1
<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Intervals</title><link rel="stylesheet" href="../style.css" type="text/css"><meta name="generator" content="DocBook XSL Stylesheets V1.75.2"><link rel="home" href="index.html" title="GNU Solfege 3.16.4 User Manual"><link rel="up" href="music-theory.html" title="Chapter 3. Music theory"><link rel="prev" href="music-theory.html" title="Chapter 3. Music theory"><link rel="next" href="inverting-intervals.html" title="Inverting intervals"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Intervals</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="music-theory.html">Prev</a> </td><th width="60%" align="center">Chapter 3. Music theory</th><td width="20%" align="right"> <a accesskey="n" href="inverting-intervals.html">Next</a></td></tr></table><hr></div><div class="sect1" title="Intervals"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="theory-intervals"></a>Intervals</h2></div></div></div><p>In music theory we use the word interval when we talk about the pitch
1
<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Intervals</title><link rel="stylesheet" href="../style.css" type="text/css"><meta name="generator" content="DocBook XSL Stylesheets V1.75.2"><link rel="home" href="index.html" title="GNU Solfege 3.19.6 User Manual"><link rel="up" href="music-theory.html" title="Chapter 3. Music theory"><link rel="prev" href="music-theory.html" title="Chapter 3. Music theory"><link rel="next" href="inverting-intervals.html" title="Inverting intervals"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Intervals</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="music-theory.html">Prev</a> </td><th width="60%" align="center">Chapter 3. Music theory</th><td width="20%" align="right"> <a accesskey="n" href="inverting-intervals.html">Next</a></td></tr></table><hr></div><div class="sect1" title="Intervals"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="theory-intervals"></a>Intervals</h2></div></div></div><p>In music theory we use the word interval when we talk about the pitch
2
2
difference between two notes. We call them harmonic intervals if two tones
3
sound simultaneosly and melodic intervals if they sound successively.
3
sound simultaneously and melodic intervals if they sound successively.
4
4
</p><p>Interval names consist of two parts. Some examples are "major third" and
5
"perfect fifth". In Walter Pistons "Harmony" the two parts are called
5
"perfect fifth". In Walter Piston's "Harmony" the two parts are called
6
6
<span class="emphasis"><em>the specific name</em></span> and <span class="emphasis"><em>the general
7
name</em></span> part. Wikipedia talk about <span class="emphasis"><em>interval
7
name</em></span> part. Wikipedia talks about <span class="emphasis"><em>interval
8
8
quality</em></span> and <span class="emphasis"><em>interval number</em></span>. I have seen people
9
talk about an intervals <span class="emphasis"><em>numerical size</em></span>.</p><p>You find the
9
talking about an interval's <span class="emphasis"><em>numerical size</em></span>.</p><p>You find the
10
10
general name by counting the steps on the staff, ignoring any
11
accidentals. So if the inteval you want to name goes from E to G#, then we count
12
to 3 (E F G) and see that the general name is <span class="emphasis"><em>third</em></span>.</p><div class="informalfigure"><div class="mediaobject"><img src="../C/ly/theory-intervals-1.png"></div></div><p>
13
The specific name say the exact size of the interval. Unisons, fourths, fifths
11
accidentals. So if the interval you want to name goes from E to G#, then we count
12
to 3 (E F G) and see that the general name is <span class="emphasis"><em>third</em></span>.</p><div class="informalfigure"><div class="mediaobject"><img src="ly/theory-intervals-1.png"></div></div><p>
13
The specific name tells the exact size of the interval. Unisons, fourths, fifths
14
14
and octaves can be diminished, pure or augmented. Seconds, thirds, sixths and
15
15
sevenths can be minor, major, diminished or augmented. A minor interval is one
16
16
semitone smaller than a major interval. A diminished interval is one semitone
17
smaller than a pure or a minor interval, and a augmented interval is one
17
smaller than a pure or a minor interval, and an augmented interval is one
18
18
semitone larger than a pure or major interval.</p><p>Accidentals change the size of intervals. The interval becomes one
19
19
semitone larger if you add a sharp to the highest tone or a flat to the lowest
20
20
tone. And it becomes one semitone smaller if you add a flat to the highest tone
25
25
two semitone steps, also called a whole step.</p><p>To learn to identify seconds, you first have to learn which seconds there
26
26
are between the natural tones. As you can see in <a class="xref" href="theory-intervals.html#theory-intervals-seconds" title="Figure 3.1. ">Figure 3.1</a>, only the intervals E-F and B-C are minor
27
27
seconds. The rest are major intervals. You can check that <a class="xref" href="theory-intervals.html#theory-intervals-seconds" title="Figure 3.1. ">Figure 3.1</a> is correct by looking at a piano. You will
28
see that there are no black keys between E and F and between B and C.</p><div class="figure"><a name="theory-intervals-seconds"></a><p class="title"><b>Figure 3.1. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-seconds.png"></div></div></div><br class="figure-break"><p>If the second has accidentals, then we have to examine them to find out
28
see that there are no black keys between E and F and between B and C.</p><div class="figure"><a name="theory-intervals-seconds"></a><p class="title"><b>Figure 3.1. </b></p><div class="figure-contents"><div class="mediaobject"><img src="ly/theory-intervals-seconds.png"></div></div></div><br class="figure-break"><p>If the second has accidentals, then we have to examine them to find out
29
29
how they change the size of the interval. Let us identify a few intervals!
30
30
</p><div class="figure"><a name="theory-intervals-seconds-1"></a><p class="title"><b>Figure 3.2. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-seconds-1.png"></div></div></div><br class="figure-break"><p>We remove the accidental from the interval in <a class="xref" href="theory-intervals.html#theory-intervals-seconds-1" title="Figure 3.2. ">Figure 3.2</a> and see that the interval F-G is a major
31
31
second. When we add the flat to the highest tone, the interval becomes one
32
semitone smaller, and becomes a minor second.</p><div class="figure"><a name="theory-intervals-seconds-2"></a><p class="title"><b>Figure 3.3. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-seconds-2.png"></div></div></div><br class="figure-break"><p>We remove the accidentals, and see that the interval A-B is a major
33
second. You still do remember <a class="xref" href="theory-intervals.html#theory-intervals-seconds" title="Figure 3.1. ">Figure 3.1</a>, don't
34
you? Then we add the flat to the A, and the interval become a augmented
35
second. And when we add the flat to the B, and the interval becomes a major
32
semitone smaller, turning into a minor second.</p><div class="figure"><a name="theory-intervals-seconds-2"></a><p class="title"><b>Figure 3.3. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-seconds-2.png"></div></div></div><br class="figure-break"><p>We remove the accidentals, and see that the interval A-B is a major
33
second. You still remember <a class="xref" href="theory-intervals.html#theory-intervals-seconds" title="Figure 3.1. ">Figure 3.1</a>, don't
34
you? Then we add the flat to the A, and the interval becomes an augmented
35
second. And when we add the flat to the B, the interval becomes a major
36
36
second.</p><div class="figure"><a name="theory-intervals-seconds-3"></a><p class="title"><b>Figure 3.4. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-seconds-3.png"></div></div></div><br class="figure-break"><p>We remove the accidentals, and see that the interval E-F is a minor
37
37
second. When we add a flat to the lowest tone, the interval becomes one
38
semitone larger, and becomes a major second. And when we add a sharp to the
39
highest tone, the interval becomes one semitone larger, and becomes an
38
semitone larger, turning into a major second. And when we add a sharp to the
39
highest tone, the interval becomes one semitone larger, turning into an
40
40
augmented second.</p></div><div class="sect2" title="Thirds"><div class="titlepage"><div><div><h3 class="title"><a name="theory-thirds"></a>Thirds</h3></div></div></div><p>A minor third is one minor and one major second, or three semitones. A
41
major third are two major seconds, or four semitone steps. <a class="xref" href="theory-intervals.html#theory-intervals-thirds" title="Figure 3.5. ">Figure 3.5</a> show the thirds between all the natural
41
major third are two major seconds, or four semitone steps. <a class="xref" href="theory-intervals.html#theory-intervals-thirds" title="Figure 3.5. ">Figure 3.5</a> shows the thirds between all the natural
42
42
tones. You should memorise the major intervals, C-E, F-A and G-B. Then you know
43
that the other four intervals are minor.</p><div class="figure"><a name="theory-intervals-thirds"></a><p class="title"><b>Figure 3.5. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-thirds.png"></div></div></div><br class="figure-break"><p>Then you examine the accidentals to see if they change the specific name.
43
that the other four intervals are minor.</p><div class="figure"><a name="theory-intervals-thirds"></a><p class="title"><b>Figure 3.5. </b></p><div class="figure-contents"><div class="mediaobject"><img src="ly/theory-intervals-thirds.png"></div></div></div><br class="figure-break"><p>Then you examine the accidentals to see if they change the specific name.
44
44
This is done exactly the same way as for seconds.</p></div><div class="sect2" title="Fourth"><div class="titlepage"><div><div><h3 class="title"><a name="theory-fourths"></a>Fourth</h3></div></div></div><p>A pure fourth is 2½ steps, or two major seconds and a minor second.
45
<a class="xref" href="theory-intervals.html#theory-intervals-fourths" title="Figure 3.6. ">Figure 3.6</a> show all fourths between natural
45
<a class="xref" href="theory-intervals.html#theory-intervals-fourths" title="Figure 3.6. ">Figure 3.6</a> shows all fourths between natural
46
46
tones. You should memorise that the fourth F-B is augmented, and that the other
47
six are pure. </p><div class="figure"><a name="theory-intervals-fourths"></a><p class="title"><b>Figure 3.6. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-fourths.png"></div></div></div><br class="figure-break"></div><div class="sect2" title="Fifth"><div class="titlepage"><div><div><h3 class="title"><a name="theory-fifths"></a>Fifth</h3></div></div></div><p>A pure fifth is 3½ steps, or three major seconds and a minor second.
48
<a class="xref" href="theory-intervals.html#theory-intervals-fifths" title="Figure 3.7. ">Figure 3.7</a> show all fifths between natural
47
six are pure. </p><div class="figure"><a name="theory-intervals-fourths"></a><p class="title"><b>Figure 3.6. </b></p><div class="figure-contents"><div class="mediaobject"><img src="ly/theory-intervals-fourths.png"></div></div></div><br class="figure-break"></div><div class="sect2" title="Fifth"><div class="titlepage"><div><div><h3 class="title"><a name="theory-fifths"></a>Fifth</h3></div></div></div><p>A pure fifth is 3½ steps, or three major seconds and a minor second.
48
<a class="xref" href="theory-intervals.html#theory-intervals-fifths" title="Figure 3.7. ">Figure 3.7</a> shows all fifths between natural
49
49
tones. You should remember that all those intervals are pure, except B-F that
50
is diminished. </p><div class="figure"><a name="theory-intervals-fifths"></a><p class="title"><b>Figure 3.7. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-fifths.png"></div></div></div><br class="figure-break"><p>If the interval has accidentals, then we must examine them to see how
50
is diminished. </p><div class="figure"><a name="theory-intervals-fifths"></a><p class="title"><b>Figure 3.7. </b></p><div class="figure-contents"><div class="mediaobject"><img src="ly/theory-intervals-fifths.png"></div></div></div><br class="figure-break"><p>If an interval has accidentals, then we must examine them to see how
51
51
they change the size of the interval. A diminished fifth is one semitone
52
smaller than a pure interval, and a augmented fifth is one semitone larger.
52
smaller than a pure interval, and an augmented fifth is one semitone larger.
53
53
Below you will find a few examples:</p><div class="figure"><a name="theory-intervals-fifths-1"></a><p class="title"><b>Figure 3.8. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-fifths-1.png"></div></div></div><br class="figure-break"><p>We remember from <a class="xref" href="theory-intervals.html#theory-intervals-fifths" title="Figure 3.7. ">Figure 3.7</a> that the
54
54
interval B-F is a diminished fifth. The lowest tone in <a class="xref" href="theory-intervals.html#theory-intervals-fifths-1" title="Figure 3.8. ">Figure 3.8</a> is preceded by a flat that makes the
55
55
interval one semitone larger and changes the interval from a diminished to a
56
56
pure fifth.</p><div class="figure"><a name="theory-intervals-fifths-2"></a><p class="title"><b>Figure 3.9. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-fifths-2.png"></div></div></div><br class="figure-break"><p>We know from <a class="xref" href="theory-intervals.html#theory-intervals-fifths" title="Figure 3.7. ">Figure 3.7</a> that interval E-B
57
57
is a perfect fifth. In <a class="xref" href="theory-intervals.html#theory-intervals-fifths-2" title="Figure 3.9. ">Figure 3.9</a> the E has a
58
58
flat in front of it, making the interval augmented. But then the B is preceded
59
by a doble flat that makes the interval two semitone steps smaller and changes
59
by a double flat that makes the interval two semitone steps smaller and changes
60
60
the interval to a diminished fifth.</p></div><div class="sect2" title="Sixths"><div class="titlepage"><div><div><h3 class="title"><a name="theory-sixths"></a>Sixths</h3></div></div></div><p>Sixths are easiest identified by <a class="link" href="inverting-intervals.html" title="Inverting intervals">
61
61
inverting the interval</a> and identifying the third. Then the following
62
rule apply:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>If the third is diminished, then the sixth is augmented</p></li><li class="listitem"><p>If the third is minor, then the sixth is major</p></li><li class="listitem"><p>If the third is major, then the sixth is minor</p></li><li class="listitem"><p>If the third is augmented, then the sixth is diminished</p></li></ul></div><p>If you find inverting intervals difficult, then you can memorise that the
62
rule applies:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>If the third is diminished, then the sixth is augmented</p></li><li class="listitem"><p>If the third is minor, then the sixth is major</p></li><li class="listitem"><p>If the third is major, then the sixth is minor</p></li><li class="listitem"><p>If the third is augmented, then the sixth is diminished</p></li></ul></div><p>If you find inverting intervals difficult, then you can memorise that the
63
63
intervals E-C, A-F and B-G are minor. The other four are major. Then you
64
64
examine the accidentals to see if they change the specific name. This is done
65
exactly the same way as for seconds.</p><div class="figure"><a name="theory-intervals-sixths"></a><p class="title"><b>Figure 3.10. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-sixths.png"></div></div></div><br class="figure-break"></div><div class="sect2" title="Sevenths"><div class="titlepage"><div><div><h3 class="title"><a name="theory-sevenths"></a>Sevenths</h3></div></div></div><p>Sevenths are identified the same way as sixths. When you invert a
65
exactly the same way as for seconds.</p><div class="figure"><a name="theory-intervals-sixths"></a><p class="title"><b>Figure 3.10. </b></p><div class="figure-contents"><div class="mediaobject"><img src="ly/theory-intervals-sixths.png"></div></div></div><br class="figure-break"></div><div class="sect2" title="Sevenths"><div class="titlepage"><div><div><h3 class="title"><a name="theory-sevenths"></a>Sevenths</h3></div></div></div><p>Sevenths are identified the same way as sixths. When you invert a
66
66
seventh, you get a second.</p><p>If you find inverting intervals difficult, then you
67
67
can memorise that the intervals C-B and F-E are major. The other five are
68
68
minor. Then you examine the accidentals to see if they change the specific
69
name. This is done exactly the same way as for seconds.</p><div class="figure"><a name="theory-intervals-sevenths"></a><p class="title"><b>Figure 3.11. </b></p><div class="figure-contents"><div class="mediaobject"><img src="../C/ly/theory-intervals-sevenths.png"></div></div></div><br class="figure-break"></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="music-theory.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="music-theory.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="inverting-intervals.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 3. Music theory </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Inverting intervals</td></tr></table></div></body></html>
69
name. This is done exactly the same way as for seconds.</p><div class="figure"><a name="theory-intervals-sevenths"></a><p class="title"><b>Figure 3.11. </b></p><div class="figure-contents"><div class="mediaobject"><img src="ly/theory-intervals-sevenths.png"></div></div></div><br class="figure-break"></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="music-theory.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="music-theory.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="inverting-intervals.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 3. Music theory </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Inverting intervals</td></tr></table></div></body></html>