~ubuntu-branches/ubuntu/raring/wxwidgets2.8/raring

« back to all changes in this revision

Viewing changes to src/jpeg/jfdctint.c

  • Committer: Package Import Robot
  • Author(s): Stéphane Graber
  • Date: 2012-01-07 13:59:25 UTC
  • mfrom: (1.1.9) (5.1.10 sid)
  • Revision ID: package-import@ubuntu.com-20120107135925-2601miy9ullcon9j
Tags: 2.8.12.1-6ubuntu1
* Resync from Debian, changes that were kept:
  - debian/rules: re-enable mediactrl. This allows libwx_gtk2u_media-2.8 to be
    built, as this is required by some applications (LP: #632984)
  - debian/control: Build-dep on libxt-dev for mediactrl.
  - Patches
    + fix-bashism-in-example
* Add conflict on python-wxgtk2.8 (<< 2.8.12.1-6ubuntu1~) to python-wxversion
  to guarantee upgrade ordering when moving from pycentral to dh_python2.

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/*
2
 
 * jfdctint.c
3
 
 *
4
 
 * Copyright (C) 1991-1996, Thomas G. Lane.
5
 
 * This file is part of the Independent JPEG Group's software.
6
 
 * For conditions of distribution and use, see the accompanying README file.
7
 
 *
8
 
 * This file contains a slow-but-accurate integer implementation of the
9
 
 * forward DCT (Discrete Cosine Transform).
10
 
 *
11
 
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12
 
 * on each column.  Direct algorithms are also available, but they are
13
 
 * much more complex and seem not to be any faster when reduced to code.
14
 
 *
15
 
 * This implementation is based on an algorithm described in
16
 
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
17
 
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
18
 
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
19
 
 * The primary algorithm described there uses 11 multiplies and 29 adds.
20
 
 * We use their alternate method with 12 multiplies and 32 adds.
21
 
 * The advantage of this method is that no data path contains more than one
22
 
 * multiplication; this allows a very simple and accurate implementation in
23
 
 * scaled fixed-point arithmetic, with a minimal number of shifts.
24
 
 */
25
 
 
26
 
#define JPEG_INTERNALS
27
 
#include "jinclude.h"
28
 
#include "jpeglib.h"
29
 
#include "jdct.h"               /* Private declarations for DCT subsystem */
30
 
 
31
 
#ifdef DCT_ISLOW_SUPPORTED
32
 
 
33
 
 
34
 
/*
35
 
 * This module is specialized to the case DCTSIZE = 8.
36
 
 */
37
 
 
38
 
#if DCTSIZE != 8
39
 
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
40
 
#endif
41
 
 
42
 
 
43
 
/*
44
 
 * The poop on this scaling stuff is as follows:
45
 
 *
46
 
 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
47
 
 * larger than the true DCT outputs.  The final outputs are therefore
48
 
 * a factor of N larger than desired; since N=8 this can be cured by
49
 
 * a simple right shift at the end of the algorithm.  The advantage of
50
 
 * this arrangement is that we save two multiplications per 1-D DCT,
51
 
 * because the y0 and y4 outputs need not be divided by sqrt(N).
52
 
 * In the IJG code, this factor of 8 is removed by the quantization step
53
 
 * (in jcdctmgr.c), NOT in this module.
54
 
 *
55
 
 * We have to do addition and subtraction of the integer inputs, which
56
 
 * is no problem, and multiplication by fractional constants, which is
57
 
 * a problem to do in integer arithmetic.  We multiply all the constants
58
 
 * by CONST_SCALE and convert them to integer constants (thus retaining
59
 
 * CONST_BITS bits of precision in the constants).  After doing a
60
 
 * multiplication we have to divide the product by CONST_SCALE, with proper
61
 
 * rounding, to produce the correct output.  This division can be done
62
 
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
63
 
 * as long as possible so that partial sums can be added together with
64
 
 * full fractional precision.
65
 
 *
66
 
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
67
 
 * they are represented to better-than-integral precision.  These outputs
68
 
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
69
 
 * with the recommended scaling.  (For 12-bit sample data, the intermediate
70
 
 * array is INT32 anyway.)
71
 
 *
72
 
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
73
 
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
74
 
 * shows that the values given below are the most effective.
75
 
 */
76
 
 
77
 
#if BITS_IN_JSAMPLE == 8
78
 
#define CONST_BITS  13
79
 
#define PASS1_BITS  2
80
 
#else
81
 
#define CONST_BITS  13
82
 
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
83
 
#endif
84
 
 
85
 
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86
 
 * causing a lot of useless floating-point operations at run time.
87
 
 * To get around this we use the following pre-calculated constants.
88
 
 * If you change CONST_BITS you may want to add appropriate values.
89
 
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
90
 
 */
91
 
 
92
 
#if CONST_BITS == 13
93
 
#define FIX_0_298631336  ((JPEG_INT32)  2446)   /* FIX(0.298631336) */
94
 
#define FIX_0_390180644  ((JPEG_INT32)  3196)   /* FIX(0.390180644) */
95
 
#define FIX_0_541196100  ((JPEG_INT32)  4433)   /* FIX(0.541196100) */
96
 
#define FIX_0_765366865  ((JPEG_INT32)  6270)   /* FIX(0.765366865) */
97
 
#define FIX_0_899976223  ((JPEG_INT32)  7373)   /* FIX(0.899976223) */
98
 
#define FIX_1_175875602  ((JPEG_INT32)  9633)   /* FIX(1.175875602) */
99
 
#define FIX_1_501321110  ((JPEG_INT32)  12299)  /* FIX(1.501321110) */
100
 
#define FIX_1_847759065  ((JPEG_INT32)  15137)  /* FIX(1.847759065) */
101
 
#define FIX_1_961570560  ((JPEG_INT32)  16069)  /* FIX(1.961570560) */
102
 
#define FIX_2_053119869  ((JPEG_INT32)  16819)  /* FIX(2.053119869) */
103
 
#define FIX_2_562915447  ((JPEG_INT32)  20995)  /* FIX(2.562915447) */
104
 
#define FIX_3_072711026  ((JPEG_INT32)  25172)  /* FIX(3.072711026) */
105
 
#else
106
 
#define FIX_0_298631336  FIX(0.298631336)
107
 
#define FIX_0_390180644  FIX(0.390180644)
108
 
#define FIX_0_541196100  FIX(0.541196100)
109
 
#define FIX_0_765366865  FIX(0.765366865)
110
 
#define FIX_0_899976223  FIX(0.899976223)
111
 
#define FIX_1_175875602  FIX(1.175875602)
112
 
#define FIX_1_501321110  FIX(1.501321110)
113
 
#define FIX_1_847759065  FIX(1.847759065)
114
 
#define FIX_1_961570560  FIX(1.961570560)
115
 
#define FIX_2_053119869  FIX(2.053119869)
116
 
#define FIX_2_562915447  FIX(2.562915447)
117
 
#define FIX_3_072711026  FIX(3.072711026)
118
 
#endif
119
 
 
120
 
 
121
 
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
122
 
 * For 8-bit samples with the recommended scaling, all the variable
123
 
 * and constant values involved are no more than 16 bits wide, so a
124
 
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
125
 
 * For 12-bit samples, a full 32-bit multiplication will be needed.
126
 
 */
127
 
 
128
 
#if BITS_IN_JSAMPLE == 8
129
 
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
130
 
#else
131
 
#define MULTIPLY(var,const)  ((var) * (const))
132
 
#endif
133
 
 
134
 
 
135
 
/*
136
 
 * Perform the forward DCT on one block of samples.
137
 
 */
138
 
 
139
 
GLOBAL(void)
140
 
jpeg_fdct_islow (DCTELEM * data)
141
 
{
142
 
  JPEG_INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
143
 
  JPEG_INT32 tmp10, tmp11, tmp12, tmp13;
144
 
  JPEG_INT32 z1, z2, z3, z4, z5;
145
 
  DCTELEM *dataptr;
146
 
  int ctr;
147
 
  SHIFT_TEMPS
148
 
 
149
 
  /* Pass 1: process rows. */
150
 
  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
151
 
  /* furthermore, we scale the results by 2**PASS1_BITS. */
152
 
 
153
 
  dataptr = data;
154
 
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
155
 
    tmp0 = dataptr[0] + dataptr[7];
156
 
    tmp7 = dataptr[0] - dataptr[7];
157
 
    tmp1 = dataptr[1] + dataptr[6];
158
 
    tmp6 = dataptr[1] - dataptr[6];
159
 
    tmp2 = dataptr[2] + dataptr[5];
160
 
    tmp5 = dataptr[2] - dataptr[5];
161
 
    tmp3 = dataptr[3] + dataptr[4];
162
 
    tmp4 = dataptr[3] - dataptr[4];
163
 
    
164
 
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
165
 
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
166
 
     */
167
 
    
168
 
    tmp10 = tmp0 + tmp3;
169
 
    tmp13 = tmp0 - tmp3;
170
 
    tmp11 = tmp1 + tmp2;
171
 
    tmp12 = tmp1 - tmp2;
172
 
    
173
 
    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
174
 
    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
175
 
    
176
 
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
177
 
    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
178
 
                                   CONST_BITS-PASS1_BITS);
179
 
    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
180
 
                                   CONST_BITS-PASS1_BITS);
181
 
    
182
 
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
183
 
     * cK represents cos(K*pi/16).
184
 
     * i0..i3 in the paper are tmp4..tmp7 here.
185
 
     */
186
 
    
187
 
    z1 = tmp4 + tmp7;
188
 
    z2 = tmp5 + tmp6;
189
 
    z3 = tmp4 + tmp6;
190
 
    z4 = tmp5 + tmp7;
191
 
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
192
 
    
193
 
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
194
 
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
195
 
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
196
 
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
197
 
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
198
 
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
199
 
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
200
 
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
201
 
    
202
 
    z3 += z5;
203
 
    z4 += z5;
204
 
    
205
 
    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
206
 
    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
207
 
    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
208
 
    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
209
 
    
210
 
    dataptr += DCTSIZE;         /* advance pointer to next row */
211
 
  }
212
 
 
213
 
  /* Pass 2: process columns.
214
 
   * We remove the PASS1_BITS scaling, but leave the results scaled up
215
 
   * by an overall factor of 8.
216
 
   */
217
 
 
218
 
  dataptr = data;
219
 
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
220
 
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
221
 
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
222
 
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
223
 
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
224
 
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
225
 
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
226
 
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
227
 
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
228
 
    
229
 
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
230
 
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
231
 
     */
232
 
    
233
 
    tmp10 = tmp0 + tmp3;
234
 
    tmp13 = tmp0 - tmp3;
235
 
    tmp11 = tmp1 + tmp2;
236
 
    tmp12 = tmp1 - tmp2;
237
 
    
238
 
    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
239
 
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
240
 
    
241
 
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
242
 
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
243
 
                                           CONST_BITS+PASS1_BITS);
244
 
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
245
 
                                           CONST_BITS+PASS1_BITS);
246
 
    
247
 
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
248
 
     * cK represents cos(K*pi/16).
249
 
     * i0..i3 in the paper are tmp4..tmp7 here.
250
 
     */
251
 
    
252
 
    z1 = tmp4 + tmp7;
253
 
    z2 = tmp5 + tmp6;
254
 
    z3 = tmp4 + tmp6;
255
 
    z4 = tmp5 + tmp7;
256
 
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
257
 
    
258
 
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
259
 
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
260
 
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
261
 
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
262
 
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
263
 
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
264
 
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
265
 
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
266
 
    
267
 
    z3 += z5;
268
 
    z4 += z5;
269
 
    
270
 
    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
271
 
                                           CONST_BITS+PASS1_BITS);
272
 
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
273
 
                                           CONST_BITS+PASS1_BITS);
274
 
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
275
 
                                           CONST_BITS+PASS1_BITS);
276
 
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
277
 
                                           CONST_BITS+PASS1_BITS);
278
 
    
279
 
    dataptr++;                  /* advance pointer to next column */
280
 
  }
281
 
}
282
 
 
283
 
#endif /* DCT_ISLOW_SUPPORTED */