~ubuntu-branches/ubuntu/wily/qemu-kvm-spice/wily

« back to all changes in this revision

Viewing changes to hw/fmopl.c

  • Committer: Bazaar Package Importer
  • Author(s): Serge Hallyn
  • Date: 2011-10-19 10:44:56 UTC
  • Revision ID: james.westby@ubuntu.com-20111019104456-xgvskumk3sxi97f4
Tags: upstream-0.15.0+noroms
ImportĀ upstreamĀ versionĀ 0.15.0+noroms

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/*
 
2
**
 
3
** File: fmopl.c -- software implementation of FM sound generator
 
4
**
 
5
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
 
6
**
 
7
** Version 0.37a
 
8
**
 
9
*/
 
10
 
 
11
/*
 
12
        preliminary :
 
13
        Problem :
 
14
        note:
 
15
*/
 
16
 
 
17
/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
 
18
 *
 
19
 * This library is free software; you can redistribute it and/or
 
20
 * modify it under the terms of the GNU Lesser General Public
 
21
 * License as published by the Free Software Foundation; either
 
22
 * version 2.1 of the License, or (at your option) any later version.
 
23
 *
 
24
 * This library is distributed in the hope that it will be useful,
 
25
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 
26
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 
27
 * Lesser General Public License for more details.
 
28
 *
 
29
 * You should have received a copy of the GNU Lesser General Public
 
30
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 
31
 */
 
32
 
 
33
#define INLINE          static inline
 
34
#define HAS_YM3812      1
 
35
 
 
36
#include <stdio.h>
 
37
#include <stdlib.h>
 
38
#include <string.h>
 
39
#include <stdarg.h>
 
40
#include <math.h>
 
41
//#include "driver.h"           /* use M.A.M.E. */
 
42
#include "fmopl.h"
 
43
 
 
44
#ifndef PI
 
45
#define PI 3.14159265358979323846
 
46
#endif
 
47
 
 
48
#ifndef ARRAY_SIZE
 
49
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
 
50
#endif
 
51
 
 
52
/* -------------------- for debug --------------------- */
 
53
/* #define OPL_OUTPUT_LOG */
 
54
#ifdef OPL_OUTPUT_LOG
 
55
static FILE *opl_dbg_fp = NULL;
 
56
static FM_OPL *opl_dbg_opl[16];
 
57
static int opl_dbg_maxchip,opl_dbg_chip;
 
58
#endif
 
59
 
 
60
/* -------------------- preliminary define section --------------------- */
 
61
/* attack/decay rate time rate */
 
62
#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
 
63
#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
 
64
 
 
65
#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
 
66
 
 
67
#define FREQ_BITS 24                    /* frequency turn          */
 
68
 
 
69
/* counter bits = 20 , octerve 7 */
 
70
#define FREQ_RATE   (1<<(FREQ_BITS-20))
 
71
#define TL_BITS    (FREQ_BITS+2)
 
72
 
 
73
/* final output shift , limit minimum and maximum */
 
74
#define OPL_OUTSB   (TL_BITS+3-16)              /* OPL output final shift 16bit */
 
75
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
 
76
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
 
77
 
 
78
/* -------------------- quality selection --------------------- */
 
79
 
 
80
/* sinwave entries */
 
81
/* used static memory = SIN_ENT * 4 (byte) */
 
82
#define SIN_ENT 2048
 
83
 
 
84
/* output level entries (envelope,sinwave) */
 
85
/* envelope counter lower bits */
 
86
#define ENV_BITS 16
 
87
/* envelope output entries */
 
88
#define EG_ENT   4096
 
89
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
 
90
/* used static  memory = EG_ENT*4 (byte)                     */
 
91
 
 
92
#define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
 
93
#define EG_DED   EG_OFF
 
94
#define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
 
95
#define EG_AED   EG_DST
 
96
#define EG_AST   0                       /* ATTACK START */
 
97
 
 
98
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
 
99
 
 
100
/* LFO table entries */
 
101
#define VIB_ENT 512
 
102
#define VIB_SHIFT (32-9)
 
103
#define AMS_ENT 512
 
104
#define AMS_SHIFT (32-9)
 
105
 
 
106
#define VIB_RATE 256
 
107
 
 
108
/* -------------------- local defines , macros --------------------- */
 
109
 
 
110
/* register number to channel number , slot offset */
 
111
#define SLOT1 0
 
112
#define SLOT2 1
 
113
 
 
114
/* envelope phase */
 
115
#define ENV_MOD_RR  0x00
 
116
#define ENV_MOD_DR  0x01
 
117
#define ENV_MOD_AR  0x02
 
118
 
 
119
/* -------------------- tables --------------------- */
 
120
static const int slot_array[32]=
 
121
{
 
122
         0, 2, 4, 1, 3, 5,-1,-1,
 
123
         6, 8,10, 7, 9,11,-1,-1,
 
124
        12,14,16,13,15,17,-1,-1,
 
125
        -1,-1,-1,-1,-1,-1,-1,-1
 
126
};
 
127
 
 
128
/* key scale level */
 
129
/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
 
130
#define DV (EG_STEP/2)
 
131
static const UINT32 KSL_TABLE[8*16]=
 
132
{
 
133
        /* OCT 0 */
 
134
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 
135
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 
136
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 
137
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 
138
        /* OCT 1 */
 
139
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 
140
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 
141
         0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
 
142
         1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
 
143
        /* OCT 2 */
 
144
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 
145
         0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
 
146
         3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
 
147
         4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
 
148
        /* OCT 3 */
 
149
         0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
 
150
         3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
 
151
         6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
 
152
         7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
 
153
        /* OCT 4 */
 
154
         0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
 
155
         6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
 
156
         9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
 
157
        10.875/DV,11.250/DV,11.625/DV,12.000/DV,
 
158
        /* OCT 5 */
 
159
         0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
 
160
         9.000/DV,10.125/DV,10.875/DV,11.625/DV,
 
161
        12.000/DV,12.750/DV,13.125/DV,13.500/DV,
 
162
        13.875/DV,14.250/DV,14.625/DV,15.000/DV,
 
163
        /* OCT 6 */
 
164
         0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
 
165
        12.000/DV,13.125/DV,13.875/DV,14.625/DV,
 
166
        15.000/DV,15.750/DV,16.125/DV,16.500/DV,
 
167
        16.875/DV,17.250/DV,17.625/DV,18.000/DV,
 
168
        /* OCT 7 */
 
169
         0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
 
170
        15.000/DV,16.125/DV,16.875/DV,17.625/DV,
 
171
        18.000/DV,18.750/DV,19.125/DV,19.500/DV,
 
172
        19.875/DV,20.250/DV,20.625/DV,21.000/DV
 
173
};
 
174
#undef DV
 
175
 
 
176
/* sustain lebel table (3db per step) */
 
177
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
 
178
#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
 
179
static const INT32 SL_TABLE[16]={
 
180
 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
 
181
 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
 
182
};
 
183
#undef SC
 
184
 
 
185
#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
 
186
/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
 
187
/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
 
188
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
 
189
static INT32 *TL_TABLE;
 
190
 
 
191
/* pointers to TL_TABLE with sinwave output offset */
 
192
static INT32 **SIN_TABLE;
 
193
 
 
194
/* LFO table */
 
195
static INT32 *AMS_TABLE;
 
196
static INT32 *VIB_TABLE;
 
197
 
 
198
/* envelope output curve table */
 
199
/* attack + decay + OFF */
 
200
static INT32 ENV_CURVE[2*EG_ENT+1];
 
201
 
 
202
/* multiple table */
 
203
#define ML 2
 
204
static const UINT32 MUL_TABLE[16]= {
 
205
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
 
206
   0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
 
207
   8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
 
208
};
 
209
#undef ML
 
210
 
 
211
/* dummy attack / decay rate ( when rate == 0 ) */
 
212
static INT32 RATE_0[16]=
 
213
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 
214
 
 
215
/* -------------------- static state --------------------- */
 
216
 
 
217
/* lock level of common table */
 
218
static int num_lock = 0;
 
219
 
 
220
/* work table */
 
221
static void *cur_chip = NULL;   /* current chip point */
 
222
/* currenct chip state */
 
223
/* static OPLSAMPLE  *bufL,*bufR; */
 
224
static OPL_CH *S_CH;
 
225
static OPL_CH *E_CH;
 
226
OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
 
227
 
 
228
static INT32 outd[1];
 
229
static INT32 ams;
 
230
static INT32 vib;
 
231
INT32  *ams_table;
 
232
INT32  *vib_table;
 
233
static INT32 amsIncr;
 
234
static INT32 vibIncr;
 
235
static INT32 feedback2;         /* connect for SLOT 2 */
 
236
 
 
237
/* log output level */
 
238
#define LOG_ERR  3      /* ERROR       */
 
239
#define LOG_WAR  2      /* WARNING     */
 
240
#define LOG_INF  1      /* INFORMATION */
 
241
 
 
242
//#define LOG_LEVEL LOG_INF
 
243
#define LOG_LEVEL       LOG_ERR
 
244
 
 
245
//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
 
246
#define LOG(n,x)
 
247
 
 
248
/* --------------------- subroutines  --------------------- */
 
249
 
 
250
INLINE int Limit( int val, int max, int min ) {
 
251
        if ( val > max )
 
252
                val = max;
 
253
        else if ( val < min )
 
254
                val = min;
 
255
 
 
256
        return val;
 
257
}
 
258
 
 
259
/* status set and IRQ handling */
 
260
INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
 
261
{
 
262
        /* set status flag */
 
263
        OPL->status |= flag;
 
264
        if(!(OPL->status & 0x80))
 
265
        {
 
266
                if(OPL->status & OPL->statusmask)
 
267
                {       /* IRQ on */
 
268
                        OPL->status |= 0x80;
 
269
                        /* callback user interrupt handler (IRQ is OFF to ON) */
 
270
                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
 
271
                }
 
272
        }
 
273
}
 
274
 
 
275
/* status reset and IRQ handling */
 
276
INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
 
277
{
 
278
        /* reset status flag */
 
279
        OPL->status &=~flag;
 
280
        if((OPL->status & 0x80))
 
281
        {
 
282
                if (!(OPL->status & OPL->statusmask) )
 
283
                {
 
284
                        OPL->status &= 0x7f;
 
285
                        /* callback user interrupt handler (IRQ is ON to OFF) */
 
286
                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
 
287
                }
 
288
        }
 
289
}
 
290
 
 
291
/* IRQ mask set */
 
292
INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
 
293
{
 
294
        OPL->statusmask = flag;
 
295
        /* IRQ handling check */
 
296
        OPL_STATUS_SET(OPL,0);
 
297
        OPL_STATUS_RESET(OPL,0);
 
298
}
 
299
 
 
300
/* ----- key on  ----- */
 
301
INLINE void OPL_KEYON(OPL_SLOT *SLOT)
 
302
{
 
303
        /* sin wave restart */
 
304
        SLOT->Cnt = 0;
 
305
        /* set attack */
 
306
        SLOT->evm = ENV_MOD_AR;
 
307
        SLOT->evs = SLOT->evsa;
 
308
        SLOT->evc = EG_AST;
 
309
        SLOT->eve = EG_AED;
 
310
}
 
311
/* ----- key off ----- */
 
312
INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
 
313
{
 
314
        if( SLOT->evm > ENV_MOD_RR)
 
315
        {
 
316
                /* set envelope counter from envleope output */
 
317
                SLOT->evm = ENV_MOD_RR;
 
318
                if( !(SLOT->evc&EG_DST) )
 
319
                        //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
 
320
                        SLOT->evc = EG_DST;
 
321
                SLOT->eve = EG_DED;
 
322
                SLOT->evs = SLOT->evsr;
 
323
        }
 
324
}
 
325
 
 
326
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
 
327
/* return : envelope output */
 
328
INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
 
329
{
 
330
        /* calcrate envelope generator */
 
331
        if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
 
332
        {
 
333
                switch( SLOT->evm ){
 
334
                case ENV_MOD_AR: /* ATTACK -> DECAY1 */
 
335
                        /* next DR */
 
336
                        SLOT->evm = ENV_MOD_DR;
 
337
                        SLOT->evc = EG_DST;
 
338
                        SLOT->eve = SLOT->SL;
 
339
                        SLOT->evs = SLOT->evsd;
 
340
                        break;
 
341
                case ENV_MOD_DR: /* DECAY -> SL or RR */
 
342
                        SLOT->evc = SLOT->SL;
 
343
                        SLOT->eve = EG_DED;
 
344
                        if(SLOT->eg_typ)
 
345
                        {
 
346
                                SLOT->evs = 0;
 
347
                        }
 
348
                        else
 
349
                        {
 
350
                                SLOT->evm = ENV_MOD_RR;
 
351
                                SLOT->evs = SLOT->evsr;
 
352
                        }
 
353
                        break;
 
354
                case ENV_MOD_RR: /* RR -> OFF */
 
355
                        SLOT->evc = EG_OFF;
 
356
                        SLOT->eve = EG_OFF+1;
 
357
                        SLOT->evs = 0;
 
358
                        break;
 
359
                }
 
360
        }
 
361
        /* calcrate envelope */
 
362
        return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
 
363
}
 
364
 
 
365
/* set algorythm connection */
 
366
static void set_algorythm( OPL_CH *CH)
 
367
{
 
368
        INT32 *carrier = &outd[0];
 
369
        CH->connect1 = CH->CON ? carrier : &feedback2;
 
370
        CH->connect2 = carrier;
 
371
}
 
372
 
 
373
/* ---------- frequency counter for operater update ---------- */
 
374
INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
 
375
{
 
376
        int ksr;
 
377
 
 
378
        /* frequency step counter */
 
379
        SLOT->Incr = CH->fc * SLOT->mul;
 
380
        ksr = CH->kcode >> SLOT->KSR;
 
381
 
 
382
        if( SLOT->ksr != ksr )
 
383
        {
 
384
                SLOT->ksr = ksr;
 
385
                /* attack , decay rate recalcration */
 
386
                SLOT->evsa = SLOT->AR[ksr];
 
387
                SLOT->evsd = SLOT->DR[ksr];
 
388
                SLOT->evsr = SLOT->RR[ksr];
 
389
        }
 
390
        SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 
391
}
 
392
 
 
393
/* set multi,am,vib,EG-TYP,KSR,mul */
 
394
INLINE void set_mul(FM_OPL *OPL,int slot,int v)
 
395
{
 
396
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 
397
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 
398
 
 
399
        SLOT->mul    = MUL_TABLE[v&0x0f];
 
400
        SLOT->KSR    = (v&0x10) ? 0 : 2;
 
401
        SLOT->eg_typ = (v&0x20)>>5;
 
402
        SLOT->vib    = (v&0x40);
 
403
        SLOT->ams    = (v&0x80);
 
404
        CALC_FCSLOT(CH,SLOT);
 
405
}
 
406
 
 
407
/* set ksl & tl */
 
408
INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
 
409
{
 
410
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 
411
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 
412
        int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
 
413
 
 
414
        SLOT->ksl = ksl ? 3-ksl : 31;
 
415
        SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
 
416
 
 
417
        if( !(OPL->mode&0x80) )
 
418
        {       /* not CSM latch total level */
 
419
                SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 
420
        }
 
421
}
 
422
 
 
423
/* set attack rate & decay rate  */
 
424
INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
 
425
{
 
426
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 
427
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 
428
        int ar = v>>4;
 
429
        int dr = v&0x0f;
 
430
 
 
431
        SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
 
432
        SLOT->evsa = SLOT->AR[SLOT->ksr];
 
433
        if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
 
434
 
 
435
        SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
 
436
        SLOT->evsd = SLOT->DR[SLOT->ksr];
 
437
        if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
 
438
}
 
439
 
 
440
/* set sustain level & release rate */
 
441
INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
 
442
{
 
443
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 
444
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 
445
        int sl = v>>4;
 
446
        int rr = v & 0x0f;
 
447
 
 
448
        SLOT->SL = SL_TABLE[sl];
 
449
        if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
 
450
        SLOT->RR = &OPL->DR_TABLE[rr<<2];
 
451
        SLOT->evsr = SLOT->RR[SLOT->ksr];
 
452
        if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
 
453
}
 
454
 
 
455
/* operator output calcrator */
 
456
#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
 
457
/* ---------- calcrate one of channel ---------- */
 
458
INLINE void OPL_CALC_CH( OPL_CH *CH )
 
459
{
 
460
        UINT32 env_out;
 
461
        OPL_SLOT *SLOT;
 
462
 
 
463
        feedback2 = 0;
 
464
        /* SLOT 1 */
 
465
        SLOT = &CH->SLOT[SLOT1];
 
466
        env_out=OPL_CALC_SLOT(SLOT);
 
467
        if( env_out < EG_ENT-1 )
 
468
        {
 
469
                /* PG */
 
470
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 
471
                else          SLOT->Cnt += SLOT->Incr;
 
472
                /* connectoion */
 
473
                if(CH->FB)
 
474
                {
 
475
                        int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
 
476
                        CH->op1_out[1] = CH->op1_out[0];
 
477
                        *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 
478
                }
 
479
                else
 
480
                {
 
481
                        *CH->connect1 += OP_OUT(SLOT,env_out,0);
 
482
                }
 
483
        }else
 
484
        {
 
485
                CH->op1_out[1] = CH->op1_out[0];
 
486
                CH->op1_out[0] = 0;
 
487
        }
 
488
        /* SLOT 2 */
 
489
        SLOT = &CH->SLOT[SLOT2];
 
490
        env_out=OPL_CALC_SLOT(SLOT);
 
491
        if( env_out < EG_ENT-1 )
 
492
        {
 
493
                /* PG */
 
494
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 
495
                else          SLOT->Cnt += SLOT->Incr;
 
496
                /* connectoion */
 
497
                outd[0] += OP_OUT(SLOT,env_out, feedback2);
 
498
        }
 
499
}
 
500
 
 
501
/* ---------- calcrate rythm block ---------- */
 
502
#define WHITE_NOISE_db 6.0
 
503
INLINE void OPL_CALC_RH( OPL_CH *CH )
 
504
{
 
505
        UINT32 env_tam,env_sd,env_top,env_hh;
 
506
        int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
 
507
        INT32 tone8;
 
508
 
 
509
        OPL_SLOT *SLOT;
 
510
        int env_out;
 
511
 
 
512
        /* BD : same as FM serial mode and output level is large */
 
513
        feedback2 = 0;
 
514
        /* SLOT 1 */
 
515
        SLOT = &CH[6].SLOT[SLOT1];
 
516
        env_out=OPL_CALC_SLOT(SLOT);
 
517
        if( env_out < EG_ENT-1 )
 
518
        {
 
519
                /* PG */
 
520
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 
521
                else          SLOT->Cnt += SLOT->Incr;
 
522
                /* connectoion */
 
523
                if(CH[6].FB)
 
524
                {
 
525
                        int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
 
526
                        CH[6].op1_out[1] = CH[6].op1_out[0];
 
527
                        feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 
528
                }
 
529
                else
 
530
                {
 
531
                        feedback2 = OP_OUT(SLOT,env_out,0);
 
532
                }
 
533
        }else
 
534
        {
 
535
                feedback2 = 0;
 
536
                CH[6].op1_out[1] = CH[6].op1_out[0];
 
537
                CH[6].op1_out[0] = 0;
 
538
        }
 
539
        /* SLOT 2 */
 
540
        SLOT = &CH[6].SLOT[SLOT2];
 
541
        env_out=OPL_CALC_SLOT(SLOT);
 
542
        if( env_out < EG_ENT-1 )
 
543
        {
 
544
                /* PG */
 
545
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 
546
                else          SLOT->Cnt += SLOT->Incr;
 
547
                /* connectoion */
 
548
                outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
 
549
        }
 
550
 
 
551
        // SD  (17) = mul14[fnum7] + white noise
 
552
        // TAM (15) = mul15[fnum8]
 
553
        // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
 
554
        // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
 
555
        env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
 
556
        env_tam=OPL_CALC_SLOT(SLOT8_1);
 
557
        env_top=OPL_CALC_SLOT(SLOT8_2);
 
558
        env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
 
559
 
 
560
        /* PG */
 
561
        if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
 
562
        else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
 
563
        if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
 
564
        else             SLOT7_2->Cnt += (CH[7].fc*8);
 
565
        if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
 
566
        else             SLOT8_1->Cnt += SLOT8_1->Incr;
 
567
        if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
 
568
        else             SLOT8_2->Cnt += (CH[8].fc*48);
 
569
 
 
570
        tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
 
571
 
 
572
        /* SD */
 
573
        if( env_sd < EG_ENT-1 )
 
574
                outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
 
575
        /* TAM */
 
576
        if( env_tam < EG_ENT-1 )
 
577
                outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
 
578
        /* TOP-CY */
 
579
        if( env_top < EG_ENT-1 )
 
580
                outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
 
581
        /* HH */
 
582
        if( env_hh  < EG_ENT-1 )
 
583
                outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
 
584
}
 
585
 
 
586
/* ----------- initialize time tabls ----------- */
 
587
static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
 
588
{
 
589
        int i;
 
590
        double rate;
 
591
 
 
592
        /* make attack rate & decay rate tables */
 
593
        for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
 
594
        for (i = 4;i <= 60;i++){
 
595
                rate  = OPL->freqbase;                                          /* frequency rate */
 
596
                if( i < 60 ) rate *= 1.0+(i&3)*0.25;            /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
 
597
                rate *= 1<<((i>>2)-1);                                          /* b2-5 : shift bit */
 
598
                rate *= (double)(EG_ENT<<ENV_BITS);
 
599
                OPL->AR_TABLE[i] = rate / ARRATE;
 
600
                OPL->DR_TABLE[i] = rate / DRRATE;
 
601
        }
 
602
        for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
 
603
        {
 
604
                OPL->AR_TABLE[i] = EG_AED-1;
 
605
                OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
 
606
        }
 
607
#if 0
 
608
        for (i = 0;i < 64 ;i++){        /* make for overflow area */
 
609
                LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
 
610
                        ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
 
611
                        ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
 
612
        }
 
613
#endif
 
614
}
 
615
 
 
616
/* ---------- generic table initialize ---------- */
 
617
static int OPLOpenTable( void )
 
618
{
 
619
        int s,t;
 
620
        double rate;
 
621
        int i,j;
 
622
        double pom;
 
623
 
 
624
        /* allocate dynamic tables */
 
625
        if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
 
626
                return 0;
 
627
        if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
 
628
        {
 
629
                free(TL_TABLE);
 
630
                return 0;
 
631
        }
 
632
        if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
 
633
        {
 
634
                free(TL_TABLE);
 
635
                free(SIN_TABLE);
 
636
                return 0;
 
637
        }
 
638
        if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
 
639
        {
 
640
                free(TL_TABLE);
 
641
                free(SIN_TABLE);
 
642
                free(AMS_TABLE);
 
643
                return 0;
 
644
        }
 
645
        /* make total level table */
 
646
        for (t = 0;t < EG_ENT-1 ;t++){
 
647
                rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);   /* dB -> voltage */
 
648
                TL_TABLE[       t] =  (int)rate;
 
649
                TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
 
650
/*              LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
 
651
        }
 
652
        /* fill volume off area */
 
653
        for ( t = EG_ENT-1; t < TL_MAX ;t++){
 
654
                TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
 
655
        }
 
656
 
 
657
        /* make sinwave table (total level offet) */
 
658
        /* degree 0 = degree 180                   = off */
 
659
        SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
 
660
        for (s = 1;s <= SIN_ENT/4;s++){
 
661
                pom = sin(2*PI*s/SIN_ENT); /* sin     */
 
662
                pom = 20*log10(1/pom);     /* decibel */
 
663
                j = pom / EG_STEP;         /* TL_TABLE steps */
 
664
 
 
665
        /* degree 0   -  90    , degree 180 -  90 : plus section */
 
666
                SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
 
667
        /* degree 180 - 270    , degree 360 - 270 : minus section */
 
668
                SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
 
669
/*              LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
 
670
        }
 
671
        for (s = 0;s < SIN_ENT;s++)
 
672
        {
 
673
                SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
 
674
                SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
 
675
                SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
 
676
        }
 
677
 
 
678
        /* envelope counter -> envelope output table */
 
679
        for (i=0; i<EG_ENT; i++)
 
680
        {
 
681
                /* ATTACK curve */
 
682
                pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
 
683
                /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
 
684
                ENV_CURVE[i] = (int)pom;
 
685
                /* DECAY ,RELEASE curve */
 
686
                ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
 
687
        }
 
688
        /* off */
 
689
        ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
 
690
        /* make LFO ams table */
 
691
        for (i=0; i<AMS_ENT; i++)
 
692
        {
 
693
                pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
 
694
                AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
 
695
                AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
 
696
        }
 
697
        /* make LFO vibrate table */
 
698
        for (i=0; i<VIB_ENT; i++)
 
699
        {
 
700
                /* 100cent = 1seminote = 6% ?? */
 
701
                pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
 
702
                VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
 
703
                VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
 
704
                /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
 
705
        }
 
706
        return 1;
 
707
}
 
708
 
 
709
 
 
710
static void OPLCloseTable( void )
 
711
{
 
712
        free(TL_TABLE);
 
713
        free(SIN_TABLE);
 
714
        free(AMS_TABLE);
 
715
        free(VIB_TABLE);
 
716
}
 
717
 
 
718
/* CSM Key Controll */
 
719
INLINE void CSMKeyControll(OPL_CH *CH)
 
720
{
 
721
        OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
 
722
        OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
 
723
        /* all key off */
 
724
        OPL_KEYOFF(slot1);
 
725
        OPL_KEYOFF(slot2);
 
726
        /* total level latch */
 
727
        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 
728
        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 
729
        /* key on */
 
730
        CH->op1_out[0] = CH->op1_out[1] = 0;
 
731
        OPL_KEYON(slot1);
 
732
        OPL_KEYON(slot2);
 
733
}
 
734
 
 
735
/* ---------- opl initialize ---------- */
 
736
static void OPL_initalize(FM_OPL *OPL)
 
737
{
 
738
        int fn;
 
739
 
 
740
        /* frequency base */
 
741
        OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
 
742
        /* Timer base time */
 
743
        OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
 
744
        /* make time tables */
 
745
        init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
 
746
        /* make fnumber -> increment counter table */
 
747
        for( fn=0 ; fn < 1024 ; fn++ )
 
748
        {
 
749
                OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
 
750
        }
 
751
        /* LFO freq.table */
 
752
        OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
 
753
        OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
 
754
}
 
755
 
 
756
/* ---------- write a OPL registers ---------- */
 
757
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
 
758
{
 
759
        OPL_CH *CH;
 
760
        int slot;
 
761
        int block_fnum;
 
762
 
 
763
        switch(r&0xe0)
 
764
        {
 
765
        case 0x00: /* 00-1f:controll */
 
766
                switch(r&0x1f)
 
767
                {
 
768
                case 0x01:
 
769
                        /* wave selector enable */
 
770
                        if(OPL->type&OPL_TYPE_WAVESEL)
 
771
                        {
 
772
                                OPL->wavesel = v&0x20;
 
773
                                if(!OPL->wavesel)
 
774
                                {
 
775
                                        /* preset compatible mode */
 
776
                                        int c;
 
777
                                        for(c=0;c<OPL->max_ch;c++)
 
778
                                        {
 
779
                                                OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
 
780
                                                OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
 
781
                                        }
 
782
                                }
 
783
                        }
 
784
                        return;
 
785
                case 0x02:      /* Timer 1 */
 
786
                        OPL->T[0] = (256-v)*4;
 
787
                        break;
 
788
                case 0x03:      /* Timer 2 */
 
789
                        OPL->T[1] = (256-v)*16;
 
790
                        return;
 
791
                case 0x04:      /* IRQ clear / mask and Timer enable */
 
792
                        if(v&0x80)
 
793
                        {       /* IRQ flag clear */
 
794
                                OPL_STATUS_RESET(OPL,0x7f);
 
795
                        }
 
796
                        else
 
797
                        {       /* set IRQ mask ,timer enable*/
 
798
                                UINT8 st1 = v&1;
 
799
                                UINT8 st2 = (v>>1)&1;
 
800
                                /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
 
801
                                OPL_STATUS_RESET(OPL,v&0x78);
 
802
                                OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
 
803
                                /* timer 2 */
 
804
                                if(OPL->st[1] != st2)
 
805
                                {
 
806
                                        double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
 
807
                                        OPL->st[1] = st2;
 
808
                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
 
809
                                }
 
810
                                /* timer 1 */
 
811
                                if(OPL->st[0] != st1)
 
812
                                {
 
813
                                        double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
 
814
                                        OPL->st[0] = st1;
 
815
                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
 
816
                                }
 
817
                        }
 
818
                        return;
 
819
#if BUILD_Y8950
 
820
                case 0x06:              /* Key Board OUT */
 
821
                        if(OPL->type&OPL_TYPE_KEYBOARD)
 
822
                        {
 
823
                                if(OPL->keyboardhandler_w)
 
824
                                        OPL->keyboardhandler_w(OPL->keyboard_param,v);
 
825
                                else
 
826
                                        LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
 
827
                        }
 
828
                        return;
 
829
                case 0x07:      /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
 
830
                        if(OPL->type&OPL_TYPE_ADPCM)
 
831
                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
 
832
                        return;
 
833
                case 0x08:      /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
 
834
                        OPL->mode = v;
 
835
                        v&=0x1f;        /* for DELTA-T unit */
 
836
                case 0x09:              /* START ADD */
 
837
                case 0x0a:
 
838
                case 0x0b:              /* STOP ADD  */
 
839
                case 0x0c:
 
840
                case 0x0d:              /* PRESCALE   */
 
841
                case 0x0e:
 
842
                case 0x0f:              /* ADPCM data */
 
843
                case 0x10:              /* DELTA-N    */
 
844
                case 0x11:              /* DELTA-N    */
 
845
                case 0x12:              /* EG-CTRL    */
 
846
                        if(OPL->type&OPL_TYPE_ADPCM)
 
847
                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
 
848
                        return;
 
849
#if 0
 
850
                case 0x15:              /* DAC data    */
 
851
                case 0x16:
 
852
                case 0x17:              /* SHIFT    */
 
853
                        return;
 
854
                case 0x18:              /* I/O CTRL (Direction) */
 
855
                        if(OPL->type&OPL_TYPE_IO)
 
856
                                OPL->portDirection = v&0x0f;
 
857
                        return;
 
858
                case 0x19:              /* I/O DATA */
 
859
                        if(OPL->type&OPL_TYPE_IO)
 
860
                        {
 
861
                                OPL->portLatch = v;
 
862
                                if(OPL->porthandler_w)
 
863
                                        OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
 
864
                        }
 
865
                        return;
 
866
                case 0x1a:              /* PCM data */
 
867
                        return;
 
868
#endif
 
869
#endif
 
870
                }
 
871
                break;
 
872
        case 0x20:      /* am,vib,ksr,eg type,mul */
 
873
                slot = slot_array[r&0x1f];
 
874
                if(slot == -1) return;
 
875
                set_mul(OPL,slot,v);
 
876
                return;
 
877
        case 0x40:
 
878
                slot = slot_array[r&0x1f];
 
879
                if(slot == -1) return;
 
880
                set_ksl_tl(OPL,slot,v);
 
881
                return;
 
882
        case 0x60:
 
883
                slot = slot_array[r&0x1f];
 
884
                if(slot == -1) return;
 
885
                set_ar_dr(OPL,slot,v);
 
886
                return;
 
887
        case 0x80:
 
888
                slot = slot_array[r&0x1f];
 
889
                if(slot == -1) return;
 
890
                set_sl_rr(OPL,slot,v);
 
891
                return;
 
892
        case 0xa0:
 
893
                switch(r)
 
894
                {
 
895
                case 0xbd:
 
896
                        /* amsep,vibdep,r,bd,sd,tom,tc,hh */
 
897
                        {
 
898
                        UINT8 rkey = OPL->rythm^v;
 
899
                        OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
 
900
                        OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
 
901
                        OPL->rythm  = v&0x3f;
 
902
                        if(OPL->rythm&0x20)
 
903
                        {
 
904
#if 0
 
905
                                usrintf_showmessage("OPL Rythm mode select");
 
906
#endif
 
907
                                /* BD key on/off */
 
908
                                if(rkey&0x10)
 
909
                                {
 
910
                                        if(v&0x10)
 
911
                                        {
 
912
                                                OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
 
913
                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
 
914
                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
 
915
                                        }
 
916
                                        else
 
917
                                        {
 
918
                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
 
919
                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
 
920
                                        }
 
921
                                }
 
922
                                /* SD key on/off */
 
923
                                if(rkey&0x08)
 
924
                                {
 
925
                                        if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
 
926
                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
 
927
                                }/* TAM key on/off */
 
928
                                if(rkey&0x04)
 
929
                                {
 
930
                                        if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
 
931
                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
 
932
                                }
 
933
                                /* TOP-CY key on/off */
 
934
                                if(rkey&0x02)
 
935
                                {
 
936
                                        if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
 
937
                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
 
938
                                }
 
939
                                /* HH key on/off */
 
940
                                if(rkey&0x01)
 
941
                                {
 
942
                                        if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
 
943
                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
 
944
                                }
 
945
                        }
 
946
                        }
 
947
                        return;
 
948
                }
 
949
                /* keyon,block,fnum */
 
950
                if( (r&0x0f) > 8) return;
 
951
                CH = &OPL->P_CH[r&0x0f];
 
952
                if(!(r&0x10))
 
953
                {       /* a0-a8 */
 
954
                        block_fnum  = (CH->block_fnum&0x1f00) | v;
 
955
                }
 
956
                else
 
957
                {       /* b0-b8 */
 
958
                        int keyon = (v>>5)&1;
 
959
                        block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
 
960
                        if(CH->keyon != keyon)
 
961
                        {
 
962
                                if( (CH->keyon=keyon) )
 
963
                                {
 
964
                                        CH->op1_out[0] = CH->op1_out[1] = 0;
 
965
                                        OPL_KEYON(&CH->SLOT[SLOT1]);
 
966
                                        OPL_KEYON(&CH->SLOT[SLOT2]);
 
967
                                }
 
968
                                else
 
969
                                {
 
970
                                        OPL_KEYOFF(&CH->SLOT[SLOT1]);
 
971
                                        OPL_KEYOFF(&CH->SLOT[SLOT2]);
 
972
                                }
 
973
                        }
 
974
                }
 
975
                /* update */
 
976
                if(CH->block_fnum != block_fnum)
 
977
                {
 
978
                        int blockRv = 7-(block_fnum>>10);
 
979
                        int fnum   = block_fnum&0x3ff;
 
980
                        CH->block_fnum = block_fnum;
 
981
 
 
982
                        CH->ksl_base = KSL_TABLE[block_fnum>>6];
 
983
                        CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
 
984
                        CH->kcode = CH->block_fnum>>9;
 
985
                        if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
 
986
                        CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
 
987
                        CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
 
988
                }
 
989
                return;
 
990
        case 0xc0:
 
991
                /* FB,C */
 
992
                if( (r&0x0f) > 8) return;
 
993
                CH = &OPL->P_CH[r&0x0f];
 
994
                {
 
995
                int feedback = (v>>1)&7;
 
996
                CH->FB   = feedback ? (8+1) - feedback : 0;
 
997
                CH->CON = v&1;
 
998
                set_algorythm(CH);
 
999
                }
 
1000
                return;
 
1001
        case 0xe0: /* wave type */
 
1002
                slot = slot_array[r&0x1f];
 
1003
                if(slot == -1) return;
 
1004
                CH = &OPL->P_CH[slot/2];
 
1005
                if(OPL->wavesel)
 
1006
                {
 
1007
                        /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
 
1008
                        CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
 
1009
                }
 
1010
                return;
 
1011
        }
 
1012
}
 
1013
 
 
1014
/* lock/unlock for common table */
 
1015
static int OPL_LockTable(void)
 
1016
{
 
1017
        num_lock++;
 
1018
        if(num_lock>1) return 0;
 
1019
        /* first time */
 
1020
        cur_chip = NULL;
 
1021
        /* allocate total level table (128kb space) */
 
1022
        if( !OPLOpenTable() )
 
1023
        {
 
1024
                num_lock--;
 
1025
                return -1;
 
1026
        }
 
1027
        return 0;
 
1028
}
 
1029
 
 
1030
static void OPL_UnLockTable(void)
 
1031
{
 
1032
        if(num_lock) num_lock--;
 
1033
        if(num_lock) return;
 
1034
        /* last time */
 
1035
        cur_chip = NULL;
 
1036
        OPLCloseTable();
 
1037
}
 
1038
 
 
1039
#if (BUILD_YM3812 || BUILD_YM3526)
 
1040
/*******************************************************************************/
 
1041
/*              YM3812 local section                                                   */
 
1042
/*******************************************************************************/
 
1043
 
 
1044
/* ---------- update one of chip ----------- */
 
1045
void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
 
1046
{
 
1047
    int i;
 
1048
        int data;
 
1049
        OPLSAMPLE *buf = buffer;
 
1050
        UINT32 amsCnt  = OPL->amsCnt;
 
1051
        UINT32 vibCnt  = OPL->vibCnt;
 
1052
        UINT8 rythm = OPL->rythm&0x20;
 
1053
        OPL_CH *CH,*R_CH;
 
1054
 
 
1055
        if( (void *)OPL != cur_chip ){
 
1056
                cur_chip = (void *)OPL;
 
1057
                /* channel pointers */
 
1058
                S_CH = OPL->P_CH;
 
1059
                E_CH = &S_CH[9];
 
1060
                /* rythm slot */
 
1061
                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
 
1062
                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
 
1063
                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
 
1064
                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
 
1065
                /* LFO state */
 
1066
                amsIncr = OPL->amsIncr;
 
1067
                vibIncr = OPL->vibIncr;
 
1068
                ams_table = OPL->ams_table;
 
1069
                vib_table = OPL->vib_table;
 
1070
        }
 
1071
        R_CH = rythm ? &S_CH[6] : E_CH;
 
1072
    for( i=0; i < length ; i++ )
 
1073
        {
 
1074
                /*            channel A         channel B         channel C      */
 
1075
                /* LFO */
 
1076
                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
 
1077
                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
 
1078
                outd[0] = 0;
 
1079
                /* FM part */
 
1080
                for(CH=S_CH ; CH < R_CH ; CH++)
 
1081
                        OPL_CALC_CH(CH);
 
1082
                /* Rythn part */
 
1083
                if(rythm)
 
1084
                        OPL_CALC_RH(S_CH);
 
1085
                /* limit check */
 
1086
                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
 
1087
                /* store to sound buffer */
 
1088
                buf[i] = data >> OPL_OUTSB;
 
1089
        }
 
1090
 
 
1091
        OPL->amsCnt = amsCnt;
 
1092
        OPL->vibCnt = vibCnt;
 
1093
#ifdef OPL_OUTPUT_LOG
 
1094
        if(opl_dbg_fp)
 
1095
        {
 
1096
                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
 
1097
                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
 
1098
                fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
 
1099
        }
 
1100
#endif
 
1101
}
 
1102
#endif /* (BUILD_YM3812 || BUILD_YM3526) */
 
1103
 
 
1104
#if BUILD_Y8950
 
1105
 
 
1106
void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
 
1107
{
 
1108
    int i;
 
1109
        int data;
 
1110
        OPLSAMPLE *buf = buffer;
 
1111
        UINT32 amsCnt  = OPL->amsCnt;
 
1112
        UINT32 vibCnt  = OPL->vibCnt;
 
1113
        UINT8 rythm = OPL->rythm&0x20;
 
1114
        OPL_CH *CH,*R_CH;
 
1115
        YM_DELTAT *DELTAT = OPL->deltat;
 
1116
 
 
1117
        /* setup DELTA-T unit */
 
1118
        YM_DELTAT_DECODE_PRESET(DELTAT);
 
1119
 
 
1120
        if( (void *)OPL != cur_chip ){
 
1121
                cur_chip = (void *)OPL;
 
1122
                /* channel pointers */
 
1123
                S_CH = OPL->P_CH;
 
1124
                E_CH = &S_CH[9];
 
1125
                /* rythm slot */
 
1126
                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
 
1127
                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
 
1128
                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
 
1129
                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
 
1130
                /* LFO state */
 
1131
                amsIncr = OPL->amsIncr;
 
1132
                vibIncr = OPL->vibIncr;
 
1133
                ams_table = OPL->ams_table;
 
1134
                vib_table = OPL->vib_table;
 
1135
        }
 
1136
        R_CH = rythm ? &S_CH[6] : E_CH;
 
1137
    for( i=0; i < length ; i++ )
 
1138
        {
 
1139
                /*            channel A         channel B         channel C      */
 
1140
                /* LFO */
 
1141
                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
 
1142
                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
 
1143
                outd[0] = 0;
 
1144
                /* deltaT ADPCM */
 
1145
                if( DELTAT->portstate )
 
1146
                        YM_DELTAT_ADPCM_CALC(DELTAT);
 
1147
                /* FM part */
 
1148
                for(CH=S_CH ; CH < R_CH ; CH++)
 
1149
                        OPL_CALC_CH(CH);
 
1150
                /* Rythn part */
 
1151
                if(rythm)
 
1152
                        OPL_CALC_RH(S_CH);
 
1153
                /* limit check */
 
1154
                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
 
1155
                /* store to sound buffer */
 
1156
                buf[i] = data >> OPL_OUTSB;
 
1157
        }
 
1158
        OPL->amsCnt = amsCnt;
 
1159
        OPL->vibCnt = vibCnt;
 
1160
        /* deltaT START flag */
 
1161
        if( !DELTAT->portstate )
 
1162
                OPL->status &= 0xfe;
 
1163
}
 
1164
#endif
 
1165
 
 
1166
/* ---------- reset one of chip ---------- */
 
1167
void OPLResetChip(FM_OPL *OPL)
 
1168
{
 
1169
        int c,s;
 
1170
        int i;
 
1171
 
 
1172
        /* reset chip */
 
1173
        OPL->mode   = 0;        /* normal mode */
 
1174
        OPL_STATUS_RESET(OPL,0x7f);
 
1175
        /* reset with register write */
 
1176
        OPLWriteReg(OPL,0x01,0); /* wabesel disable */
 
1177
        OPLWriteReg(OPL,0x02,0); /* Timer1 */
 
1178
        OPLWriteReg(OPL,0x03,0); /* Timer2 */
 
1179
        OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
 
1180
        for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
 
1181
        /* reset OPerator paramater */
 
1182
        for( c = 0 ; c < OPL->max_ch ; c++ )
 
1183
        {
 
1184
                OPL_CH *CH = &OPL->P_CH[c];
 
1185
                /* OPL->P_CH[c].PAN = OPN_CENTER; */
 
1186
                for(s = 0 ; s < 2 ; s++ )
 
1187
                {
 
1188
                        /* wave table */
 
1189
                        CH->SLOT[s].wavetable = &SIN_TABLE[0];
 
1190
                        /* CH->SLOT[s].evm = ENV_MOD_RR; */
 
1191
                        CH->SLOT[s].evc = EG_OFF;
 
1192
                        CH->SLOT[s].eve = EG_OFF+1;
 
1193
                        CH->SLOT[s].evs = 0;
 
1194
                }
 
1195
        }
 
1196
#if BUILD_Y8950
 
1197
        if(OPL->type&OPL_TYPE_ADPCM)
 
1198
        {
 
1199
                YM_DELTAT *DELTAT = OPL->deltat;
 
1200
 
 
1201
                DELTAT->freqbase = OPL->freqbase;
 
1202
                DELTAT->output_pointer = outd;
 
1203
                DELTAT->portshift = 5;
 
1204
                DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
 
1205
                YM_DELTAT_ADPCM_Reset(DELTAT,0);
 
1206
        }
 
1207
#endif
 
1208
}
 
1209
 
 
1210
/* ----------  Create one of vietual YM3812 ----------       */
 
1211
/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
 
1212
FM_OPL *OPLCreate(int type, int clock, int rate)
 
1213
{
 
1214
        char *ptr;
 
1215
        FM_OPL *OPL;
 
1216
        int state_size;
 
1217
        int max_ch = 9; /* normaly 9 channels */
 
1218
 
 
1219
        if( OPL_LockTable() ==-1) return NULL;
 
1220
        /* allocate OPL state space */
 
1221
        state_size  = sizeof(FM_OPL);
 
1222
        state_size += sizeof(OPL_CH)*max_ch;
 
1223
#if BUILD_Y8950
 
1224
        if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
 
1225
#endif
 
1226
        /* allocate memory block */
 
1227
        ptr = malloc(state_size);
 
1228
        if(ptr==NULL) return NULL;
 
1229
        /* clear */
 
1230
        memset(ptr,0,state_size);
 
1231
        OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
 
1232
        OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
 
1233
#if BUILD_Y8950
 
1234
        if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
 
1235
#endif
 
1236
        /* set channel state pointer */
 
1237
        OPL->type  = type;
 
1238
        OPL->clock = clock;
 
1239
        OPL->rate  = rate;
 
1240
        OPL->max_ch = max_ch;
 
1241
        /* init grobal tables */
 
1242
        OPL_initalize(OPL);
 
1243
        /* reset chip */
 
1244
        OPLResetChip(OPL);
 
1245
#ifdef OPL_OUTPUT_LOG
 
1246
        if(!opl_dbg_fp)
 
1247
        {
 
1248
                opl_dbg_fp = fopen("opllog.opl","wb");
 
1249
                opl_dbg_maxchip = 0;
 
1250
        }
 
1251
        if(opl_dbg_fp)
 
1252
        {
 
1253
                opl_dbg_opl[opl_dbg_maxchip] = OPL;
 
1254
                fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
 
1255
                        type,
 
1256
                        clock&0xff,
 
1257
                        (clock/0x100)&0xff,
 
1258
                        (clock/0x10000)&0xff,
 
1259
                        (clock/0x1000000)&0xff);
 
1260
                opl_dbg_maxchip++;
 
1261
        }
 
1262
#endif
 
1263
        return OPL;
 
1264
}
 
1265
 
 
1266
/* ----------  Destroy one of vietual YM3812 ----------       */
 
1267
void OPLDestroy(FM_OPL *OPL)
 
1268
{
 
1269
#ifdef OPL_OUTPUT_LOG
 
1270
        if(opl_dbg_fp)
 
1271
        {
 
1272
                fclose(opl_dbg_fp);
 
1273
                opl_dbg_fp = NULL;
 
1274
        }
 
1275
#endif
 
1276
        OPL_UnLockTable();
 
1277
        free(OPL);
 
1278
}
 
1279
 
 
1280
/* ----------  Option handlers ----------       */
 
1281
 
 
1282
void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
 
1283
{
 
1284
        OPL->TimerHandler   = TimerHandler;
 
1285
        OPL->TimerParam = channelOffset;
 
1286
}
 
1287
void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
 
1288
{
 
1289
        OPL->IRQHandler     = IRQHandler;
 
1290
        OPL->IRQParam = param;
 
1291
}
 
1292
void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
 
1293
{
 
1294
        OPL->UpdateHandler = UpdateHandler;
 
1295
        OPL->UpdateParam = param;
 
1296
}
 
1297
#if BUILD_Y8950
 
1298
void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
 
1299
{
 
1300
        OPL->porthandler_w = PortHandler_w;
 
1301
        OPL->porthandler_r = PortHandler_r;
 
1302
        OPL->port_param = param;
 
1303
}
 
1304
 
 
1305
void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
 
1306
{
 
1307
        OPL->keyboardhandler_w = KeyboardHandler_w;
 
1308
        OPL->keyboardhandler_r = KeyboardHandler_r;
 
1309
        OPL->keyboard_param = param;
 
1310
}
 
1311
#endif
 
1312
/* ---------- YM3812 I/O interface ---------- */
 
1313
int OPLWrite(FM_OPL *OPL,int a,int v)
 
1314
{
 
1315
        if( !(a&1) )
 
1316
        {       /* address port */
 
1317
                OPL->address = v & 0xff;
 
1318
        }
 
1319
        else
 
1320
        {       /* data port */
 
1321
                if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
 
1322
#ifdef OPL_OUTPUT_LOG
 
1323
        if(opl_dbg_fp)
 
1324
        {
 
1325
                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
 
1326
                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
 
1327
                fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
 
1328
        }
 
1329
#endif
 
1330
                OPLWriteReg(OPL,OPL->address,v);
 
1331
        }
 
1332
        return OPL->status>>7;
 
1333
}
 
1334
 
 
1335
unsigned char OPLRead(FM_OPL *OPL,int a)
 
1336
{
 
1337
        if( !(a&1) )
 
1338
        {       /* status port */
 
1339
                return OPL->status & (OPL->statusmask|0x80);
 
1340
        }
 
1341
        /* data port */
 
1342
        switch(OPL->address)
 
1343
        {
 
1344
        case 0x05: /* KeyBoard IN */
 
1345
                if(OPL->type&OPL_TYPE_KEYBOARD)
 
1346
                {
 
1347
                        if(OPL->keyboardhandler_r)
 
1348
                                return OPL->keyboardhandler_r(OPL->keyboard_param);
 
1349
                        else {
 
1350
                                LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
 
1351
                        }
 
1352
                }
 
1353
                return 0;
 
1354
#if 0
 
1355
        case 0x0f: /* ADPCM-DATA  */
 
1356
                return 0;
 
1357
#endif
 
1358
        case 0x19: /* I/O DATA    */
 
1359
                if(OPL->type&OPL_TYPE_IO)
 
1360
                {
 
1361
                        if(OPL->porthandler_r)
 
1362
                                return OPL->porthandler_r(OPL->port_param);
 
1363
                        else {
 
1364
                                LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
 
1365
                        }
 
1366
                }
 
1367
                return 0;
 
1368
        case 0x1a: /* PCM-DATA    */
 
1369
                return 0;
 
1370
        }
 
1371
        return 0;
 
1372
}
 
1373
 
 
1374
int OPLTimerOver(FM_OPL *OPL,int c)
 
1375
{
 
1376
        if( c )
 
1377
        {       /* Timer B */
 
1378
                OPL_STATUS_SET(OPL,0x20);
 
1379
        }
 
1380
        else
 
1381
        {       /* Timer A */
 
1382
                OPL_STATUS_SET(OPL,0x40);
 
1383
                /* CSM mode key,TL controll */
 
1384
                if( OPL->mode & 0x80 )
 
1385
                {       /* CSM mode total level latch and auto key on */
 
1386
                        int ch;
 
1387
                        if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
 
1388
                        for(ch=0;ch<9;ch++)
 
1389
                                CSMKeyControll( &OPL->P_CH[ch] );
 
1390
                }
 
1391
        }
 
1392
        /* reload timer */
 
1393
        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
 
1394
        return OPL->status>>7;
 
1395
}