_value(APEContext * ctx, APERice *rice)
397
if (ctx->fileversion < 3980) {
400
overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
402
if (overflow == (MODEL_ELEMENTS - 1)) {
403
tmpk = range_decode_bits(ctx, 5);
406
tmpk = (rice->k < 1) ? 0 : rice->k - 1;
409
x = range_decode_bits(ctx, tmpk);
411
x = range_decode_bits(ctx, 16);
412
x |= (range_decode_bits(ctx, tmpk - 16) << 16);
414
x += overflow << tmpk;
418
pivot = rice->ksum >> 5;
422
overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
424
if (overflow == (MODEL_ELEMENTS - 1)) {
425
overflow = range_decode_bits(ctx, 16) << 16;
426
overflow |= range_decode_bits(ctx, 16);
429
base = range_decode_culfreq(ctx, pivot);
430
range_decode_update(ctx, 1, base);
432
x = base + overflow * pivot;
435
update_rice(rice, x);
437
/* Convert to signed */
444
static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo)
446
int32_t *decoded0 = ctx->decoded0;
447
int32_t *decoded1 = ctx->decoded1;
449
ctx->blocksdecoded = blockstodecode;
451
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
452
/* We are pure silence, just memset the output buffer. */
453
memset(decoded0, 0, blockstodecode * sizeof(int32_t));
454
memset(decoded1, 0, blockstodecode * sizeof(int32_t));
456
while (blockstodecode--) {
457
*decoded0++ = ape_decode_value(ctx, &ctx->riceY);
459
*decoded1++ = ape_decode_value(ctx, &ctx->riceX);
463
if (ctx->blocksdecoded == ctx->currentframeblocks)
464
range_dec_normalize(ctx); /* normalize to use up all bytes */
467
static void init_entropy_decoder(APEContext * ctx)
470
ctx->CRC = bytestream_get_be32(&ctx->ptr);
472
/* Read the frame flags if they exist */
474
if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
475
ctx->CRC &= ~0x80000000;
477
ctx->frameflags = bytestream_get_be32(&ctx->ptr);
480
/* Keep a count of the blocks decoded in this frame */
481
ctx->blocksdecoded = 0;
483
/* Initialize the rice structs */
485
ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
487
ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
489
/* The first 8 bits of input are ignored. */
492
range_start_decoding(ctx);
495
static const int32_t initial_coeffs[4] = {
499
static void init_predictor_decoder(APEContext * ctx)
501
APEPredictor *p = &ctx->predictor;
503
/* Zero the history buffers */
504
memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
505
p->buf = p->historybuffer;
507
/* Initialize and zero the coefficients */
508
memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
509
memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
510
memset(p->coeffsB, 0, sizeof(p->coeffsB));
512
p->filterA[0] = p->filterA[1] = 0;
513
p->filterB[0] = p->filterB[1] = 0;
514
p->lastA[0] = p->lastA[1] = 0;
517
/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
518
static inline int APESIGN(int32_t x) {
519
return (x < 0) - (x > 0);
522
static int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
524
int32_t predictionA, predictionB;
526
p->buf[delayA] = p->lastA[filter];
527
p->buf[adaptA] = APESIGN(p->buf[delayA]);
528
p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
529
p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
531
predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
532
p->buf[delayA - 1] * p->coeffsA[filter][1] +
533
p->buf[delayA - 2] * p->coeffsA[filter][2] +
534
p->buf[delayA - 3] * p->coeffsA[filter][3];
536
/* Apply a scaled first-order filter compression */
537
p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
538
p->buf[adaptB] = APESIGN(p->buf[delayB]);
539
p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
540
p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
541
p->filterB[filter] = p->filterA[filter ^ 1];
543
predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
544
p->buf[delayB - 1] * p->coeffsB[filter][1] +
545
p->buf[delayB - 2] * p->coeffsB[filter][2] +
546
p->buf[delayB - 3] * p->coeffsB[filter][3] +
547
p->buf[delayB - 4] * p->coeffsB[filter][4];
549
p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
550
p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
552
if (!decoded) // no need updating filter coefficients
553
return p->filterA[filter];
556
p->coeffsA[filter][0] -= p->buf[adaptA ];
557
p->coeffsA[filter][1] -= p->buf[adaptA - 1];
558
p->coeffsA[filter][2] -= p->buf[adaptA - 2];
559
p->coeffsA[filter][3] -= p->buf[adaptA - 3];
561
p->coeffsB[filter][0] -= p->buf[adaptB ];
562
p->coeffsB[filter][1] -= p->buf[adaptB - 1];
563
p->coeffsB[filter][2] -= p->buf[adaptB - 2];
564
p->coeffsB[filter][3] -= p->buf[adaptB - 3];
565
p->coeffsB[filter][4] -= p->buf[adaptB - 4];
567
p->coeffsA[filter][0] += p->buf[adaptA ];
568
p->coeffsA[filter][1] += p->buf[adaptA - 1];
569
p->coeffsA[filter][2] += p->buf[adaptA - 2];
570
p->coeffsA[filter][3] += p->buf[adaptA - 3];
572
p->coeffsB[filter][0] += p->buf[adaptB ];
573
p->coeffsB[filter][1] += p->buf[adaptB - 1];
574
p->coeffsB[filter][2] += p->buf[adaptB - 2];
575
p->coeffsB[filter][3] += p->buf[adaptB - 3];
576
p->coeffsB[filter][4] += p->buf[adaptB - 4];
578
return p->filterA[filter];
581
static void predictor_decode_stereo(APEContext * ctx, int count)
583
int32_t predictionA, predictionB;
584
APEPredictor *p = &ctx->predictor;
585
int32_t *decoded0 = ctx->decoded0;
586
int32_t *decoded1 = ctx->decoded1;
590
predictionA = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB);
591
predictionB = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB);
592
*(decoded0++) = predictionA;
593
*(decoded1++) = predictionB;
598
/* Have we filled the history buffer? */
599
if (p->buf == p->historybuffer + HISTORY_SIZE) {
600
memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
601
p->buf = p->historybuffer;
606
static void predictor_decode_mono(APEContext * ctx, int count)
608
APEPredictor *p = &ctx->predictor;
609
int32_t *decoded0 = ctx->decoded0;
610
int32_t predictionA, currentA, A;
612
currentA = p->lastA[0];
617
p->buf[YDELAYA] = currentA;
618
p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
620
predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
621
p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
622
p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
623
p->buf[YDELAYA - 3] * p->coeffsA[0][3];
625
currentA = A + (predictionA >> 10);
627
p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
628
p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
631
p->coeffsA[0][0] -= p->buf[YADAPTCOEFFSA ];
632
p->coeffsA[0][1] -= p->buf[YADAPTCOEFFSA - 1];
633
p->coeffsA[0][2] -= p->buf[YADAPTCOEFFSA - 2];
634
p->coeffsA[0][3] -= p->buf[YADAPTCOEFFSA - 3];
636
p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ];
637
p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1];
638
p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2];
639
p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3];
644
/* Have we filled the history buffer? */
645
if (p->buf == p->historybuffer + HISTORY_SIZE) {
646
memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
647
p->buf = p->historybuffer;
650
p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
651
*(decoded0++) = p->filterA[0];
654
p->lastA[0] = currentA;
657
static void do_init_filter(APEFilter *f, int16_t * buf, int order)
660
f->historybuffer = buf + order;
661
f->delay = f->historybuffer + order * 2;
662
f->adaptcoeffs = f->historybuffer + order;
664
memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t));
665
memset(f->coeffs, 0, order * sizeof(int16_t));
669
static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order)
671
do_init_filter(&f[0], buf, order);
672
do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
675
static inline void do_apply_filter(int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
681
/* round fixedpoint scalar product */
682
res = (scalarproduct(f->delay - order, f->coeffs, order) + (1 << (fracbits - 1))) >> fracbits;
685
vector_add(f->coeffs, f->adaptcoeffs - order, order);
687
vector_sub(f->coeffs, f->adaptcoeffs - order, order);
693
/* Update the output history */
694
*f->delay++ = av_clip_int16(res);
696
if (version < 3980) {
697
/* Version ??? to < 3.98 files (untested) */
698
f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
699
f->adaptcoeffs[-4] >>= 1;
700
f->adaptcoeffs[-8] >>= 1;
702
/* Version 3.98 and later files */
704
/* Update the adaption coefficients */
705
absres = (res < 0 ? -res : res);
707
if (absres > (f->avg * 3))
708
*f->adaptcoeffs = ((res >> 25) & 64) - 32;
709
else if (absres > (f->avg * 4) / 3)
710
*f->adaptcoeffs = ((res >> 26) & 32) - 16;
712
*f->adaptcoeffs = ((res >> 27) & 16) - 8;
716
f->avg += (absres - f->avg) / 16;
718
f->adaptcoeffs[-1] >>= 1;
719
f->adaptcoeffs[-2] >>= 1;
720
f->adaptcoeffs[-8] >>= 1;
725
/* Have we filled the history buffer? */
726
if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
727
memmove(f->historybuffer, f->delay - (order * 2),
728
(order * 2) * sizeof(int16_t));
729
f->delay = f->historybuffer + order * 2;
730
f->adaptcoeffs = f->historybuffer + order;
735
static void apply_filter(APEContext * ctx, APEFilter *f,
736
int32_t * data0, int32_t * data1,
737
int count, int order, int fracbits)
739
do_apply_filter(ctx->fileversion, &f[0], data0, count, order, fracbits);
741
do_apply_filter(ctx->fileversion, &f[1], data1, count, order, fracbits);
744
static void ape_apply_filters(APEContext * ctx, int32_t * decoded0,
745
int32_t * decoded1, int count)
749
for (i = 0; i < APE_FILTER_LEVELS; i++) {
750
if (!ape_filter_orders[ctx->fset][i])
752
apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]);
756
static void init_frame_decoder(APEContext * ctx)
759
init_entropy_decoder(ctx);
760
init_predictor_decoder(ctx);
762
for (i = 0; i < APE_FILTER_LEVELS; i++) {
763
if (!ape_filter_orders[ctx->fset][i])
765
init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]);
769
static void ape_unpack_mono(APEContext * ctx, int count)
772
int32_t *decoded0 = ctx->decoded0;
773
int32_t *decoded1 = ctx->decoded1;
775
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
776
entropy_decode(ctx, count, 0);
777
/* We are pure silence, so we're done. */
778
av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
782
entropy_decode(ctx, count, 0);
783
ape_apply_filters(ctx, decoded0, NULL, count);
785
/* Now apply the predictor decoding */
786
predictor_decode_mono(ctx, count);
788
/* Pseudo-stereo - just copy left channel to right channel */
789
if (ctx->channels == 2) {
792
*(decoded1++) = *(decoded0++) = left;
797
static void ape_unpack_stereo(APEContext * ctx, int count)
800
int32_t *decoded0 = ctx->decoded0;
801
int32_t *decoded1 = ctx->decoded1;
803
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
804
/* We are pure silence, so we're done. */
805
av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
809
entropy_decode(ctx, count, 1);
810
ape_apply_filters(ctx, decoded0, decoded1, count);
812
/* Now apply the predictor decoding */
813
predictor_decode_stereo(ctx, count);
815
/* Decorrelate and scale to output depth */
817
left = *decoded1 - (*decoded0 / 2);
818
right = left + *decoded0;
820
*(decoded0++) = left;
821
*(decoded1++) = right;
825
static int ape_decode_frame(AVCodecContext * avctx,
826
void *data, int *data_size,
827
const uint8_t * buf, int buf_size)
829
APEContext *s = avctx->priv_data;
830
int16_t *samples = data;
836
if (buf_size == 0 && !s->samples) {
841
/* should not happen but who knows */
842
if (BLOCKS_PER_LOOP * 2 * avctx->channels > *data_size) {
843
av_log (avctx, AV_LOG_ERROR, "Packet size is too big to be handled in lavc! (max is %d where you have %d)\n", *data_size, s->samples * 2 * avctx->channels);
848
s->data = av_realloc(s->data, (buf_size + 3) & ~3);
849
s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
850
s->ptr = s->last_ptr = s->data;
851
s->data_end = s->data + buf_size;
853
nblocks = s->samples = bytestream_get_be32(&s->ptr);
854
n = bytestream_get_be32(&s->ptr);
856
av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
862
s->currentframeblocks = nblocks;
864
if (s->samples <= 0) {
869
memset(s->decoded0, 0, sizeof(s->decoded0));
870
memset(s->decoded1, 0, sizeof(s->decoded1));
872
/* Initialize the frame decoder */
873
init_frame_decoder(s);
881
nblocks = s->samples;
882
blockstodecode = FFMIN(BLOCKS_PER_LOOP, nblocks);
886
if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
887
ape_unpack_mono(s, blockstodecode);
889
ape_unpack_stereo(s, blockstodecode);
891
if(s->error || s->ptr > s->data_end){
893
av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
897
for (i = 0; i < blockstodecode; i++) {
898
*samples++ = s->decoded0[i];
900
*samples++ = s->decoded1[i];
903
s->samples -= blockstodecode;
905
*data_size = blockstodecode * 2 * s->channels;
906
bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size;
907
s->last_ptr = s->ptr;
911
AVCodec ape_decoder = {
920
.long_name = "Monkey's Audio",