2
* RV30/40 decoder common data
3
* Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
5
* This file is part of FFmpeg.
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24
* RV30/40 decoder common data
29
#include "mpegvideo.h"
31
#include "rectangle.h"
39
/** translation of RV30/40 macroblock types to lavc ones */
40
static const int rv34_mb_type_to_lavc[12] = {
43
MB_TYPE_16x16 | MB_TYPE_L0,
44
MB_TYPE_8x8 | MB_TYPE_L0,
45
MB_TYPE_16x16 | MB_TYPE_L0,
46
MB_TYPE_16x16 | MB_TYPE_L1,
48
MB_TYPE_DIRECT2 | MB_TYPE_16x16,
49
MB_TYPE_16x8 | MB_TYPE_L0,
50
MB_TYPE_8x16 | MB_TYPE_L0,
51
MB_TYPE_16x16 | MB_TYPE_L0L1,
52
MB_TYPE_16x16 | MB_TYPE_L0
56
static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
59
* @defgroup vlc RV30/40 VLC generating functions
64
* Generate VLC from codeword lengths.
65
* @param bits codeword lengths (zeroes are accepted)
66
* @param size length of input data
67
* @param insyms symbols for input codes (NULL for default ones)
69
static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms)
72
int counts[17] = {0}, codes[17];
73
uint16_t cw[size], syms[size];
75
int maxbits = 0, realsize = 0;
77
for(i = 0; i < size; i++){
79
bits2[realsize] = bits[i];
80
syms[realsize] = insyms ? insyms[i] : i;
82
maxbits = FFMAX(maxbits, bits[i]);
88
for(i = 0; i < 16; i++)
89
codes[i+1] = (codes[i] + counts[i]) << 1;
90
for(i = 0; i < realsize; i++)
91
cw[i] = codes[bits2[i]]++;
93
init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
96
syms, 2, 2, INIT_VLC_USE_STATIC);
100
* Initialize all tables.
102
static av_cold void rv34_init_tables()
106
for(i = 0; i < NUM_INTRA_TABLES; i++){
107
for(j = 0; j < 2; j++){
108
rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL);
109
rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL);
110
rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL);
111
for(k = 0; k < 4; k++)
112
rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code);
114
for(j = 0; j < 4; j++)
115
rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL);
116
rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL);
119
for(i = 0; i < NUM_INTER_TABLES; i++){
120
rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL);
121
for(j = 0; j < 4; j++)
122
rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code);
123
for(j = 0; j < 2; j++){
124
rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL);
125
rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL);
126
rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL);
128
rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL);
132
/** @} */ // vlc group
136
* @defgroup transform RV30/40 inverse transform functions
140
static av_always_inline void rv34_row_transform(int temp[16], DCTELEM *block)
145
const int z0= 13*(block[i+8*0] + block[i+8*2]);
146
const int z1= 13*(block[i+8*0] - block[i+8*2]);
147
const int z2= 7* block[i+8*1] - 17*block[i+8*3];
148
const int z3= 17* block[i+8*1] + 7*block[i+8*3];
158
* Real Video 3.0/4.0 inverse transform
159
* Code is almost the same as in SVQ3, only scaling is different.
161
static void rv34_inv_transform(DCTELEM *block){
165
rv34_row_transform(temp, block);
168
const int z0= 13*(temp[4*0+i] + temp[4*2+i]) + 0x200;
169
const int z1= 13*(temp[4*0+i] - temp[4*2+i]) + 0x200;
170
const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
171
const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
173
block[i*8+0]= (z0 + z3)>>10;
174
block[i*8+1]= (z1 + z2)>>10;
175
block[i*8+2]= (z1 - z2)>>10;
176
block[i*8+3]= (z0 - z3)>>10;
182
* RealVideo 3.0/4.0 inverse transform for DC block
184
* Code is almost the same as rv34_inv_transform()
185
* but final coefficients are multiplied by 1.5 and have no rounding.
187
static void rv34_inv_transform_noround(DCTELEM *block){
191
rv34_row_transform(temp, block);
194
const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
195
const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
196
const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
197
const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
199
block[i*8+0]= ((z0 + z3)*3)>>11;
200
block[i*8+1]= ((z1 + z2)*3)>>11;
201
block[i*8+2]= ((z1 - z2)*3)>>11;
202
block[i*8+3]= ((z0 - z3)*3)>>11;
207
/** @} */ // transform
211
* @defgroup block RV30/40 4x4 block decoding functions
216
* Decode coded block pattern.
218
static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
220
int pattern, code, cbp=0;
222
static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
223
static const int shifts[4] = { 0, 2, 8, 10 };
224
int *curshift = shifts;
227
code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
228
pattern = code & 0xF;
231
ones = rv34_count_ones[pattern];
233
for(mask = 8; mask; mask >>= 1, curshift++){
235
cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
238
for(i = 0; i < 4; i++){
239
t = modulo_three_table[code][i];
241
cbp |= cbp_masks[get_bits1(gb)] << i;
243
cbp |= cbp_masks[2] << i;
249
* Get one coefficient value from the bistream and store it.
251
static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
255
coef = get_vlc2(gb, vlc->table, 9, 2);
258
coef = 22 + ((1 << coef) | get_bits(gb, coef));
269
* Decode 2x2 subblock of coefficients.
271
static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
275
coeffs[0] = modulo_three_table[code][0];
276
coeffs[1] = modulo_three_table[code][1];
277
coeffs[2] = modulo_three_table[code][2];
278
coeffs[3] = modulo_three_table[code][3];
279
decode_coeff(dst , coeffs[0], 3, gb, vlc);
281
decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
282
decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
284
decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
285
decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
287
decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
291
* Decode coefficients for 4x4 block.
293
* This is done by filling 2x2 subblocks with decoded coefficients
294
* in this order (the same for subblocks and subblock coefficients):
301
static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
305
code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
307
pattern = code & 0x7;
310
decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
313
code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
314
decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
316
if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
317
code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
318
decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
321
code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
322
decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
328
* Dequantize ordinary 4x4 block.
331
static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
335
block[0] = (block[0] * Qdc + 8) >> 4;
336
for(i = 0; i < 4; i++)
337
for(j = !i; j < 4; j++)
338
block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
342
* Dequantize 4x4 block of DC values for 16x16 macroblock.
345
static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
349
for(i = 0; i < 3; i++)
350
block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
352
block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
354
/** @} */ //block functions
358
* @defgroup bitstream RV30/40 bitstream parsing
363
* Decode starting slice position.
364
* @todo Maybe replace with ff_h263_decode_mba() ?
366
int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
369
for(i = 0; i < 5; i++)
370
if(rv34_mb_max_sizes[i] > mb_size)
372
return rv34_mb_bits_sizes[i];
376
* Select VLC set for decoding from current quantizer, modifier and frame type.
378
static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
380
if(mod == 2 && quant < 19) quant += 10;
381
else if(mod && quant < 26) quant += 5;
382
return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
383
: &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
387
* Decode quantizer difference and return modified quantizer.
389
static inline int rv34_decode_dquant(GetBitContext *gb, int quant)
392
return rv34_dquant_tab[get_bits1(gb)][quant];
394
return get_bits(gb, 5);
397
/** @} */ //bitstream functions
400
* @defgroup mv motion vector related code (prediction, reconstruction, motion compensation)
404
/** macroblock partition width in 8x8 blocks */
405
static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
407
/** macroblock partition height in 8x8 blocks */
408
static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
410
/** availability index for subblocks */
411
static const uint8_t avail_indexes[4] = { 5, 6, 9, 10 };
414
* motion vector prediction
416
* Motion prediction performed for the block by using median prediction of
417
* motion vectors from the left, top and right top blocks but in corner cases
418
* some other vectors may be used instead.
420
static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
422
MpegEncContext *s = &r->s;
423
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
424
int A[2] = {0}, B[2], C[2];
427
int avail_index = avail_indexes[subblock_no];
428
int c_off = part_sizes_w[block_type];
430
mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
434
if(r->avail_cache[avail_index - 1]){
435
A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
436
A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
438
if(r->avail_cache[avail_index - 4]){
439
B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
440
B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
445
if(!r->avail_cache[avail_index - 4 + c_off]){
446
if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
447
C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
448
C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
454
C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
455
C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
457
mx = mid_pred(A[0], B[0], C[0]);
458
my = mid_pred(A[1], B[1], C[1]);
459
mx += r->dmv[dmv_no][0];
460
my += r->dmv[dmv_no][1];
461
for(j = 0; j < part_sizes_h[block_type]; j++){
462
for(i = 0; i < part_sizes_w[block_type]; i++){
463
s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
464
s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
469
#define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
472
* Calculate motion vector component that should be added for direct blocks.
474
static int calc_add_mv(RV34DecContext *r, int dir, int val)
476
int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
477
int dist = dir ? GET_PTS_DIFF(r->next_pts, r->cur_pts) : GET_PTS_DIFF(r->cur_pts, r->last_pts);
479
if(!refdist) return 0;
481
return (val * dist + refdist - 1) / refdist;
483
return -(val * dist / refdist);
487
* Predict motion vector for B-frame macroblock.
489
static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
490
int A_avail, int B_avail, int C_avail,
493
if(A_avail + B_avail + C_avail != 3){
494
*mx = A[0] + B[0] + C[0];
495
*my = A[1] + B[1] + C[1];
496
if(A_avail + B_avail + C_avail == 2){
501
*mx = mid_pred(A[0], B[0], C[0]);
502
*my = mid_pred(A[1], B[1], C[1]);
507
* motion vector prediction for B-frames
509
static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
511
MpegEncContext *s = &r->s;
512
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
513
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
514
int A[2], B[2], C[2];
515
int has_A = 0, has_B = 0, has_C = 0;
518
Picture *cur_pic = s->current_picture_ptr;
519
const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
520
int type = cur_pic->mb_type[mb_pos];
522
memset(A, 0, sizeof(A));
523
memset(B, 0, sizeof(B));
524
memset(C, 0, sizeof(C));
525
if((r->avail_cache[5-1] & type) & mask){
526
A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
527
A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
530
if((r->avail_cache[5-4] & type) & mask){
531
B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
532
B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
535
if((r->avail_cache[5-2] & type) & mask){
536
C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
537
C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
539
}else if((s->mb_x+1) == s->mb_width && (r->avail_cache[5-5] & type) & mask){
540
C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
541
C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
545
rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
547
mx += r->dmv[dir][0];
548
my += r->dmv[dir][1];
550
for(j = 0; j < 2; j++){
551
for(i = 0; i < 2; i++){
552
cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
553
cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
556
if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD)
557
fill_rectangle(cur_pic->motion_val[!dir][mv_pos], 2, 2, s->b8_stride, 0, 4);
560
static const int chroma_coeffs[3] = { 8, 5, 3 };
563
* generic motion compensation function
565
* @param r decoder context
566
* @param block_type type of the current block
567
* @param xoff horizontal offset from the start of the current block
568
* @param yoff vertical offset from the start of the current block
569
* @param mv_off offset to the motion vector information
570
* @param width width of the current partition in 8x8 blocks
571
* @param height height of the current partition in 8x8 blocks
573
static inline void rv34_mc(RV34DecContext *r, const int block_type,
574
const int xoff, const int yoff, int mv_off,
575
const int width, const int height, int dir,
577
qpel_mc_func (*qpel_mc)[16],
578
h264_chroma_mc_func (*chroma_mc))
580
MpegEncContext *s = &r->s;
581
uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
582
int dxy, mx, my, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
583
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
587
mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
588
my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
589
lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
590
ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
591
uvmx = chroma_coeffs[(3*(mx&1) + lx) >> 1];
592
uvmy = chroma_coeffs[(3*(my&1) + ly) >> 1];
594
mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
595
my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
596
lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
597
ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
602
srcY = dir ? s->next_picture_ptr->data[0] : s->last_picture_ptr->data[0];
603
srcU = dir ? s->next_picture_ptr->data[1] : s->last_picture_ptr->data[1];
604
srcV = dir ? s->next_picture_ptr->data[2] : s->last_picture_ptr->data[2];
605
src_x = s->mb_x * 16 + xoff + mx;
606
src_y = s->mb_y * 16 + yoff + my;
607
uvsrc_x = s->mb_x * 8 + (xoff >> 1) + (mx >> 1);
608
uvsrc_y = s->mb_y * 8 + (yoff >> 1) + (my >> 1);
609
srcY += src_y * s->linesize + src_x;
610
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
611
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
612
if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 3
613
|| (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 3){
614
uint8_t *uvbuf= s->edge_emu_buffer + 20 * s->linesize;
616
srcY -= 2 + 2*s->linesize;
617
ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+4, (height<<3)+4,
618
src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
619
srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
620
ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
621
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
622
ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
623
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
627
Y = s->dest[0] + xoff + yoff *s->linesize;
628
U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
629
V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
631
if(block_type == RV34_MB_P_16x8){
632
qpel_mc[1][dxy](Y, srcY, s->linesize);
635
}else if(block_type == RV34_MB_P_8x16){
636
qpel_mc[1][dxy](Y, srcY, s->linesize);
637
Y += 8 * s->linesize;
638
srcY += 8 * s->linesize;
640
is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
641
qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
642
chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
643
chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
646
static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
647
const int xoff, const int yoff, int mv_off,
648
const int width, const int height, int dir)
650
rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30,
651
r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
652
: r->s.dsp.put_h264_qpel_pixels_tab,
653
r->s.dsp.put_h264_chroma_pixels_tab);
656
static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
658
rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30,
659
r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
660
: r->s.dsp.put_h264_qpel_pixels_tab,
661
r->s.dsp.put_h264_chroma_pixels_tab);
662
rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30,
663
r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
664
: r->s.dsp.avg_h264_qpel_pixels_tab,
665
r->s.dsp.avg_h264_chroma_pixels_tab);
668
static void rv34_mc_2mv_skip(RV34DecContext *r)
671
for(j = 0; j < 2; j++)
672
for(i = 0; i < 2; i++){
673
rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
674
r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
675
: r->s.dsp.put_h264_qpel_pixels_tab,
676
r->s.dsp.put_h264_chroma_pixels_tab);
677
rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
678
r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
679
: r->s.dsp.avg_h264_qpel_pixels_tab,
680
r->s.dsp.avg_h264_chroma_pixels_tab);
684
/** number of motion vectors in each macroblock type */
685
static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
688
* Decode motion vector differences
689
* and perform motion vector reconstruction and motion compensation.
691
static int rv34_decode_mv(RV34DecContext *r, int block_type)
693
MpegEncContext *s = &r->s;
694
GetBitContext *gb = &s->gb;
696
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
699
memset(r->dmv, 0, sizeof(r->dmv));
700
for(i = 0; i < num_mvs[block_type]; i++){
701
r->dmv[i][0] = svq3_get_se_golomb(gb);
702
r->dmv[i][1] = svq3_get_se_golomb(gb);
705
case RV34_MB_TYPE_INTRA:
706
case RV34_MB_TYPE_INTRA16x16:
707
fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
710
if(s->pict_type == FF_P_TYPE){
711
fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
712
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
715
case RV34_MB_B_DIRECT:
716
//surprisingly, it uses motion scheme from next reference frame
717
next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
718
for(j = 0; j < 2; j++)
719
for(i = 0; i < 2; i++)
720
for(k = 0; k < 2; k++)
721
for(l = 0; l < 2; l++)
722
s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
723
if(IS_16X16(next_bt)) //we can use whole macroblock MC
724
rv34_mc_2mv(r, block_type);
727
fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
729
case RV34_MB_P_16x16:
730
case RV34_MB_P_MIX16x16:
731
rv34_pred_mv(r, block_type, 0, 0);
732
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
734
case RV34_MB_B_FORWARD:
735
case RV34_MB_B_BACKWARD:
736
r->dmv[1][0] = r->dmv[0][0];
737
r->dmv[1][1] = r->dmv[0][1];
738
rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
739
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
743
rv34_pred_mv(r, block_type, 0, 0);
744
rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
745
if(block_type == RV34_MB_P_16x8){
746
rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
747
rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
749
if(block_type == RV34_MB_P_8x16){
750
rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
751
rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
754
case RV34_MB_B_BIDIR:
755
rv34_pred_mv_b (r, block_type, 0);
756
rv34_pred_mv_b (r, block_type, 1);
757
rv34_mc_2mv (r, block_type);
761
rv34_pred_mv(r, block_type, i, i);
762
rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
769
/** @} */ // mv group
772
* @defgroup recons Macroblock reconstruction functions
775
/** mapping of RV30/40 intra prediction types to standard H.264 types */
776
static const int ittrans[9] = {
777
DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
778
VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
781
/** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
782
static const int ittrans16[4] = {
783
DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
787
* Perform 4x4 intra prediction.
789
static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
791
uint8_t *prev = dst - stride + 4;
797
if(itype == VERT_PRED) itype = HOR_PRED;
798
if(itype == DC_PRED) itype = LEFT_DC_PRED;
800
if(itype == HOR_PRED) itype = VERT_PRED;
801
if(itype == DC_PRED) itype = TOP_DC_PRED;
802
if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
805
if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
806
if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
807
if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
810
topleft = dst[-stride + 3] * 0x01010101;
813
r->h.pred4x4[itype](dst, prev, stride);
816
/** add_pixels_clamped for 4x4 block */
817
static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
820
for(y = 0; y < 4; y++)
821
for(x = 0; x < 4; x++)
822
dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
825
static inline int adjust_pred16(int itype, int up, int left)
828
itype = DC_128_PRED8x8;
830
if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
831
if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
832
if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
834
if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
835
if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
836
if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
841
static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
843
MpegEncContext *s = &r->s;
844
DSPContext *dsp = &s->dsp;
848
int avail[6*8] = {0};
851
// Set neighbour information.
852
if(r->avail_cache[0])
854
if(r->avail_cache[1])
855
avail[1] = avail[2] = 1;
856
if(r->avail_cache[2])
857
avail[3] = avail[4] = 1;
858
if(r->avail_cache[3])
860
if(r->avail_cache[4])
861
avail[8] = avail[16] = 1;
862
if(r->avail_cache[8])
863
avail[24] = avail[32] = 1;
869
for(j = 0; j < 4; j++){
871
for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
872
rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
875
rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
877
Y += s->linesize * 4 - 4*4;
878
intra_types += s->b4_stride;
880
intra_types -= s->b4_stride * 4;
881
fill_rectangle(r->avail_cache + 5, 2, 2, 4, 0, 4);
882
for(j = 0; j < 2; j++){
884
for(i = 0; i < 2; i++, cbp >>= 1, idx++){
885
rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
886
rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
887
r->avail_cache[idx] = 1;
889
rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
891
rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
895
itype = ittrans16[intra_types[0]];
896
itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
897
r->h.pred16x16[itype](Y, s->linesize);
898
dsp->add_pixels_clamped(s->block[0], Y, s->current_picture.linesize[0]);
899
dsp->add_pixels_clamped(s->block[1], Y + 8, s->current_picture.linesize[0]);
900
Y += s->current_picture.linesize[0] * 8;
901
dsp->add_pixels_clamped(s->block[2], Y, s->current_picture.linesize[0]);
902
dsp->add_pixels_clamped(s->block[3], Y + 8, s->current_picture.linesize[0]);
904
itype = ittrans16[intra_types[0]];
905
if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
906
itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
907
r->h.pred8x8[itype](U, s->uvlinesize);
908
dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
909
r->h.pred8x8[itype](V, s->uvlinesize);
910
dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
914
/** @} */ // recons group
917
* @addtogroup bitstream
918
* Decode macroblock header and return CBP in case of success, -1 otherwise.
920
static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
922
MpegEncContext *s = &r->s;
923
GetBitContext *gb = &s->gb;
924
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
928
r->is16 = get_bits1(gb);
929
if(!r->is16 && !r->rv30){
931
av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
933
s->current_picture_ptr->mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
934
r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
936
r->block_type = r->decode_mb_info(r);
937
if(r->block_type == -1)
939
s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
940
r->mb_type[mb_pos] = r->block_type;
941
if(r->block_type == RV34_MB_SKIP){
942
if(s->pict_type == FF_P_TYPE)
943
r->mb_type[mb_pos] = RV34_MB_P_16x16;
944
if(s->pict_type == FF_B_TYPE)
945
r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
947
r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
948
rv34_decode_mv(r, r->block_type);
949
if(r->block_type == RV34_MB_SKIP){
950
fill_rectangle(intra_types, 4, 4, s->b4_stride, 0, sizeof(intra_types[0]));
956
if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
959
fill_rectangle(intra_types, 4, 4, s->b4_stride, t, sizeof(intra_types[0]));
962
if(r->decode_intra_types(r, gb, intra_types) < 0)
967
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
969
for(i = 0; i < 16; i++)
970
intra_types[(i & 3) + (i>>2) * s->b4_stride] = 0;
971
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
972
if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
976
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
980
return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
988
* mask for retrieving all bits in coded block pattern
989
* corresponding to one 8x8 block
991
#define LUMA_CBP_BLOCK_MASK 0x303
993
#define U_CBP_MASK 0x0F0000
994
#define V_CBP_MASK 0xF00000
997
static void rv34_apply_differences(RV34DecContext *r, int cbp)
999
static const int shifts[4] = { 0, 2, 8, 10 };
1000
MpegEncContext *s = &r->s;
1003
for(i = 0; i < 4; i++)
1004
if(cbp & (LUMA_CBP_BLOCK_MASK << shifts[i]))
1005
s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
1006
if(cbp & U_CBP_MASK)
1007
s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
1008
if(cbp & V_CBP_MASK)
1009
s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
1012
static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
1014
MpegEncContext *s = &r->s;
1015
GetBitContext *gb = &s->gb;
1017
int i, blknum, blkoff;
1018
DCTELEM block16[64];
1021
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1023
// Calculate which neighbours are available. Maybe it's worth optimizing too.
1024
memset(r->avail_cache, 0, sizeof(r->avail_cache));
1025
fill_rectangle(r->avail_cache + 5, 2, 2, 4, 1, 4);
1026
dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1029
r->avail_cache[8] = s->current_picture_ptr->mb_type[mb_pos - 1];
1030
if(dist >= s->mb_width)
1032
r->avail_cache[2] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1033
if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1034
r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1035
if(s->mb_x && dist > s->mb_width)
1036
r->avail_cache[0] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1038
s->qscale = r->si.quant;
1039
cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
1040
r->cbp_luma [s->mb_x + s->mb_y * s->mb_stride] = cbp;
1041
r->cbp_chroma[s->mb_x + s->mb_y * s->mb_stride] = cbp >> 16;
1042
s->current_picture.qscale_table[s->mb_x + s->mb_y * s->mb_stride] = s->qscale;
1047
luma_dc_quant = r->si.type ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
1049
memset(block16, 0, sizeof(block16));
1050
rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
1051
rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
1052
rv34_inv_transform_noround(block16);
1055
for(i = 0; i < 16; i++, cbp >>= 1){
1056
if(!r->is16 && !(cbp & 1)) continue;
1057
blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
1058
blkoff = ((i & 1) << 2) + ((i & 4) << 3);
1060
rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
1061
rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
1062
if(r->is16) //FIXME: optimize
1063
s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
1064
rv34_inv_transform(s->block[blknum] + blkoff);
1066
if(r->block_type == RV34_MB_P_MIX16x16)
1067
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
1068
for(; i < 24; i++, cbp >>= 1){
1069
if(!(cbp & 1)) continue;
1070
blknum = ((i & 4) >> 2) + 4;
1071
blkoff = ((i & 1) << 2) + ((i & 2) << 4);
1072
rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
1073
rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
1074
rv34_inv_transform(s->block[blknum] + blkoff);
1076
if(IS_INTRA(s->current_picture_ptr->mb_type[s->mb_x + s->mb_y*s->mb_stride]))
1077
rv34_output_macroblock(r, intra_types, cbp2, r->is16);
1079
rv34_apply_differences(r, cbp2);
1084
static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
1087
if(s->mb_y >= s->mb_height)
1091
if(r->s.mb_skip_run > 1)
1093
bits = r->bits - get_bits_count(&s->gb);
1094
if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
1099
static inline int slice_compare(SliceInfo *si1, SliceInfo *si2)
1101
return si1->type != si2->type ||
1102
si1->start >= si2->start ||
1103
si1->width != si2->width ||
1104
si1->height != si2->height||
1105
si1->pts != si2->pts;
1108
static int rv34_decode_slice(RV34DecContext *r, int end, uint8_t* buf, int buf_size)
1110
MpegEncContext *s = &r->s;
1111
GetBitContext *gb = &s->gb;
1115
init_get_bits(&r->s.gb, buf, buf_size*8);
1116
res = r->parse_slice_header(r, gb, &r->si);
1118
av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
1122
if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
1123
if(s->width != r->si.width || s->height != r->si.height){
1124
av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
1126
s->width = r->si.width;
1127
s->height = r->si.height;
1128
if(MPV_common_init(s) < 0)
1130
r->intra_types_hist = av_realloc(r->intra_types_hist, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1131
r->intra_types = r->intra_types_hist + s->b4_stride * 4;
1132
r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
1133
r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
1134
r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
1136
s->pict_type = r->si.type ? r->si.type : FF_I_TYPE;
1137
if(MPV_frame_start(s, s->avctx) < 0)
1139
ff_er_frame_start(s);
1140
s->current_picture_ptr = &s->current_picture;
1141
r->cur_pts = r->si.pts;
1142
if(s->pict_type != FF_B_TYPE){
1143
r->last_pts = r->next_pts;
1144
r->next_pts = r->cur_pts;
1146
s->mb_x = s->mb_y = 0;
1150
s->qscale = r->si.quant;
1151
r->bits = buf_size*8;
1152
s->mb_num_left = r->si.end - r->si.start;
1153
r->s.mb_skip_run = 0;
1155
mb_pos = s->mb_x + s->mb_y * s->mb_width;
1156
if(r->si.start != mb_pos){
1157
av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
1158
s->mb_x = r->si.start % s->mb_width;
1159
s->mb_y = r->si.start / s->mb_width;
1161
memset(r->intra_types_hist, -1, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1162
s->first_slice_line = 1;
1163
s->resync_mb_x= s->mb_x;
1164
s->resync_mb_y= s->mb_y;
1166
ff_init_block_index(s);
1167
while(!check_slice_end(r, s)) {
1168
ff_update_block_index(s);
1169
s->dsp.clear_blocks(s->block[0]);
1171
if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 1) < 0){
1172
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
1175
if (++s->mb_x == s->mb_width) {
1178
ff_init_block_index(s);
1180
memmove(r->intra_types_hist, r->intra_types, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
1181
memset(r->intra_types, -1, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
1183
if(s->mb_x == s->resync_mb_x)
1184
s->first_slice_line=0;
1187
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
1189
return (s->mb_y == s->mb_height);
1192
/** @} */ // recons group end
1195
* Initialize decoder.
1197
av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
1199
RV34DecContext *r = avctx->priv_data;
1200
MpegEncContext *s = &r->s;
1202
MPV_decode_defaults(s);
1204
s->out_format = FMT_H263;
1205
s->codec_id= avctx->codec_id;
1207
s->width = avctx->width;
1208
s->height = avctx->height;
1211
avctx->flags |= CODEC_FLAG_EMU_EDGE;
1212
r->s.flags |= CODEC_FLAG_EMU_EDGE;
1213
avctx->pix_fmt = PIX_FMT_YUV420P;
1214
avctx->has_b_frames = 1;
1217
if (MPV_common_init(s) < 0)
1220
ff_h264_pred_init(&r->h, CODEC_ID_RV40);
1222
r->intra_types_hist = av_malloc(s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1223
r->intra_types = r->intra_types_hist + s->b4_stride * 4;
1225
r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
1227
r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
1228
r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
1230
if(!intra_vlcs[0].cbppattern[0].bits)
1236
static int get_slice_offset(AVCodecContext *avctx, uint8_t *buf, int n)
1238
if(avctx->slice_count) return avctx->slice_offset[n];
1239
else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
1242
int ff_rv34_decode_frame(AVCodecContext *avctx,
1243
void *data, int *data_size,
1244
uint8_t *buf, int buf_size)
1246
RV34DecContext *r = avctx->priv_data;
1247
MpegEncContext *s = &r->s;
1248
AVFrame *pict = data;
1252
uint8_t *slices_hdr = NULL;
1255
/* no supplementary picture */
1256
if (buf_size == 0) {
1257
/* special case for last picture */
1258
if (s->low_delay==0 && s->next_picture_ptr) {
1259
*pict= *(AVFrame*)s->next_picture_ptr;
1260
s->next_picture_ptr= NULL;
1262
*data_size = sizeof(AVFrame);
1267
if(!avctx->slice_count){
1268
slice_count = (*buf++) + 1;
1269
slices_hdr = buf + 4;
1270
buf += 8 * slice_count;
1272
slice_count = avctx->slice_count;
1274
for(i=0; i<slice_count; i++){
1275
int offset= get_slice_offset(avctx, slices_hdr, i);
1277
if(i+1 == slice_count)
1278
size= buf_size - offset;
1280
size= get_slice_offset(avctx, slices_hdr, i+1) - offset;
1282
r->si.end = s->mb_width * s->mb_height;
1283
if(i+1 < slice_count){
1284
init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
1285
if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
1286
if(i+2 < slice_count)
1287
size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
1289
size = buf_size - offset;
1291
r->si.end = si.start;
1293
last = rv34_decode_slice(r, r->si.end, buf + offset, size);
1294
s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
1304
if (s->pict_type == FF_B_TYPE || s->low_delay) {
1305
*pict= *(AVFrame*)s->current_picture_ptr;
1306
} else if (s->last_picture_ptr != NULL) {
1307
*pict= *(AVFrame*)s->last_picture_ptr;
1310
if(s->last_picture_ptr || s->low_delay){
1311
*data_size = sizeof(AVFrame);
1312
ff_print_debug_info(s, pict);
1314
s->current_picture_ptr= NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
1319
av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
1321
RV34DecContext *r = avctx->priv_data;
1323
MPV_common_end(&r->s);
1325
av_freep(&r->intra_types_hist);
1326
r->intra_types = NULL;
1327
av_freep(&r->mb_type);