~dkuhlman/python-training-materials/Materials

« back to all changes in this revision

Viewing changes to python-3.5.1-docs-html/tutorial/floatingpoint.html

  • Committer: Dave Kuhlman
  • Date: 2017-04-15 16:24:56 UTC
  • Revision ID: dkuhlman@davekuhlman.org-20170415162456-iav9vozzg4iwqwv3
Updated docs

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2
 
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3
 
 
4
 
 
5
 
<html xmlns="http://www.w3.org/1999/xhtml">
6
 
  <head>
7
 
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
8
 
    
9
 
    <title>15. Floating Point Arithmetic: Issues and Limitations &mdash; Python 3.5.1 documentation</title>
10
 
    
11
 
    <link rel="stylesheet" href="../_static/pydoctheme.css" type="text/css" />
12
 
    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
13
 
    
14
 
    <script type="text/javascript">
15
 
      var DOCUMENTATION_OPTIONS = {
16
 
        URL_ROOT:    '../',
17
 
        VERSION:     '3.5.1',
18
 
        COLLAPSE_INDEX: false,
19
 
        FILE_SUFFIX: '.html',
20
 
        HAS_SOURCE:  true
21
 
      };
22
 
    </script>
23
 
    <script type="text/javascript" src="../_static/jquery.js"></script>
24
 
    <script type="text/javascript" src="../_static/underscore.js"></script>
25
 
    <script type="text/javascript" src="../_static/doctools.js"></script>
26
 
    <script type="text/javascript" src="../_static/sidebar.js"></script>
27
 
    <link rel="search" type="application/opensearchdescription+xml"
28
 
          title="Search within Python 3.5.1 documentation"
29
 
          href="../_static/opensearch.xml"/>
30
 
    <link rel="author" title="About these documents" href="../about.html" />
31
 
    <link rel="copyright" title="Copyright" href="../copyright.html" />
32
 
    <link rel="top" title="Python 3.5.1 documentation" href="../contents.html" />
33
 
    <link rel="up" title="The Python Tutorial" href="index.html" />
34
 
    <link rel="next" title="16. Appendix" href="appendix.html" />
35
 
    <link rel="prev" title="14. Interactive Input Editing and History Substitution" href="interactive.html" />
36
 
    <link rel="shortcut icon" type="image/png" href="../_static/py.png" />
37
 
    <script type="text/javascript" src="../_static/copybutton.js"></script>
38
 
    <script type="text/javascript" src="../_static/version_switch.js"></script>
39
 
    
40
 
 
41
 
 
42
 
  </head>
43
 
  <body role="document">  
44
 
    <div class="related" role="navigation" aria-label="related navigation">
45
 
      <h3>Navigation</h3>
46
 
      <ul>
47
 
        <li class="right" style="margin-right: 10px">
48
 
          <a href="../genindex.html" title="General Index"
49
 
             accesskey="I">index</a></li>
50
 
        <li class="right" >
51
 
          <a href="../py-modindex.html" title="Python Module Index"
52
 
             >modules</a> |</li>
53
 
        <li class="right" >
54
 
          <a href="appendix.html" title="16. Appendix"
55
 
             accesskey="N">next</a> |</li>
56
 
        <li class="right" >
57
 
          <a href="interactive.html" title="14. Interactive Input Editing and History Substitution"
58
 
             accesskey="P">previous</a> |</li>
59
 
        <li><img src="../_static/py.png" alt=""
60
 
                 style="vertical-align: middle; margin-top: -1px"/></li>
61
 
        <li><a href="https://www.python.org/">Python</a> &raquo;</li>
62
 
        <li>
63
 
          <span class="version_switcher_placeholder">3.5.1</span>
64
 
          <a href="../index.html">Documentation </a> &raquo;
65
 
        </li>
66
 
 
67
 
          <li class="nav-item nav-item-1"><a href="index.html" accesskey="U">The Python Tutorial</a> &raquo;</li> 
68
 
      </ul>
69
 
    </div>    
70
 
 
71
 
    <div class="document">
72
 
      <div class="documentwrapper">
73
 
        <div class="bodywrapper">
74
 
          <div class="body" role="main">
75
 
            
76
 
  <div class="section" id="floating-point-arithmetic-issues-and-limitations">
77
 
<span id="tut-fp-issues"></span><h1>15. Floating Point Arithmetic:  Issues and Limitations<a class="headerlink" href="#floating-point-arithmetic-issues-and-limitations" title="Permalink to this headline">¶</a></h1>
78
 
<p>Floating-point numbers are represented in computer hardware as base 2 (binary)
79
 
fractions.  For example, the decimal fraction</p>
80
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mf">0.125</span>
81
 
</pre></div>
82
 
</div>
83
 
<p>has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction</p>
84
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mf">0.001</span>
85
 
</pre></div>
86
 
</div>
87
 
<p>has value 0/2 + 0/4 + 1/8.  These two fractions have identical values, the only
88
 
real difference being that the first is written in base 10 fractional notation,
89
 
and the second in base 2.</p>
90
 
<p>Unfortunately, most decimal fractions cannot be represented exactly as binary
91
 
fractions.  A consequence is that, in general, the decimal floating-point
92
 
numbers you enter are only approximated by the binary floating-point numbers
93
 
actually stored in the machine.</p>
94
 
<p>The problem is easier to understand at first in base 10.  Consider the fraction
95
 
1/3.  You can approximate that as a base 10 fraction:</p>
96
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mf">0.3</span>
97
 
</pre></div>
98
 
</div>
99
 
<p>or, better,</p>
100
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mf">0.33</span>
101
 
</pre></div>
102
 
</div>
103
 
<p>or, better,</p>
104
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mf">0.333</span>
105
 
</pre></div>
106
 
</div>
107
 
<p>and so on.  No matter how many digits you&#8217;re willing to write down, the result
108
 
will never be exactly 1/3, but will be an increasingly better approximation of
109
 
1/3.</p>
110
 
<p>In the same way, no matter how many base 2 digits you&#8217;re willing to use, the
111
 
decimal value 0.1 cannot be represented exactly as a base 2 fraction.  In base
112
 
2, 1/10 is the infinitely repeating fraction</p>
113
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mf">0.0001100110011001100110011001100110011001100110011</span><span class="o">...</span>
114
 
</pre></div>
115
 
</div>
116
 
<p>Stop at any finite number of bits, and you get an approximation.  On most
117
 
machines today, floats are approximated using a binary fraction with
118
 
the numerator using the first 53 bits starting with the most significant bit and
119
 
with the denominator as a power of two.  In the case of 1/10, the binary fraction
120
 
is <code class="docutils literal"><span class="pre">3602879701896397</span> <span class="pre">/</span> <span class="pre">2</span> <span class="pre">**</span> <span class="pre">55</span></code> which is close to but not exactly
121
 
equal to the true value of 1/10.</p>
122
 
<p>Many users are not aware of the approximation because of the way values are
123
 
displayed.  Python only prints a decimal approximation to the true decimal
124
 
value of the binary approximation stored by the machine.  On most machines, if
125
 
Python were to print the true decimal value of the binary approximation stored
126
 
for 0.1, it would have to display</p>
127
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="mf">0.1</span>
128
 
<span class="go">0.1000000000000000055511151231257827021181583404541015625</span>
129
 
</pre></div>
130
 
</div>
131
 
<p>That is more digits than most people find useful, so Python keeps the number
132
 
of digits manageable by displaying a rounded value instead</p>
133
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="mi">1</span> <span class="o">/</span> <span class="mi">10</span>
134
 
<span class="go">0.1</span>
135
 
</pre></div>
136
 
</div>
137
 
<p>Just remember, even though the printed result looks like the exact value
138
 
of 1/10, the actual stored value is the nearest representable binary fraction.</p>
139
 
<p>Interestingly, there are many different decimal numbers that share the same
140
 
nearest approximate binary fraction.  For example, the numbers <code class="docutils literal"><span class="pre">0.1</span></code> and
141
 
<code class="docutils literal"><span class="pre">0.10000000000000001</span></code> and
142
 
<code class="docutils literal"><span class="pre">0.1000000000000000055511151231257827021181583404541015625</span></code> are all
143
 
approximated by <code class="docutils literal"><span class="pre">3602879701896397</span> <span class="pre">/</span> <span class="pre">2</span> <span class="pre">**</span> <span class="pre">55</span></code>.  Since all of these decimal
144
 
values share the same approximation, any one of them could be displayed
145
 
while still preserving the invariant <code class="docutils literal"><span class="pre">eval(repr(x))</span> <span class="pre">==</span> <span class="pre">x</span></code>.</p>
146
 
<p>Historically, the Python prompt and built-in <a class="reference internal" href="../library/functions.html#repr" title="repr"><code class="xref py py-func docutils literal"><span class="pre">repr()</span></code></a> function would choose
147
 
the one with 17 significant digits, <code class="docutils literal"><span class="pre">0.10000000000000001</span></code>.   Starting with
148
 
Python 3.1, Python (on most systems) is now able to choose the shortest of
149
 
these and simply display <code class="docutils literal"><span class="pre">0.1</span></code>.</p>
150
 
<p>Note that this is in the very nature of binary floating-point: this is not a bug
151
 
in Python, and it is not a bug in your code either.  You&#8217;ll see the same kind of
152
 
thing in all languages that support your hardware&#8217;s floating-point arithmetic
153
 
(although some languages may not <em>display</em> the difference by default, or in all
154
 
output modes).</p>
155
 
<p>For more pleasant output, you may wish to use string formatting to produce a limited number of significant digits:</p>
156
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">format</span><span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="s1">&#39;.12g&#39;</span><span class="p">)</span>  <span class="c1"># give 12 significant digits</span>
157
 
<span class="go">&#39;3.14159265359&#39;</span>
158
 
 
159
 
<span class="gp">&gt;&gt;&gt; </span><span class="nb">format</span><span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="s1">&#39;.2f&#39;</span><span class="p">)</span>   <span class="c1"># give 2 digits after the point</span>
160
 
<span class="go">&#39;3.14&#39;</span>
161
 
 
162
 
<span class="gp">&gt;&gt;&gt; </span><span class="nb">repr</span><span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">pi</span><span class="p">)</span>
163
 
<span class="go">&#39;3.141592653589793&#39;</span>
164
 
</pre></div>
165
 
</div>
166
 
<p>It&#8217;s important to realize that this is, in a real sense, an illusion: you&#8217;re
167
 
simply rounding the <em>display</em> of the true machine value.</p>
168
 
<p>One illusion may beget another.  For example, since 0.1 is not exactly 1/10,
169
 
summing three values of 0.1 may not yield exactly 0.3, either:</p>
170
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="o">.</span><span class="mi">1</span> <span class="o">+</span> <span class="o">.</span><span class="mi">1</span> <span class="o">+</span> <span class="o">.</span><span class="mi">1</span> <span class="o">==</span> <span class="o">.</span><span class="mi">3</span>
171
 
<span class="go">False</span>
172
 
</pre></div>
173
 
</div>
174
 
<p>Also, since the 0.1 cannot get any closer to the exact value of 1/10 and
175
 
0.3 cannot get any closer to the exact value of 3/10, then pre-rounding with
176
 
<a class="reference internal" href="../library/functions.html#round" title="round"><code class="xref py py-func docutils literal"><span class="pre">round()</span></code></a> function cannot help:</p>
177
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">round</span><span class="p">(</span><span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="nb">round</span><span class="p">(</span><span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="nb">round</span><span class="p">(</span><span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">==</span> <span class="nb">round</span><span class="p">(</span><span class="o">.</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
178
 
<span class="go">False</span>
179
 
</pre></div>
180
 
</div>
181
 
<p>Though the numbers cannot be made closer to their intended exact values,
182
 
the <a class="reference internal" href="../library/functions.html#round" title="round"><code class="xref py py-func docutils literal"><span class="pre">round()</span></code></a> function can be useful for post-rounding so that results
183
 
with inexact values become comparable to one another:</p>
184
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">round</span><span class="p">(</span><span class="o">.</span><span class="mi">1</span> <span class="o">+</span> <span class="o">.</span><span class="mi">1</span> <span class="o">+</span> <span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> <span class="o">==</span> <span class="nb">round</span><span class="p">(</span><span class="o">.</span><span class="mi">3</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
185
 
<span class="go">True</span>
186
 
</pre></div>
187
 
</div>
188
 
<p>Binary floating-point arithmetic holds many surprises like this.  The problem
189
 
with &#8220;0.1&#8221; is explained in precise detail below, in the &#8220;Representation Error&#8221;
190
 
section.  See <a class="reference external" href="http://www.lahey.com/float.htm">The Perils of Floating Point</a>
191
 
for a more complete account of other common surprises.</p>
192
 
<p>As that says near the end, &#8220;there are no easy answers.&#8221;  Still, don&#8217;t be unduly
193
 
wary of floating-point!  The errors in Python float operations are inherited
194
 
from the floating-point hardware, and on most machines are on the order of no
195
 
more than 1 part in 2**53 per operation.  That&#8217;s more than adequate for most
196
 
tasks, but you do need to keep in mind that it&#8217;s not decimal arithmetic and
197
 
that every float operation can suffer a new rounding error.</p>
198
 
<p>While pathological cases do exist, for most casual use of floating-point
199
 
arithmetic you&#8217;ll see the result you expect in the end if you simply round the
200
 
display of your final results to the number of decimal digits you expect.
201
 
<a class="reference internal" href="../library/stdtypes.html#str" title="str"><code class="xref py py-func docutils literal"><span class="pre">str()</span></code></a> usually suffices, and for finer control see the <a class="reference internal" href="../library/stdtypes.html#str.format" title="str.format"><code class="xref py py-meth docutils literal"><span class="pre">str.format()</span></code></a>
202
 
method&#8217;s format specifiers in <a class="reference internal" href="../library/string.html#formatstrings"><span>Format String Syntax</span></a>.</p>
203
 
<p>For use cases which require exact decimal representation, try using the
204
 
<a class="reference internal" href="../library/decimal.html#module-decimal" title="decimal: Implementation of the General Decimal Arithmetic  Specification."><code class="xref py py-mod docutils literal"><span class="pre">decimal</span></code></a> module which implements decimal arithmetic suitable for
205
 
accounting applications and high-precision applications.</p>
206
 
<p>Another form of exact arithmetic is supported by the <a class="reference internal" href="../library/fractions.html#module-fractions" title="fractions: Rational numbers."><code class="xref py py-mod docutils literal"><span class="pre">fractions</span></code></a> module
207
 
which implements arithmetic based on rational numbers (so the numbers like
208
 
1/3 can be represented exactly).</p>
209
 
<p>If you are a heavy user of floating point operations you should take a look
210
 
at the Numerical Python package and many other packages for mathematical and
211
 
statistical operations supplied by the SciPy project. See &lt;<a class="reference external" href="http://scipy.org">http://scipy.org</a>&gt;.</p>
212
 
<p>Python provides tools that may help on those rare occasions when you really
213
 
<em>do</em> want to know the exact value of a float.  The
214
 
<a class="reference internal" href="../library/stdtypes.html#float.as_integer_ratio" title="float.as_integer_ratio"><code class="xref py py-meth docutils literal"><span class="pre">float.as_integer_ratio()</span></code></a> method expresses the value of a float as a
215
 
fraction:</p>
216
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">x</span> <span class="o">=</span> <span class="mf">3.14159</span>
217
 
<span class="gp">&gt;&gt;&gt; </span><span class="n">x</span><span class="o">.</span><span class="n">as_integer_ratio</span><span class="p">()</span>
218
 
<span class="go">(3537115888337719, 1125899906842624)</span>
219
 
</pre></div>
220
 
</div>
221
 
<p>Since the ratio is exact, it can be used to losslessly recreate the
222
 
original value:</p>
223
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">x</span> <span class="o">==</span> <span class="mi">3537115888337719</span> <span class="o">/</span> <span class="mi">1125899906842624</span>
224
 
<span class="go">True</span>
225
 
</pre></div>
226
 
</div>
227
 
<p>The <a class="reference internal" href="../library/stdtypes.html#float.hex" title="float.hex"><code class="xref py py-meth docutils literal"><span class="pre">float.hex()</span></code></a> method expresses a float in hexadecimal (base
228
 
16), again giving the exact value stored by your computer:</p>
229
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">x</span><span class="o">.</span><span class="n">hex</span><span class="p">()</span>
230
 
<span class="go">&#39;0x1.921f9f01b866ep+1&#39;</span>
231
 
</pre></div>
232
 
</div>
233
 
<p>This precise hexadecimal representation can be used to reconstruct
234
 
the float value exactly:</p>
235
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">x</span> <span class="o">==</span> <span class="nb">float</span><span class="o">.</span><span class="n">fromhex</span><span class="p">(</span><span class="s1">&#39;0x1.921f9f01b866ep+1&#39;</span><span class="p">)</span>
236
 
<span class="go">True</span>
237
 
</pre></div>
238
 
</div>
239
 
<p>Since the representation is exact, it is useful for reliably porting values
240
 
across different versions of Python (platform independence) and exchanging
241
 
data with other languages that support the same format (such as Java and C99).</p>
242
 
<p>Another helpful tool is the <a class="reference internal" href="../library/math.html#math.fsum" title="math.fsum"><code class="xref py py-func docutils literal"><span class="pre">math.fsum()</span></code></a> function which helps mitigate
243
 
loss-of-precision during summation.  It tracks &#8220;lost digits&#8221; as values are
244
 
added onto a running total.  That can make a difference in overall accuracy
245
 
so that the errors do not accumulate to the point where they affect the
246
 
final total:</p>
247
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">sum</span><span class="p">([</span><span class="mf">0.1</span><span class="p">]</span> <span class="o">*</span> <span class="mi">10</span><span class="p">)</span> <span class="o">==</span> <span class="mf">1.0</span>
248
 
<span class="go">False</span>
249
 
<span class="gp">&gt;&gt;&gt; </span><span class="n">math</span><span class="o">.</span><span class="n">fsum</span><span class="p">([</span><span class="mf">0.1</span><span class="p">]</span> <span class="o">*</span> <span class="mi">10</span><span class="p">)</span> <span class="o">==</span> <span class="mf">1.0</span>
250
 
<span class="go">True</span>
251
 
</pre></div>
252
 
</div>
253
 
<div class="section" id="representation-error">
254
 
<span id="tut-fp-error"></span><h2>15.1. Representation Error<a class="headerlink" href="#representation-error" title="Permalink to this headline">¶</a></h2>
255
 
<p>This section explains the &#8220;0.1&#8221; example in detail, and shows how you can perform
256
 
an exact analysis of cases like this yourself.  Basic familiarity with binary
257
 
floating-point representation is assumed.</p>
258
 
<p><em class="dfn">Representation error</em> refers to the fact that some (most, actually)
259
 
decimal fractions cannot be represented exactly as binary (base 2) fractions.
260
 
This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many
261
 
others) often won&#8217;t display the exact decimal number you expect.</p>
262
 
<p>Why is that?  1/10 is not exactly representable as a binary fraction. Almost all
263
 
machines today (November 2000) use IEEE-754 floating point arithmetic, and
264
 
almost all platforms map Python floats to IEEE-754 &#8220;double precision&#8221;.  754
265
 
doubles contain 53 bits of precision, so on input the computer strives to
266
 
convert 0.1 to the closest fraction it can of the form <em>J</em>/2**<em>N</em> where <em>J</em> is
267
 
an integer containing exactly 53 bits.  Rewriting</p>
268
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mi">1</span> <span class="o">/</span> <span class="mi">10</span> <span class="o">~=</span> <span class="n">J</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span><span class="o">**</span><span class="n">N</span><span class="p">)</span>
269
 
</pre></div>
270
 
</div>
271
 
<p>as</p>
272
 
<div class="highlight-python3"><div class="highlight"><pre><span class="n">J</span> <span class="o">~=</span> <span class="mi">2</span><span class="o">**</span><span class="n">N</span> <span class="o">/</span> <span class="mi">10</span>
273
 
</pre></div>
274
 
</div>
275
 
<p>and recalling that <em>J</em> has exactly 53 bits (is <code class="docutils literal"><span class="pre">&gt;=</span> <span class="pre">2**52</span></code> but <code class="docutils literal"><span class="pre">&lt;</span> <span class="pre">2**53</span></code>),
276
 
the best value for <em>N</em> is 56:</p>
277
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="mi">2</span><span class="o">**</span><span class="mi">52</span> <span class="o">&lt;=</span>  <span class="mi">2</span><span class="o">**</span><span class="mi">56</span> <span class="o">//</span> <span class="mi">10</span>  <span class="o">&lt;</span> <span class="mi">2</span><span class="o">**</span><span class="mi">53</span>
278
 
<span class="go">True</span>
279
 
</pre></div>
280
 
</div>
281
 
<p>That is, 56 is the only value for <em>N</em> that leaves <em>J</em> with exactly 53 bits.  The
282
 
best possible value for <em>J</em> is then that quotient rounded:</p>
283
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">q</span><span class="p">,</span> <span class="n">r</span> <span class="o">=</span> <span class="nb">divmod</span><span class="p">(</span><span class="mi">2</span><span class="o">**</span><span class="mi">56</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
284
 
<span class="gp">&gt;&gt;&gt; </span><span class="n">r</span>
285
 
<span class="go">6</span>
286
 
</pre></div>
287
 
</div>
288
 
<p>Since the remainder is more than half of 10, the best approximation is obtained
289
 
by rounding up:</p>
290
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">q</span><span class="o">+</span><span class="mi">1</span>
291
 
<span class="go">7205759403792794</span>
292
 
</pre></div>
293
 
</div>
294
 
<p>Therefore the best possible approximation to 1/10 in 754 double precision is:</p>
295
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mi">7205759403792794</span> <span class="o">/</span> <span class="mi">2</span> <span class="o">**</span> <span class="mi">56</span>
296
 
</pre></div>
297
 
</div>
298
 
<p>Dividing both the numerator and denominator by two reduces the fraction to:</p>
299
 
<div class="highlight-python3"><div class="highlight"><pre><span class="mi">3602879701896397</span> <span class="o">/</span> <span class="mi">2</span> <span class="o">**</span> <span class="mi">55</span>
300
 
</pre></div>
301
 
</div>
302
 
<p>Note that since we rounded up, this is actually a little bit larger than 1/10;
303
 
if we had not rounded up, the quotient would have been a little bit smaller than
304
 
1/10.  But in no case can it be <em>exactly</em> 1/10!</p>
305
 
<p>So the computer never &#8220;sees&#8221; 1/10:  what it sees is the exact fraction given
306
 
above, the best 754 double approximation it can get:</p>
307
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="mf">0.1</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">**</span> <span class="mi">55</span>
308
 
<span class="go">3602879701896397.0</span>
309
 
</pre></div>
310
 
</div>
311
 
<p>If we multiply that fraction by 10**55, we can see the value out to
312
 
55 decimal digits:</p>
313
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="mi">3602879701896397</span> <span class="o">*</span> <span class="mi">10</span> <span class="o">**</span> <span class="mi">55</span> <span class="o">//</span> <span class="mi">2</span> <span class="o">**</span> <span class="mi">55</span>
314
 
<span class="go">1000000000000000055511151231257827021181583404541015625</span>
315
 
</pre></div>
316
 
</div>
317
 
<p>meaning that the exact number stored in the computer is equal to
318
 
the decimal value 0.1000000000000000055511151231257827021181583404541015625.
319
 
Instead of displaying the full decimal value, many languages (including
320
 
older versions of Python), round the result to 17 significant digits:</p>
321
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">format</span><span class="p">(</span><span class="mf">0.1</span><span class="p">,</span> <span class="s1">&#39;.17f&#39;</span><span class="p">)</span>
322
 
<span class="go">&#39;0.10000000000000001&#39;</span>
323
 
</pre></div>
324
 
</div>
325
 
<p>The <a class="reference internal" href="../library/fractions.html#module-fractions" title="fractions: Rational numbers."><code class="xref py py-mod docutils literal"><span class="pre">fractions</span></code></a> and <a class="reference internal" href="../library/decimal.html#module-decimal" title="decimal: Implementation of the General Decimal Arithmetic  Specification."><code class="xref py py-mod docutils literal"><span class="pre">decimal</span></code></a> modules make these calculations
326
 
easy:</p>
327
 
<div class="highlight-python3"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">decimal</span> <span class="k">import</span> <span class="n">Decimal</span>
328
 
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">fractions</span> <span class="k">import</span> <span class="n">Fraction</span>
329
 
 
330
 
<span class="gp">&gt;&gt;&gt; </span><span class="n">Fraction</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="mf">0.1</span><span class="p">)</span>
331
 
<span class="go">Fraction(3602879701896397, 36028797018963968)</span>
332
 
 
333
 
<span class="gp">&gt;&gt;&gt; </span><span class="p">(</span><span class="mf">0.1</span><span class="p">)</span><span class="o">.</span><span class="n">as_integer_ratio</span><span class="p">()</span>
334
 
<span class="go">(3602879701896397, 36028797018963968)</span>
335
 
 
336
 
<span class="gp">&gt;&gt;&gt; </span><span class="n">Decimal</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="mf">0.1</span><span class="p">)</span>
337
 
<span class="go">Decimal(&#39;0.1000000000000000055511151231257827021181583404541015625&#39;)</span>
338
 
 
339
 
<span class="gp">&gt;&gt;&gt; </span><span class="nb">format</span><span class="p">(</span><span class="n">Decimal</span><span class="o">.</span><span class="n">from_float</span><span class="p">(</span><span class="mf">0.1</span><span class="p">),</span> <span class="s1">&#39;.17&#39;</span><span class="p">)</span>
340
 
<span class="go">&#39;0.10000000000000001&#39;</span>
341
 
</pre></div>
342
 
</div>
343
 
</div>
344
 
</div>
345
 
 
346
 
 
347
 
          </div>
348
 
        </div>
349
 
      </div>
350
 
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
351
 
        <div class="sphinxsidebarwrapper">
352
 
  <h3><a href="../contents.html">Table Of Contents</a></h3>
353
 
  <ul>
354
 
<li><a class="reference internal" href="#">15. Floating Point Arithmetic:  Issues and Limitations</a><ul>
355
 
<li><a class="reference internal" href="#representation-error">15.1. Representation Error</a></li>
356
 
</ul>
357
 
</li>
358
 
</ul>
359
 
 
360
 
  <h4>Previous topic</h4>
361
 
  <p class="topless"><a href="interactive.html"
362
 
                        title="previous chapter">14. Interactive Input Editing and History Substitution</a></p>
363
 
  <h4>Next topic</h4>
364
 
  <p class="topless"><a href="appendix.html"
365
 
                        title="next chapter">16. Appendix</a></p>
366
 
<h3>This Page</h3>
367
 
<ul class="this-page-menu">
368
 
  <li><a href="../bugs.html">Report a Bug</a></li>
369
 
  <li><a href="../_sources/tutorial/floatingpoint.txt"
370
 
         rel="nofollow">Show Source</a></li>
371
 
</ul>
372
 
 
373
 
<div id="searchbox" style="display: none" role="search">
374
 
  <h3>Quick search</h3>
375
 
    <form class="search" action="../search.html" method="get">
376
 
      <input type="text" name="q" />
377
 
      <input type="submit" value="Go" />
378
 
      <input type="hidden" name="check_keywords" value="yes" />
379
 
      <input type="hidden" name="area" value="default" />
380
 
    </form>
381
 
    <p class="searchtip" style="font-size: 90%">
382
 
    Enter search terms or a module, class or function name.
383
 
    </p>
384
 
</div>
385
 
<script type="text/javascript">$('#searchbox').show(0);</script>
386
 
        </div>
387
 
      </div>
388
 
      <div class="clearer"></div>
389
 
    </div>  
390
 
    <div class="related" role="navigation" aria-label="related navigation">
391
 
      <h3>Navigation</h3>
392
 
      <ul>
393
 
        <li class="right" style="margin-right: 10px">
394
 
          <a href="../genindex.html" title="General Index"
395
 
             >index</a></li>
396
 
        <li class="right" >
397
 
          <a href="../py-modindex.html" title="Python Module Index"
398
 
             >modules</a> |</li>
399
 
        <li class="right" >
400
 
          <a href="appendix.html" title="16. Appendix"
401
 
             >next</a> |</li>
402
 
        <li class="right" >
403
 
          <a href="interactive.html" title="14. Interactive Input Editing and History Substitution"
404
 
             >previous</a> |</li>
405
 
        <li><img src="../_static/py.png" alt=""
406
 
                 style="vertical-align: middle; margin-top: -1px"/></li>
407
 
        <li><a href="https://www.python.org/">Python</a> &raquo;</li>
408
 
        <li>
409
 
          <span class="version_switcher_placeholder">3.5.1</span>
410
 
          <a href="../index.html">Documentation </a> &raquo;
411
 
        </li>
412
 
 
413
 
          <li class="nav-item nav-item-1"><a href="index.html" >The Python Tutorial</a> &raquo;</li> 
414
 
      </ul>
415
 
    </div>  
416
 
    <div class="footer">
417
 
    &copy; <a href="../copyright.html">Copyright</a> 1990-2016, Python Software Foundation.
418
 
    <br />
419
 
    The Python Software Foundation is a non-profit corporation.
420
 
    <a href="https://www.python.org/psf/donations/">Please donate.</a>
421
 
    <br />
422
 
    Last updated on Jan 22, 2016.
423
 
    <a href="../bugs.html">Found a bug</a>?
424
 
    <br />
425
 
    Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.3.3.
426
 
    </div>
427
 
 
428
 
  </body>
429
 
</html>
 
 
b'\\ No newline at end of file'