1
// jpge.h - C++ class for JPEG compression.
2
// Public domain, Rich Geldreich <richgel99@gmail.com>
3
// Alex Evans: Added RGBA support, linear memory allocator.
9
typedef unsigned char uint8;
10
typedef signed short int16;
11
typedef signed int int32;
12
typedef unsigned short uint16;
13
typedef unsigned int uint32;
14
typedef unsigned int uint;
16
// JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
17
enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 };
19
// JPEG compression parameters structure.
22
inline params() : m_quality(85), m_subsampling(H2V2), m_no_chroma_discrim_flag(false), m_two_pass_flag(false) { }
24
inline bool check() const
26
if ((m_quality < 1) || (m_quality > 100)) return false;
27
if ((uint)m_subsampling > (uint)H2V2) return false;
31
// Quality: 1-100, higher is better. Typical values are around 50-95.
35
// 0 = Y (grayscale) only
36
// 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
37
// 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
38
// 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
39
subsampling_t m_subsampling;
41
// Disables CbCr discrimination - only intended for testing.
42
// If true, the Y quantization table is also used for the CbCr channels.
43
bool m_no_chroma_discrim_flag;
48
// Writes JPEG image to a file.
49
// num_channels must be 1 (Y) or 3 (RGB), image pitch must be width*num_channels.
50
bool compress_image_to_jpeg_file(const char *pFilename, int width, int height, int num_channels, const uint8 *pImage_data, const params &comp_params = params());
52
// Writes JPEG image to memory buffer.
53
// On entry, buf_size is the size of the output buffer pointed at by pBuf, which should be at least ~1024 bytes.
54
// If return value is true, buf_size will be set to the size of the compressed data.
55
bool compress_image_to_jpeg_file_in_memory(void *pBuf, int &buf_size, int width, int height, int num_channels, const uint8 *pImage_data, const params &comp_params = params());
57
// Output stream abstract class - used by the jpeg_encoder class to write to the output stream.
58
// put_buf() is generally called with len==JPGE_OUT_BUF_SIZE bytes, but for headers it'll be called with smaller amounts.
62
virtual ~output_stream() { };
63
virtual bool put_buf(const void* Pbuf, int len) = 0;
64
template<class T> inline bool put_obj(const T& obj) { return put_buf(&obj, sizeof(T)); }
67
// Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
74
// Initializes the compressor.
75
// pStream: The stream object to use for writing compressed data.
76
// params - Compression parameters structure, defined above.
77
// width, height - Image dimensions.
78
// channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
79
// Returns false on out of memory or if a stream write fails.
80
bool init(output_stream *pStream, int width, int height, int src_channels, const params &comp_params = params());
82
const params &get_params() const { return m_params; }
84
// Deinitializes the compressor, freeing any allocated memory. May be called at any time.
87
uint get_total_passes() const { return m_params.m_two_pass_flag ? 2 : 1; }
88
inline uint get_cur_pass() { return m_pass_num; }
90
// Call this method with each source scanline.
91
// width * src_channels bytes per scanline is expected (RGB or Y format).
92
// You must call with NULL after all scanlines are processed to finish compression.
93
// Returns false on out of memory or if a stream write fails.
94
bool process_scanline(const void* pScanline);
97
jpeg_encoder(const jpeg_encoder &);
98
jpeg_encoder &operator =(const jpeg_encoder &);
100
typedef int32 sample_array_t;
102
output_stream *m_pStream;
104
uint8 m_num_components;
105
uint8 m_comp_h_samp[3], m_comp_v_samp[3];
106
int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
107
int m_image_x_mcu, m_image_y_mcu;
108
int m_image_bpl_xlt, m_image_bpl_mcu;
110
int m_mcu_x, m_mcu_y;
111
uint8 *m_mcu_lines[16];
113
sample_array_t m_sample_array[64];
114
int16 m_coefficient_array[64];
115
int32 m_quantization_tables[2][64];
116
uint m_huff_codes[4][256];
117
uint8 m_huff_code_sizes[4][256];
118
uint8 m_huff_bits[4][17];
119
uint8 m_huff_val[4][256];
120
uint32 m_huff_count[4][256];
121
int m_last_dc_val[3];
122
enum { JPGE_OUT_BUF_SIZE = 2048 };
123
uint8 m_out_buf[JPGE_OUT_BUF_SIZE];
129
bool m_all_stream_writes_succeeded;
131
void optimize_huffman_table(int table_num, int table_len);
132
void emit_byte(uint8 i);
133
void emit_word(uint i);
134
void emit_marker(int marker);
135
void emit_jfif_app0();
138
void emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag);
142
void compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val);
143
void compute_quant_table(int32 *dst, int16 *src);
144
void adjust_quant_table(int32 *dst, int32 *src);
145
void first_pass_init();
146
bool second_pass_init();
147
bool jpg_open(int p_x_res, int p_y_res, int src_channels);
148
void load_block_8_8_grey(int x);
149
void load_block_8_8(int x, int y, int c);
150
void load_block_16_8(int x, int c);
151
void load_block_16_8_8(int x, int c);
152
void load_quantized_coefficients(int component_num);
153
void flush_output_buffer();
154
void put_bits(uint bits, uint len);
155
void code_coefficients_pass_one(int component_num);
156
void code_coefficients_pass_two(int component_num);
157
void code_block(int component_num);
158
void process_mcu_row();
159
bool terminate_pass_one();
160
bool terminate_pass_two();
161
bool process_end_of_image();
162
void load_mcu(const void* src);
169
#endif // JPEG_ENCODER